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Quantitative measurements of animal motion are founda-
tional to the study of animal behavior1,2. Methods for pose 
estimation, the task of predicting the location of animal 

body parts in images, have grown in popularity as a state-of-the-art 
requirement for behavioral quantification across disciplines includ-
ing neuroscience3 and ecology4. Although adaptations of deep 
learning-based approaches originally developed for human pose 
estimation have made animal pose estimation for single individuals 
possible5–7, reliably tracking multiple, interacting animals and their 
poses remains a challenging problem, presenting an impediment to 
studies of social behaviors.

Detecting body parts is sufficient for single-animal pose  
estimation (Fig. 1a), but generalizing to multiple animals requires 
solutions for assigning detections reliably to individuals both 
within an image (Fig. 1b) and across frames (Fig. 1c)3. While  
tools have been developed for tracking the identities of mul-
tiple animals across consecutive frames8,9, a unified approach 
that simultaneously performs pose estimation and tracking is  
needed10. Existing methods for multi-human pose estimation 
adopt either a bottom–up (detect parts and then group them into 
individuals) or top–down (find individuals and then detect parts) 
strategy, but it is not clear which is better suited for the domain 
of animals. Tools have been developed that implement one or the 
other approach11,12 for animal pose estimation and tracking, but 

these methods do not allow the user to compare the two compet-
ing approaches.

Here we present Social LEAP (SLEAP), a system for multi-animal 
pose tracking and the successor of the single-animal pose-estimation 
method LEAP6. SLEAP is a general-purpose framework developed 
from the ground up and meets the needs of the entire multi-animal 
pose-tracking workflow, including interactive labeling, training, 
inference and proofreading. SLEAP implements both top–down 
and bottom–up approaches, animal identity tracking through 
motion or appearance models and over 30 state-of-the-art neural 
network backbones and modular network architectures. We dem-
onstrate the importance of this flexibility by evaluating SLEAP 
across seven datasets with different species, numbers of animals, 
body parts, imaging conditions and environments (Extended Data 
Fig. 1 and Supplementary Video 1). We show that SLEAP is accu-
rate (<0.11 mm for flies, <3.3 mm for mice in 90% of the data), 
data efficient (<200 labels for 90% peak accuracy in flies and mice), 
fast to train (90% peak accuracy within 4.4 min without pretrain-
ing) and fast to predict (up to 804 frames per second (FPS) with-
out downsampling). SLEAP is able to perform end-to-end tracking 
of high-resolution multi-animal data at low latencies (<3.5 ms for 
1,024 × 1,024-pixel images), making it compatible with real-time 
processing. To demonstrate how SLEAP can enable experimental  
paradigms intractable without reliable real-time multi-animal 
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tracking, we implement a closed-loop system to optogeneti-
cally control the behavior of one animal on the basis of social 
interactions with another animal detected in real time. Finally, 
we have made SLEAP available at https://sleap.ai, together with 
an accessible user interface, open-source code, extensive docu-
mentation and tutorials as well as all datasets and annotations to 
establish a reproducible and comprehensive multi-animal pose- 
tracking benchmark.

Results
SLEAP is a complete framework for multi-animal pose track-
ing. The SLEAP multi-animal pose-tracking system is composed of 
submodules that can be configured to enable a workflow starting 
from data input and resulting in trained pose-estimation models 
and pose-tracked videos (Extended Data Fig. 2a). Such a system is 
needed to make SLEAP general purpose or, in other words, to enable 
it to flexibly perform well on any dataset or training regime. SLEAP 
implements an input–output layer that supports data input in raw 
video or array format as well as importing annotations from other 
pose-tracking software5,7 and standardized formats13 (Fig. 1d). Once 
imported, data can be labeled interactively using a versatile graphi-
cal user interface (GUI) (Extended Data Fig. 2b and Supplementary 
Video 2) that can then export images and annotations as a single-file 
‘training package’ to facilitate remote training and data sharing. 
Predictions from trained models can be imported, sorted based on 
prediction score and used to initialize ground truth labels for frames 
that performed poorly, requiring less time to correct than de novo 
labeling. This functionality enables a human-in-the-loop workflow 
in which the user alternates between labeling and training mod-
els to produce progressively more accurate predictions. The GUI 
also provides functionality for launching and monitoring training, 
proofreading predicted data and exporting raw positional data in a 
format convenient for analysis.

SLEAP supports multiple approaches to solving pose-estimation 
problems as well as more than 30 neural network architectures 
to learn from data (Fig. 1e). To enable this flexibility as well as to 
ensure reproducibility, we implemented a configuration system that 
captures all hyperparameters related to model creation and training. 
These configuration files describe data-preprocessing steps, neural 
network architecture, optimization settings and output formats. 
This can be used to reproduce training results and is used to docu-
ment the inputs and outputs of a saved model. We provide several 
built-in configuration profiles that are applicable for a wide range of 
use cases and datasets as well as online documentation and trouble-
shooting workflows for common problems that users may encoun-
ter (Extended Data Fig. 3).

Once trained, SLEAP models can be used to predict poses 
from previously unseen data (Fig. 1f). We implemented effi-
cient approach-specific algorithms in graphics processing unit 
(GPU)-accelerated code, which is automatically added based on 
the model configuration. This enables high-performance inference 
either through a command-line interface (CLI) or through low-level 
or high-level application programming interfaces (APIs) to enable 

custom applications that use SLEAP as a component. Inference 
modules provide low-level functionality in native TensorFlow code 
for GPU compatibility, including peak finding, subpixel refinement 
and other operations necessary for complex multi-stage models. 
Tracking modules can optionally be enabled to associate poses 
over time (Fig. 1c) or disabled when labeling discontiguous frames. 
Results from any mode of inference can be saved with associated 
metadata, allowing the user to open predictions in the GUI for con-
venient inspection and proofreading.

As part of the framework, we developed a standardized data 
model that encompasses the needs of general-purpose multi-animal 
pose tracking (Fig. 1g and Supplementary Table 3). This data model 
describes all structures used in labeling, training and inference, 
including properties that are specific to the multi-animal setting 
(for example, Track). Importantly, this data model is format agnos-
tic, which enables standardization and sharing of animal pose data 
regardless of provenance. We implement this data model within 
SLEAP and develop a self-contained format in which it can be saved 
to a single, portable file that can optionally include image data.

SLEAP can be used entirely through its GUI with no program-
ming required; however, we also expose convenient high-level APIs 
(Fig. 1h) that can be used to build applications and extensions 
that use SLEAP14–16. To support the engineering complexities of a 
large-scale software system, we adopted industry-standard practices 
for software engineering and developer operations (Fig. 1i). We use 
automated tools for versioning, continuous integration, packaging, 
distribution and documentation to enable a reliable, reproducible 
and documented software package. This allows SLEAP to work 
across platforms and maximizes the validity and future reproduc-
ibility of scientific results derived from its use.

SLEAP is open-source software that builds upon a large number 
of other state-of-the-art software packages for numerical analysis 
and deep learning (Fig. 1j). Implemented entirely in Python, SLEAP 
takes advantage of current and future developments in each layer of 
its infrastructure.

Fast, efficient and accurate animal pose estimation. We use 
the mean average precision (mAP) metric from the human 
pose-estimation literature to summarize performance while taking 
into account animal size, visibility of body parts and uncertainty 
in human-labeling precision17. We implement this calculation with 
the assumption that all animal landmarks are as ‘easy’ to label as 
the most unambiguous human landmark (the eye). This provides a 
lower bound on the true accuracy of these models.

The single-animal pose-estimation problem (Fig. 1a) that pre-
vious frameworks were developed to solve is a core component of 
SLEAP. To evaluate how our system performs relative to previous 
approaches, we applied SLEAP to a published single-animal data-
set6. When compared to DeepLabCut5, DeepPoseKit7 and LEAP6, 
we found that SLEAP achieves comparable or improved accuracy 
(mAP scores of 0.927 versus 0.928 for SLEAP and DeepLabCut, 
respectively) at prediction speeds that are several times faster (2,194 
versus 458 FPS) (Fig. 2a).

Fig. 1 | SLEAP is a general-purpose multi-animal pose-tracking system. a, Illustration of the part-localization problem. Single-animal pose estimation is 
equivalent to the landmark-localization task in which there exists a unique coordinate corresponding to each body part. b, Illustration of the part-grouping 
problem. In multi-animal pose estimation, there may be multiple detections of each body part, which must be grouped into sets that correspond to 
distinct animals. c, Illustration of the identity-tracking problem. In multi-animal pose tracking, pose detections must be associated with a unique animal 
ID that persists across frames. d–f, Diagram of the submodules in SLEAP, including all major machine learning system components: data annotation, data 
processing, model configuration (config), model training, model evaluation and inference. DLC, DeepLabCut; DPK, DeepPoseKit; COCO, common objects 
in context; I/O, input–output; train/val/test, training, validation and test; ops, operations. g, Diagram of SLEAP’s data model for describing the structure of 
both training annotations and predictions in multi-animal pose tracking. h, Example of SLEAP’s high-level API for data loading, model configuration, pose 
prediction and conversion to concrete numeric arrays. i, Diagram of development operations (DevOps) practices and components employed in SLEAP’s 
engineering workflow. CI, continuous integration; CD, continuous deployment. j, Diagram of the stack of open-source and modern software libraries that 
power functionality in SLEAP. IPC, inter-process communication.
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Next, we evaluated how SLEAP performs on multi-animal 
datasets of both flies and mice. We found that SLEAP is able 
to reach peak inference speeds of 762 and 358 FPS for flies and 
mice, respectively (Fig. 2b), while achieving 50% peak accu-
racy with as few as 20 labeled frames and 90% accuracy with 200 
labeled frames (Fig. 2c), comparable to the efficiency of previous  

frameworks on single-animal data6. Inspecting the distributions of 
landmark-localization errors, we found that SLEAP is able to iden-
tify the ground truth location of body parts of both flies (Fig. 2d,e) 
and mice (Fig. 2f,g) with high accuracy at anatomical scales, with 
95% of estimates within 0.084 mm (3.2% of body size) for flies and 
3.04 mm (3.7% of body size) for mice. SLEAP recovers poses at high 
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mAP scores (0.821 for flies and 0.774 for mice) as compared to top 
scores previously reported on multi-person pose-estimation bench-
marks (0.774 (ref. 18)).

Flexible approaches to multi-instance pose estimation. SLEAP 
implements two classes of approaches for solving the multi-instance 
pose-estimation problem (Fig. 1b): the bottom–up and the top–
down approach (Supplementary Video 3). These approaches differ 
in how they model the relationship between animal instances and 
their body parts and come with different performance trade-offs. 
In particular, we note that SLEAP is agnostic to the specific neu-
ral network architecture underlying a particular model and can 
use any fully convolutional architecture with either approach. 
Note that the nomenclature of bottom–up and top–down refers 
to the conceptual organization of the algorithmic approaches, and 
does not refer to camera orientation (either can be used with any  
camera placement).

In the bottom–up approach, all body parts are detected within 
an image and then grouped into animals based on their connectiv-
ity (Fig. 3a). This approach has the advantage that it only requires 
a single pass through the neural network, which outputs multi-part 
confidence maps and part affinity fields (PAFs)19, a set of vector 
fields that represent spatial relationships between pairs of body 

parts. The multi-part confidence maps are used to recover indi-
vidual body part coordinates, which are then grouped into com-
plete animals by evaluating the connectivity score between pairs 
of detected points for each body part type. We implement this 
approach with GPU-accelerated operations for evaluating and 
matching potential connections efficiently. This approach explicitly 
models animal morphology by describing its skeleton as a directed 
tree (Supplementary Note).

In the top–down approach, we first detect all animals and then 
locate their body parts (Fig. 3b). In the first stage, a neural network 
detects an anchor point (for example, centroids) on each animal, 
which can then be recovered via local peak finding. In the sec-
ond stage, the anchor points are used to generate anchor-centered 
sub-images cropped around each animal, which are then provided 
as input to a second neural network. This centered-instance network 
is trained to predict unimodal confidence maps only for the cen-
tered animal even if other animals are visible in the sub-image. The 
set of sub-images in each frame are processed in parallel, and part 
coordinates are estimated from confidence maps through global 
peak finding. In contrast to the bottom–up approach, this approach 
models animals implicitly through the use of an animal-centered 
sub-image, which encodes a spatial prior on the relative positioning 
of body parts in the sub-images.
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To evaluate the performance of each approach, we trained mod-
els on four different multi-animal datasets with flies, bees, mice 
in a high-contrast featureless arena (open field) and mice in their 
cages with bedding and other visual features (home cage). For all 
datasets except the one with mice in their home cage, we observed 
higher accuracy with top–down models and considerably higher 
speed across all datasets (Fig. 3c). While top–down models are 
typically faster than bottom–up models with few animals, their 
performance varies with the number of animals. Bottom–up mod-
els scale efficiently with increasing numbers of animals owing to 
their single-stage construction (Fig. 3d), while top–down models 
(Fig. 3e) scale linearly as their second stage will run once per ani-
mal. These results demonstrate that the bottom–up approach may 
be advantageous in datasets in which there are many animals that 
occupy a large fraction of the field of view, while the top–down 
approach is preferable for datasets with few animals.

Flexible configuration of neural network architectures. Optimal 
neural network architecture design is an area of active research, 
and little is known about optimal architectures in applied domains 
such as animal pose estimation. SLEAP can be configured to use 
any fully convolutional neural network architecture backbone while 
being agnostic to the specific approach employed (for example, 
top–down, bottom–up), making it an ideal platform for studying 
the performance of neural network architecture properties. To this 

end, we implemented a generic formulation of the encoder–decoder 
architectural pattern (Fig. 4a). These types of models are composed 
of building blocks that imbue the network with different capabili-
ties, such as increasing the maximum receptive field size (RF) to 
enable the model to learn and reason about image features across 
spatial scales20.

The primary architecture type used in SLEAP is a modular ver-
sion of UNet, a simple encoder–decoder architecture commonly 
used in biomedical applications21. UNet can be configured with a 
variable number of downsampling blocks to modulate the RF size 
of the network, controlling its ability to reason over larger regions 
of the image at the cost of increased memory and computation time 
(Fig. 4b). In general, larger receptive fields require larger networks 
and thus are slower to train and evaluate. To evaluate the effect of 
modulating the RF size of neural network architectures, we evalu-
ated the pose-estimation accuracy of different model configurations 
across datasets (Extended Data Fig. 4). We found that increasing 
RF size improved accuracy, but the relative improvement saturated 
at different points depending on the dataset (Fig. 4c). These results 
indicate that these networks can be configured with the RF size best 
suited to capturing the image features unique to the dataset, thereby 
achieving high accuracy while reducing computational and mem-
ory costs of larger models. We note that the scale of these image 
features is determined by a combination of animal size, imaging 
resolution and the target morphological features.
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Other popular tools for animal pose estimation, however, 
make use of standard neural network architectures for which pre-
trained weights are available to enable transfer learning, which is 
thought to improve performance for datasets that have few labels5,22.  
SLEAP allows for the configuration of these types of models by 
using them as the backbone for the encoder portion of the model 
and connecting intermediate-layer activations with the decoder 
to recover spatial resolution (Fig. 4d). To test the effectiveness of 
transfer learning, we evaluated the performance of a large num-
ber of state-of-the-art network architectures with either randomly 
initialized or pretrained initial weights (Extended Data Fig. 5). We 
found that transfer learning typically results in accuracy improve-
ments over random initialization but does not confer advantages 
over the optimal randomly initialized UNet (Fig. 4e and Extended 
Data Fig. 5a). While pretrained encoder models can achieve high 
accuracy, we find that these general-purpose architectures come 
at the cost of a considerable increase in computations (Extended 
Data Fig. 5b). This results in slower inference speeds (Extended  
Data Fig. 5c) at the same accuracy as simpler and more lightweight 
models that do not require pretraining (Fig. 4f). We find that these 
results are reflected in both 3–4× longer training times and 7–11× 

slower inference speeds in architectures such as those used in 
DeepLabCut (Extended Data Fig. 6).

Tracking identities via temporal and appearance models. To 
address the identification problem (Fig. 1c), SLEAP implements 
two classes of techniques for maintaining animal identities across 
frames using either temporal-based or appearance-based cues 
(Supplementary Video 4).

First, we implemented a flow-shift-based tracking approach23 that 
uses optical flow to estimate the displacement of poses across frames. 
Past poses shifted onto the current frame can then be used to associ-
ate previous pose detections with new ones (Fig. 5a). We note that 
our implementation uses a simple optical flow algorithm that does 
not require model training, enabling users to perform tracking with 
no additional labeling of consecutive frames. Using SLEAP’s proof-
reading GUI to identify and correct identity switches in two large 
multi-session datasets, we find that identification (ID) switches are 
rare across datasets (0.91 and 22.7 switches per 100,000 frames for flies 
and mice, respectively) (Fig. 5b). We corrected ID switches in only 
62 of 11.7 million frames for flies and 83 of 367,000 frames for mice, 
which took only minutes to identify and proofread with our GUI.
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The inherent drawback of temporal tracking, however, is that 
errors such as identity switches propagate over time. This results in 
incorrect identity assignments for long spans of time even in cases in 
which tracking errors occur rarely, making this technique less useful 
for very long videos (which would be intractable to proofread) or 
real-time applications (which cannot be proofread). To address this, 
we developed extensions to our multi-instance pose-estimation 
models that leverage appearance as a cue for identity assignment on 
a single-frame basis.

In our bottom–up ID models, we replace the PAFs of the stan-
dard approach with multi-class segmentation maps, a representa-
tion similar to those of conventional segmentation tasks (Fig. 5c). 
These models predict the probability that each unique animal class 
is occupying the region surrounding each landmark, enabling iden-
tity assignment through an optimal assignment of the probabilities 

at each detected landmark location. The class maps make PAFs 
unnecessary as grouping is implicit in the ID assignment.

In our top–down ID models, we employ a technique similar to 
that in previously described appearance models8. Here, we predict 
animal class probabilities for each animal-centered sub-image in 
addition to pose (Fig. 5d). In these models, classification prob-
abilities are computed from the features output by the deepest layer 
in the network. These classification probabilities are then used as 
scores for an optimal matching of instances to unique animal IDs. 
Bottom–up and top–down ID models both produced high accuracy 
for flies (99.7%, bottom–up; 100%, top–down; Fig. 5e).

To further test the ability of these approaches to correctly iden-
tify individuals in more difficult situations, we used multi-day mov-
ies of four gerbils in a home cage. This dataset presents challenges 
including lens distortion, suboptimal focus, motion blur and highly 
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variable illumination. The experimental conditions are challenging 
as gerbils frequently engage in huddling, resulting in heavy occlu-
sion, the home cage bedding visually blends with the animals’ fur 
and enrichment objects occlude the animals from the camera. 
Unlike the other datasets that we used, which consist of sessions on 
the order of tens of minutes, this dataset was recorded continuously 
over a period of days so that even rare identity switching would 
make proofreading laborious as errors would be difficult to identify 
and correct, in addition to propagating over millions of frames. This 
is further compounded by having four animals, which considerably 
increases the number of possible incorrect combinations of identity 
assignments. This dataset is ideally suited for appearance-based ID 
models that can leverage variability in body morphology and fur 
patterning across animals as distinguishing features and do not rely 
on temporal dependencies across frames, thereby guaranteeing that 
ID errors will not be propagated over time, which effectively elimi-
nates the need for proofreading. We find that these models perform 
well with this dataset, despite the challenging conditions (82.2%, 
bottom–up; 93.1%, top–down; Fig. 5e).

Next, we measured the speed of the ID models to evaluate their 
batch inference performance. We found that, while our bottom–up 
ID models exhibited performance similar to that of their coun-
terparts without the ID branch (49 and 43 FPS for flies and ger-
bils, respectively), the top–down ID models exhibited the highest  
performance of all models that we tested, reaching up to 137 and 
804 FPS for gerbils and flies, respectively (Fig. 5f). As these mod-
els are end to end, these performance measures correspond to the 
entire inference pipeline, demonstrating that SLEAP is capable of 
tracking 13 landmarks on two animals and assigning unique identi-
ties from raw high-resolution (1,024 × 1,024) frames at over 800 FPS 
with no downsampling or any other preprocessing or postprocess-
ing required.

While the appearance-based approach has the advantage of not 
propagating identity errors (Supplementary Video 4), it comes with 
the trade-off that it requires animals with sufficiently distinctive 
appearance cues such that they can be manually identified during 
labeling. By contrast, temporal models do not require additional 
labeling or training, can be used with visually hard-to-distinguish 
animals and can work downstream of any standard pose-estimation 
approach. We offer both approaches in SLEAP.

Detection and control of behavior in real time. Real-time appli-
cations that use feedback on animal pose require a low-latency 
solution for image capture, pose estimation and feedback output. 
To measure the time required to estimate animal pose in a single 
image, we measured the single-frame (batch size of 1) inference 
latency of these models and found that they were able to produce 
predictions with delays as short as 3.2 ms (312 FPS, Fig. 5f). As 
compared to previous approaches for real-time single-animal pose 
estimation, which achieve a latency of 14 ms with smaller images 
on similar hardware24, SLEAP can achieve a latency of 3.2 ms with 
full-resolution images (1,024 × 1,024 pixels), 13 body parts and 
multi-animal tracking.

We next developed a hardware setup to measure the full 
end-to-end latency for real-time feedback on animal pose. First, 
we evaluated the latency of the entire closed-loop system using 
online SLEAP tracking (Fig. 6a). In this setup, a high-precision data 
acquisition (DAQ) triggers camera frame capture and records the 
exposure time for synchronization. Frames are sent to both a video 
encoder for offline processing and to an online SLEAP pose predic-
tor running in parallel. We use the online predictions to encode a 
pose-derived social feature (thorax to thorax distance) in an ana-
log output signal that is sent through the DAQ and read back in 
through a loopback connection (Fig. 6b). The delay between the 
computation of social pose features offline versus online can be 
used to estimate the full-system latency, which includes overhead 

from hardware communication and other software layers. We esti-
mate that our system exhibits a 70-ms latency from the time when 
the frame is captured to when an output signal can be generated 
based on predicted poses (Fig. 6c), and only about 3 ms (Fig. 6d) 
are taken up by SLEAP model inference, suggesting that more opti-
mized hardware and software could achieve lower latencies.

Next, we modified the setup to test online SLEAP pose track-
ing to control the behavior of one animal based on the behavior of 
its socially interacting partner (Fig. 6e). To do this, we expressed 
a light-activated cation channel (CsChrimson) in a subset of fly 
neurons (called DNp13 (ref. 25) or pMN1) that controls ovipositor 
extrusion (OE) in females, a rejection behavior normally produced 
by mated females during courtship25,26. We selected this behavior 
as it is rarely elicited by unmated, virgin female flies during court-
ship. To drive OE behavior in virgin females, we activated DNp13 
neurons using optogenetics contingent on a social behavior, male 
approach, which we detected using a set of pose-derived features 
from both social partners (the male must be close to the female, 
behind her and oriented toward her).

By aligning OE to the time of male approach, we find that our 
closed-loop control system can reliably trigger OE in virgin female 
flies with a total latency of 326 ± 150 ms (mean ± s.d.; Fig. 6f and 
Supplementary Video 5). Of this time, 77 ± 11 ms represents the sys-
tem latency, measured by monitoring the onset of the optogenetic 
stimulus, and we estimate a biological latency (time from optoge-
netic stimulation to OE) of 249 ± 148 ms (Fig. 6g,h). We further 
show that OE is not observed following male approach in wild-type 
(WT) virgin females (Fig. 6f). These proof-of-principle experi-
ments demonstrate that SLEAP can be used for online detection of 
social behaviors (here, male approach) in optogenetic perturbation 
experiments.

Discussion
Here we have presented SLEAP, a general-purpose deep learning sys-
tem for multi-animal pose tracking. This method advances the state 
of the art for both single-animal and multi-animal pose estimation 
and implements these innovations within a flexible and performant 
open-source framework designed for and tested by non-technical 
practitioners. SLEAP was built using industry-standard best prac-
tices in both software engineering and machine learning system 
design27. The modular construction of the subcomponents of 
SLEAP makes it easy to identify the source of errors or poor per-
formance, which can then guide adjustments to the data-collection 
process and experimental design. In addition, we expose SLEAP’s 
modular functionality through documented APIs, which can be 
flexibly adopted in other frameworks15, and provide data-export 
formats to enable portability of SLEAP’s outputs for use in down-
stream analysis frameworks such as SimBA14 and B-SOiD16.

SLEAP’s modular design ensures that it is flexible. We find that 
SLEAP’s modular UNet architecture enables a ‘specialist’ paradigm 
in which small, lightweight models have just enough representa-
tional capacity to generalize to the low variability typically found 
in scientific data. This contrasts with the ‘generalist’ approach of 
training a single model that works on all datasets, a substantially 
harder task that comes as the cost of additional compute resource 
requirements and sacrifices accuracy within narrow domains (such 
as laboratory data) for generalizability in a broader domain. Indeed, 
without sacrificing accuracy, we observe large gains in performance, 
up to 11 times faster than the core network architecture used in 
DeepLabCut5. Additionally, by developing high-performance GPU 
implementations of core algorithms and leveraging state-of-the-art 
inference libraries, we achieve a latency four times lower than that 
reported in the DLCLive! package24, which was designed explicitly 
for real-time applications. Nonetheless, bridging the gap between 
specialist-level accuracy with generalist-level capacity remains an 
open problem in machine learning, which future work may seek to 

Nature Methods | VOL 19 | April 2022 | 486–495 | www.nature.com/naturemethods494

http://www.nature.com/naturemethods


ArticlesNature Methods

address in the domain of animal pose tracking. The dataset pro-
vided here (15,441 animal instances over 7,631 labeled frames and 
337 trained models) should facilitate future developments.

Future work leading to the creation of new model types and 
approaches will be used to further improve SLEAP’s capabilities, 
including better incorporation of temporal information for more 
consistent tracking over time, alignment across multiple camera 
views to enable three-dimensional pose tracking and emerging 
techniques for self-supervised learning to improve the sample effi-
ciency and generalizability of SLEAP on new datasets. The extensive 
documentation and software engineering practices employed in the 
development of SLEAP will facilitate these advances and serve as a 
resource for tool builders and practitioners alike.
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Methods
Datasets. To evaluate how SLEAP performs across species, imaging conditions, 
experimental conditions and other properties of behavioral data that may affect 
pose-tracking performance, we built a collection of diverse animal pose datasets 
(Supplementary Table 1 and Supplementary Video 1). These data were manually 
labeled using the SLEAP labeling workflow (Supplementary Video 2). Below we 
describe in detail the seven datasets that we used in our analyses, which  
constitute a total of 7,636 labeled images with 15,441 animal instances. See the 
Supplementary Note for further description of the technical motivations for 
inclusion of each dataset.

To encourage further development and to provide the means for reproducible 
benchmarking of animal pose-tracking tools, we make these datasets available 
together with the images and training, validation and test set splits to ensure that 
new models are directly comparable with SLEAP. The 14 GB of labeled data are 
available in ref. 28.

Single fly. The ‘fly32’ dataset is a single-animal dataset that has been previously 
described and annotated with poses6,29. Here we use it for evaluating 
part-localization accuracy and inference performance for comparison with  
existing methods5–7.

Briefly, this dataset consists of 59 videos of a freely moving adult fruit fly 
(Drosophila melanogaster). During acquisition, a camera followed the animal in an 
arena 100 mm in diameter in real time; therefore, all frames are roughly centered 
on the fly. The chamber was backlit to provide maximum contrast; however, details 
on the top of the animal are not visible. Videos were recorded at 100 FPS with a 
resolution of 35 pixels per mm with a frame size of 192 × 192 × 1 in grayscale at a 
resolution of 35 pixels per mm.

For this dataset, we used the existing manual labels for a 32-node skeleton split 
into 1,200 training, 150 validation and 150 test frames6. No body parts are marked 
as not visible even when they are occluded; therefore, models trained on this 
dataset will be forced to ‘hallucinate’ missing body parts.

Flies. The ‘flies13’ dataset consists of 30 videos of freely interacting pairs of virgin 
male and female fruit flies (strain NM91) 3–5 d after eclosion. The animals were 
allowed to engage in courtship for up to 30 min or until copulation within a 
custom-fabricated behavioral monitoring chamber consisting of a 30-mm × 30-mm 
three-dimensional printed base (Formlabs Form 2, Black V3), a clear PETG 
vacuum-moulded dome (WidgetWorks Unlimited), a Blackfly S 13YM3-M USB3 
camera (FLIR), an MVL35M23 35-mm FL C-mount lens (Thorlabs), a 25-mm 
premium 850-nm longpass filter (Thorlabs, FELH0850) and 850-nm IR LED 
strips for side illumination. The arena floor has visible microphone inlets for 
recording acoustic signals (not used in this study). The acquisition computers were 
custom-built workstations with Intel i7-8700K central processing units (CPUs), 
64 GB of RAM, a Samsung 860 Evo Series 4-TB SSD for data and an EVGA 
GeForce GTX 1080 Ti 11-GB GPU. Videos were recorded from above at 150 FPS 
with an exposure time of 5 ms and a frame size of 1,024 × 1,024 × 1 and a resolution 
of 30.3 pixels per mm. Images were compressed in real time using Motif acquisition 
software (Loopbio) using GPU-accelerated H264 encoding with the ‘superfast’ 
preset of the libx264 library, resulting in nearly lossless videos with independently 
seekable frames.

We also collected but did not label videos in this behavioral monitoring setup 
with one, three, four and eight flies for inference speed benchmarking with variable 
number of animals.

For this dataset, we labeled 2,000 frames (4,000 instances) with a skeleton 
consisting of 13 nodes spanning clearly visible anatomical landmarks: head, 
thorax, abdomen, ‘wingL’, ‘wingR’, ‘forelegL4’, ‘forelegR4’, ‘midlegL4’, ‘midlegR4’, 
‘hindlegL4‘, ‘hindlegR4’, ‘eyeL’ and ‘eyeR’; and 12 edges: thorax to head, thorax 
to abdomen, thorax to ‘wingL’, thorax to ‘wingR’, thorax to ‘forelegL4’, thorax to 
‘forelegR4’, thorax to ‘midlegL4’, thorax to ‘midlegR4’, thorax to ‘hindlegL4’, thorax 
to ‘hindlegR4’, head to ‘eyeL’ and head to ‘eyeR’. Labels were randomly split into 
1,600 training, 200 validation and 200 test frames. Additionally, for this dataset, we 
labeled each instance with the animal’s identity class as either ‘female’ or ‘male’ to 
enable ID model training.

For the closed-loop experiment, we generated an additional dataset (‘flies17’) 
in the same behavioral monitoring setup with an extended skeleton that included 
four additional nodes: ‘ovipositortip’, proboscis, ‘antennaeL’ and ‘antennaeR’. This 
smaller dataset (428 frames, 851 instances) was only used for the closed-loop 
analysis as it included the ‘ovipositortip’ landmark needed to measure OEs. To 
drive OE, we used a CsChrimson-expressing GAL4 split: DNp13-SS2 (SS61090; gift 
from B. Dickson (Janelia Research Campus); full genotype, 20xUAS-csChrimson/
VT038159.AD;VT029317.DBD/Sb).

Bees. The ‘bees’ dataset consisted of 18 videos of pairs of female worker bumblebees 
(Bombus impatiens) freely interacting in a Petri dish with hexagonal beeswax 
flooring for up to 30 min. The videos were recorded from above at 100 FPS with a 
frame size of 2,048 × 1,536 × 1 in grayscale at a resolution of 14 pixels per mm.

Queenright colonies of common eastern bumblebees (B. impatiens, n = 7) were 
purchased from Koppert Biological Systems between June and September 2019. 
Colonies were maintained in their original packaging under red light in a room 

with an ambient temperature of 74 °F. Bees were fed ad libitum on commercial 
sugar water (Koppert, 1.9-l bag per colony). All bees used for this dataset were 10 d 
old (10 d after eclosion).

For this dataset, we labeled 804 frames (1,604 instances) with a skeleton 
consisting of 21 nodes: ‘thor’, head, ‘abdo’, ‘Lant1’, ‘Lant2’, ‘Rant1’, ‘Rant2’, ‘fLleg1’, 
‘fLleg2’, ‘fRleg1’, ‘fRleg2’, ‘mLleg1’, ‘mLleg2’, ‘mRleg1’, ‘mRleg2’, ‘hLleg1’, ‘hLleg2’, 
‘hRleg1’, ‘hRleg2’, ‘Lwing’ and ‘Rwing’; and 20 edges: ‘thor’ to head, ‘thor’ to ‘abdo’, 
head to ‘Lant1’, head to ‘Rant1’, ‘Lant1’ to ‘Lant2’, ‘Rant1’ to ‘Rant2’, ‘thor’ to ‘fLleg1’, 
‘fLleg1’ to ‘fLleg2’, ‘thor’ to ‘fRleg1’, ‘fRleg1’ to ‘fRleg2’, ‘thor’ to ‘mLleg1’, ‘mLleg1’ to 
‘mLleg2’, ‘thor’ to ‘mRleg1’, ‘mRleg1’ to ‘mRleg2’, ‘thor’ to ‘hLleg1’, ‘thor’ to ‘hRleg1’, 
‘hLleg1’ to ‘hLleg2’, ‘hRleg1’ to ‘hRleg2’, ‘thor’ to ‘Lwing’ and ‘thor’ to ‘Rwing’. 
Labels were randomly split into 642 training, 81 validation and 81 test frames.

Mice (home cage). The ‘mice_hc’ dataset was used to evaluate performance under 
challenging imaging conditions with low contrast and a naturalistic setting. The 
dataset consisted of 40 videos of pairs of male and female 16-week-old white Swiss 
Webster mice (Mus musculus). Animals freely interacted for 5 min in a home 
cage environment with bedding to encourage naturalistic courtship behavior. The 
videos were recorded from above at 40 FPS with a frame size of 1,280 × 1,024 × 1 
in grayscale using infrared illumination and a Blackfly Mono S camera (model 
BFS-US-13Y3M-C) at a resolution of 1.9 pixels per mm.

Experimental procedures were approved by the Princeton University 
Institutional Animal Care and Use Committee and conducted in accordance 
with the National Institutes of Health guidelines for the humane care and use 
of laboratory animals. Mice used in this dataset were purchased from Taconic 
Biosciences and had at least 1 week of acclimation to the Princeton Neuroscience 
Institute vivarium before experimental procedures were performed. Mice were 
co-housed with food and water ad libitum under a reversed 12-h–12-h dark–light 
cycle (light, 22:00–10:00).

For this dataset, we labeled 1,474 frames (2,948 instances) with a skeleton 
consisting of five nodes: snout, ‘earL’, ‘earR’, ‘trtb’ (tail base) and ‘tt’ (tail tip); and 
four edges: snout to ‘earL’, snout to ‘earR’, snout to ‘tb’ and ‘tb’ to ‘tt’. Labels were 
randomly split into 1,178 training, 148 validation and 148 test frames. We chose 
not to label the legs or paws because they were very rarely visible from a single 
top–down camera.

Mice (open field). The ‘mice_of ’ dataset was used to evaluate performance for 
tracking mice under optimal imaging conditions (high contrast) and with variable 
numbers of animals. The dataset consisted of videos from C57BL/6J male (n = 17) 
and female (n = 20) mice acquired from Jackson Laboratory (RRID:IMSR_
JAX:000664, Jackson Laboratory). Groups of four and five mice were formed from 
same-sex littermates, and groups of two same-sex mice were picked randomly 
from different litters and interacted with each other in the open field for the first 
time. During video recording, mice moved freely in a 45.7 × 45.7-cm open-field 
arena with a clear acrylic floor. Videos were captured from below with infrared 
illumination using a Point Grey Blackfly S camera at a resolution of 1.97 pixels per 
mm at 80 FPS.

Experimental procedures were approved by the Princeton University 
Institutional Animal Care and Use Committee and conducted in accordance 
with the National Institutes of Health guidelines for the humane care and use of 
laboratory animals. Mice used in this study had at least 1 week of acclimation 
to the Princeton Neuroscience Institute vivarium in group cages with food and 
water ad libitum under a reversed 12-h–12-h dark–light cycle (light, 19:30–07:30) 
and were habituated in the dark test room for at least 30 min before experimental 
procedures were performed.

For this dataset, we labeled 1,000 frames (2,950 instances) with a skeleton 
consisting of 11 nodes: nose, neck, ‘L_ear’, ‘R_ear’, ‘L_Fr_paw’, ‘R_Fr_paw’, 
‘tail_base’, ‘L_Hi_paw’, ‘R_Hi_paw’, ‘tail_mid’ and ‘tail_end’; and ten edges: neck to 
‘L_Fr_paw’, neck to ‘R_Fr_paw’, ‘tail_base’ to ‘R_Hi_paw’, ‘tail_base’ to ‘L_Hi_paw’, 
‘tail_base’ to ‘tail_mid’, ‘tail_mid’ to ‘tail_end’, neck to nose, neck to ‘R_ear’, neck 
to ‘L_ear’ and ‘tail_base’ to neck. Labels were randomly split into 800 training, 100 
validation and 100 test frames.

Gerbils. The ‘gerbils’ dataset consisted of 23 selected videos from a continuous 
monitoring setup of a home cage with two pup and two adult gerbils (Meriones 
unguiculatus) from P15 to 8 months old. Animals lived freely in an open-field cage 
of approximately 60 cm × 40 cm with a clear acrylic floor for 20 d. Videos were 
captured continuously from above during white light and infrared illumination 
using a Point Grey Blackfly S camera at a resolution of approximately 2 pixels per 
mm at 25 FPS, totaling over 40 million frames over the 20-d study. Experimental 
procedures were approved by the New York University Institutional Animal Care 
and Use Committee and conducted in accordance with the National Institutes of 
Health guidelines for the humane care and use of laboratory animals. Gerbils used 
in this study were obtained from Charles River. Gerbils were kept in group cages 
with food and water ad libitum under a normal 12-h–12-h light–dark cycle  
(light, 07:00–18:00).

For this dataset, we labeled 425 frames (1,588 instances) with a skeleton 
consisting of 14 nodes: nose, left eye, right eye, left ear, right ear, ‘spine1’, ‘spine2’, 
‘spine3’, ‘spine4’, ‘spine5’, ‘tail1’, ‘tail2’, ‘tail3’ and ‘tail4’; and 13 edges: ‘spine3’ to 
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‘spine2’, ‘spine2’ to ‘spine1’, ‘spine1’ to left eye, ‘spine1’ to left ear, ‘spine1’ to nose, 
‘spine1’ to right eye, ‘spine1’ to right ear, ‘spine3’ to ‘spine4’, ‘spine4’ to ‘spine5’, 
‘spine5’ to ‘tail1’, ‘tail1’ to ‘tail2’, ‘tail2’ to ‘tail3’ and ‘tail3’ to ‘tail4’. Labels were 
randomly split into 340 training, 43 validation and 42 test frames for training, 
validation and testing, respectively. Additionally, for this dataset, we labeled 
each instance with the animal’s identity class as female, male, ‘pupshaved’ or 
‘pupunshaved’ to enable ID model training.

Framework. Below, we describe the submodules that enable SLEAP’s functionality 
and outline the engineering considerations that were required in its design.

Labeling workflow. The SLEAP labeling workflow is enabled by its sophisticated 
user interface, allowing for consistent labeling practices to minimize differences 
across annotators and to facilitate user experience. This workflow is described in 
the Supplementary Note, illustrated in Supplementary Video 2 and described in the 
online documentation (https://sleap.ai).

Data model. SLEAP implements a comprehensive data model for describing 
and storing multi-animal pose-tracking data, for which no standard format has 
yet been described. In particular, we designed our data model with the goal of 
mitigating the risk of data dependencies in complex machine learning systems27  
as well as to promote reproducibility and FAIR scientific data-stewardship  
best practices30.

To decouple a specific implementation of this data model from a logical 
schema that can be adapted without imposing a new software dependency, we 
describe a set of data structures that address two distinct needs in multi-animal 
pose tracking: training data and predictions. We provide a detailed description in 
Supplementary Table 3.

Model configuration. One of the design principles in SLEAP architecture 
was to decouple the configuration of training and inference jobs from their 
actual implementation(s). Consequently, SLEAP can import and export all 
user-controlled configuration parameters as standalone configuration dictionaries 
that are serializable to plain JSON files. These configuration files specify all the 
parameters required to run a training job or to perform inference from a trained 
model. Parameter specification is carried out through simple attributes that can be 
read and edited by a human as well as edited in a dedicated configuration GUI.

Decoupling configuration from implementation enables clean experimentation 
and hyperparameter tuning as well as convenient sharing of model training 
configurations (along with datasets) for reproducibility of results. See ref. 28 for 
our publicly available repository with 337 models (approximately 90 GB) that were 
trained over the course of this paper with various configurations.

Development and operations. Testing and code quality The test coverage in the 
SLEAP codebase is approximately 60%. We perform static type checking with 
MyPy (https://mypy.readthedocs.io/), and we automate code formatting with Black 
(https://black.readthedocs.io/).

Packaging and distribution SLEAP is automatically built and packaged on 
every merge to one of the primary branches (main, develop) using GitHub Actions. 
Upon release, the packages are published on PyPI and Conda package repositories. 
For PyPI distributions, users can configure GPU support on their own on any OS, 
while Conda distributions come with automatic GPU support for Windows  
and Linux.

Deployment and execution options SLEAP can be installed and executed 
locally on Windows, Linux or macOS (with or without GPU support) both in 
GUI or CLI modes. For remote execution (use cases include batch training or 
inference or access to a remote workstation with GPU support), SLEAP can be 
operated through a CLI as well as a high-level programmatic interface in Python. 
In particular, SLEAP training and inference can be executed in a Google Colab 
notebook with GPU support after exporting the labeled data package from the 
user’s local installation (one-click operation from the GUI).

Documentation A dedicated documentation website (https://sleap.ai) contains 
extensive documentation for end users as well as developers. Specifically, it 
provides a high-level overview of the main workflows, end-to-end tutorials with 
screenshots, detailed guides for specific features and tools, workshop videos, 
example data and sample training, inference and analysis code ready to launch in 
Google Colab with one click. For developers interested in contributing to SLEAP, 
the codebase is documented in detail throughout with Google-style docstrings.

Software stack. For the current version of SLEAP (version 1.1.4), the software stack 
consists of
•	 Graphics: PySide2 (5.14.1), Matplotlib (3.3.3)
•	 Interprocess communication: PyZMQ (20.0.0)
•	 Media input/output: FFmpeg (4.2.3), imgstore (0.2.9), scikit-video (1.1.11)
•	 Data models and serialization: attrs (19.3.0), cattrs (1.0.0rc0), h5py (2.10.0), 

jsmin (2.2.2)
•	 Numerical analysis: TensorFlow (2.3.1), imgaug (0.3.0), NumPy (1.18.5), 

OpenCV-Python (4.2.0.34)
•	 Engines: CUDA Toolkit (10.1.243), cuDNN (7.6.5), TensorRT (7.2.3.4).

For ease of distribution, we package several of our core dependencies 
(TensorFlow, NumPy, OpenCV, PySide2) as Conda packages for Windows and 
Linux. These are available at https://github.com/talmo/conda_packages.

We manage this software stack through Python buildtools-based 
requirements.txt as well as Conda environments. At every modification to 
the codebase, continuous integration enables verification of these dependencies 
through automated builds and tests on both Windows and Linux.

Network architectures. SLEAP supports a large number of modular neural 
network architectures that are compatible with all approaches that we have 
implemented for multi-animal pose-tracking tasks. To standardize the 
configuration of these architectures and support exploratory research into the 
performance of different properties of neural networks, we describe all our models 
in terms of an encoder–decoder framework (Fig. 4a). This architectural motif 
was popularized by early work on image segmentation31,32, a task closely related 
to pose estimation in its construction (dense prediction). Namely, by leveraging 
fully convolutional architectures, we reduce the large space of hyperparameters of 
possible network instantiations to simple arrangements of a few blocks of layers 
that control high-level properties that can be easily explored:

	1.	 Convolutional blocks are composed of one or more simple two-dimensional 
(2D) convolutional layers. We use a kernel size of 3 with a stride of 1 and 
ReLU activation for all layers. The main hyperparameter that we tune in this 
block is the number of filters in each block (16 to 64), which is secondarily 
controlled by a growth rate across sequential blocks (1.5 or 2). Increasing 
the number of filters affords the network greater representational capacity to 
learn more complex features at the cost of more parameters, which increase 
memory usage and computations.

	2.	 Downsampling blocks are composed of a convolutional block that provides 
input to a two-strided maximum pooling layer with a kernel size of 3. Adding 
more downsampling blocks increases the maximum receptive field of the 
network and affords it the ability to integrate over larger-scale image features 
at the cost of more parameters and a loss in spatial resolution.

	3.	 Upsampling blocks are composed of a convolutional block that provides 
input into either a transposed convolutional layer or a bilinear interpolant. 
We always use a stride of 2 when upsampling. These layers may be followed 
by additional 2D convolutional layers for refinement, a configuration that is 
more efficient when combined with bilinear upsampling than when using 
transposed convolutions alone. These blocks recover spatial resolution lost 
in the downsampling blocks but increase the memory and computations re-
quired as feature maps get larger. We typically use enough upsampling blocks 
to ensure an output stride of 2–4, that is, 1–2 fewer upsampling blocks than 
downsampling blocks.

	4.	 Skip connections are topological features of fully convolutional architectures 
as they help to recover details from early downsampling blocks in the encoder 
by directly fusing these features with the correspondingly sized feature maps 
in the decoder. We employ skip connections for all variants of our models, 
including pretrained backbones by fusing intermediate-layer activations 
through simple addition of feature maps, possibly preceded by a 1 × 1 linear 
convolution to adjust the number of filters if they differ.

These basic components can be arranged to form the original network 
architecture that we employed in LEAP6 as well as modular UNet-like 
architectures21, which we now use as a default in SLEAP. Despite the simplicity of 
their design, our empirical evaluations have demonstrated that properties such 
as the RF of a model can be used to outperform even state-of-the-art pretrained 
network architectures with many times the number of parameters (Fig. 4f).

To calculate the maximum RF for a specific architecture, we use a closed-form 
equation for general convolutional architectures that can be derived from the 
configuration of the layers in these blocks20:

RF = 1 +

L
∑

i=1



(Ki − 1)
i

∏

j=1
Sj



 , (1)

where L is the total number of layers in the encoder part of the network, Ki is the 
size of the convolutional kernel for the ith layer and Sj is the stride for the jth layer.

To compare configurations of our modular UNet to those of commonly used 
neural network architectures, we adapted a minimal open-source implementation 
of 32 reference architectures typically used for fully convolutional tasks such as 
semantic segmentation (https://github.com/qubvel/segmentation_models). This 
includes the ResNet, DenseNet, MobileNet, VGG, Inception and EfficientNet families 
of architectures and their variants, in addition to ImageNet-pretrained weights.

As described in more detail in Comparisons with DeepLabCut, we also 
implemented a faithful reproduction of the TF-Slim (https://github.com/google- 
research/tf-slim) version of ResNet. In particular, we developed extensive unit and 
integration tests with layer-by-layer and pretrained weight checksum comparisons. 
Additionally, a particularly relevant feature of the TF-Slim variant is the ability to 
adaptively modify select convolutional layers to use dilated (atrous) convolutions, 
which afford improved feature resolution typically lost in the encoder.
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All these network architectures can be instantiated through SLEAP’s 
standardized configuration system, which is serializable into JSON files and  
stored with every trained model to enable reproduction of training configurations. 
We provide all model weights, training logs, configuration files and evaluation 
metrics for over 300 models (more than 90 GB) used in this paper in the  
associated repository28.

Model training. Production-scale deep learning typically requires a large amount 
of expensive hardware to accelerate model training through the use of many GPUs 
or TPUs. Because the average practitioner typically only has access to a workstation 
equipped with consumer-grade GPUs, we designed our training procedures for 
high performance on single-GPU machines with relatively limited memory and 
computational resources. In addition to developing network architectures that 
can be configured with 10–100× fewer parameters than the more commonplace 
larger architectures, we also implemented a data pipeline system using performant 
CPU-parallelizable and GPU-parallelizable data loading, preprocessing, 
augmentation, shuffling, batching and caching by using the state-of-the-art tf.
data system33.

We use a standard learning rate schedule with plateau detection for learning 
rate reduction and early stopping. We use the Adam optimizer with AMSGrad 
enabled and a default initial learning rate of 1 × 10−4. We use a mean squared error 
loss for all training targets except classification heads in ID models, in which case 
we use a cross-entropy loss. We train our models for 200 epochs at most, but very 
few training jobs reach this threshold before converging. We define an epoch as 
the total number of batches that are required to perform one iteration over the 
training dataset or 200, whichever is larger. At smaller sample sizes (10–100), 
this is compensated for by employing data shuffling and augmentation to reduce 
repeated training iterations on the same exact data samples. To maintain parity 
with most consumer-grade GPUs with limited memory, we use a batch size of 4 for 
all our training jobs. This enables model training even with high-resolution images 
such as the ‘bees’ dataset that has 1,536 × 2,048-pixel images; all other datasets 
are at least 1,024 × 1,024 pixels in size, which is often a minimum requirement 
to record animals with a large enough field of view without compromising on 
either experimental design or the spatial resolution required to resolve small body 
parts. For augmentation, we provide access to a wide variety of schemes through 
integration with the open-source imgaug library (https://github.com/aleju/
imgaug); however, for all experiments described here, rotation is the only form of 
augmentation employed.

In the default SLEAP workflow, training and validation data splits are 
automatically generated with a ratio of 0.9 and 0.1, respectively, but, for all datasets 
in this paper, we pre-generated fixed training, validation and testing splits (ratios 
of 0.8, 0.1 and 0.1, respectively) to ensure reproducibility and fair comparisons 
of results across model runs. During the training procedure, SLEAP logs training 
and validation values for all loss terms for real-time monitoring and post hoc 
analysis. SLEAP publishes the training progress over a TCP port using ZeroMQ 
to communicate with the interactive training monitor provided in the GUI, which 
can also issue commands for manual early stopping of training jobs. SLEAP 
also generates visualizations of the raw outputs of the neural networks, such as 
confidence maps, evaluated on data sampled from the training and validation 
sets separately, to provide qualitative observations of training progress and the 
degree of overfitting. Additionally, losses and visualizations are saved to a disk in 
CSV form and the more detailed TensorBoard log format, which can optionally 
save performance-profiling data. Together, these features provide a rich source 
of diagnostic information for troubleshooting model performance and building 
intuition for dataset-specific nuances.

Part localization. The position of each landmark from the labeled data is encoded 
for network training by a 2D array that we refer to as part confidence maps. For 
each body part coordinate xi ∈ R

2, the value of the confidence map at pixel 
xp ∈ R

2 is given by an unnormalized 2D Gaussian distribution,

Ci(xp) = exp
(

−

∥

∥xi − xp
∥

∥

2
2

2σ2

)

δi , (2)

where σ is a fixed scalar controlling the symmetric spread of the distribution and δi 
is equal to 0 when the body part is labeled as ‘not visible’ and equal to 1 otherwise.

The confidence maps are evaluated at each image grid pixel coordinate 
xp ∈ {((x, y) : x ∈ {0, ..., W}, y ∈ {0, ..., H}}, where W and H are the 
image width and height, respectively. The grid can be subsampled to generate 
lower-resolution confidence maps as targets for neural networks, trading off spatial 
resolution for decreased memory usage and compute cost. For an animal with N 
body part types (for example, head, thorax, etc.), we generate N confidence maps 
that are stacked along the channels axis such that the full confidence map’s tensor C 
is of shape (H/so, W/so, N), where so is the output stride of the network. Body parts 
that are marked as ‘not visible’ during labeling are represented by a confidence map 
filled with zeros. We set σ = 1.0 and scale by the output stride to maintain a fixed 
scale with respect to image resolution. For images with multiple instances of each 
body part type, the part confidence maps for each instance are combined by taking 
their maximum value at each pixel, which helps to separate closely spaced peaks19.

The confidence maps generated from the labeled data are used to train 
the neural network, which then predicts confidence maps for new data. The 
confidence map representation has the benefit of enabling fully convolutional 
neural network architectures that are both efficient and easier to train than 
networks that directly regress the coordinates of each body part34. The trade-off is 
that the coordinates must be computed from the confidence maps at inference time 
(that is, when the model is predicting new confidence maps).

For single-instance confidence maps, we decode the coordinates by finding the 
global peak, that is, the coordinates of the confidence map pixel with the highest 
value. For multi-instance confidence maps, we employ local peak finding, where 
we define a pixel as being a local peak if it is greater than its eight neighbors. In 
practice, we employ non-maximum suppression computed using a 2D grayscale 
dilation (maximum) filter with kernel

K =









0 0 0

0 −1 0

0 0 0









.

K is convolved with the confidence map, producing a tensor whose elements 
contain the maximum of each 3 × 3 patch, excluding the central pixel. The pixels 
in the confidence map with values greater than those in the dilated maps are 
considered local peaks. In both global and local peak finding, we exclude peaks for 
which confidence map values fall below a fixed threshold, which we set to 0.2 to 
retain low-confidence predictions but exclude points that are definitively predicted 
as ‘not visible’.

As both these peak-finding methods can only yield peak coordinates at the 
resolution of the confidence map grid, localization accuracy is limited by the grid 
sampling interval. This quantization error is particularly problematic for models 
with larger output strides (that is, lower-resolution confidence maps); therefore, we 
employ subpixel refinement to improve peak coordinate localization. We leverage 
integral regression35 to compute real-valued offsets by taking the weighted average 
of the 5 × 5 local patch of the confidence maps around each grid-aligned peak and 
apply them to the coarser location estimates. We find that using σ values between 
1.5 and 3.0 for the confidence maps is optimal for maximizing the performance of 
this subpixel-refinement step as larger values will result in confidence maps that 
are too broad.

Bottom–up multi-animal pose estimation. For the bottom–up approach (Fig. 3a), 
we employ an image-based representation of the connectivity between body parts, 
called PAFs, that has been previously proposed for human pose estimation19. This 
representation captures the relationship between body parts explicitly by encoding 
a vector field that locally points from each source body part to each destination 
body part. This vector field is stored as two 2D images, one for each component in 
the x, y plane. To generate PAFs from labeled data, the user must define a directed 
graph, which we refer to as the skeleton, that connects all body parts to be tracked. 
In the bottom–up approach, a single neural network takes the full image as input 
and outputs both PAFs and multi-peak part confidence maps encoding the location 
of all body parts across all instances. By predicting both these representations, 
the network explicitly separates the task of localization and grouping, where, for 
one representation, it must only learn to predict ‘what’ a body part is (confidence 
maps), whereas, for the other, it must learn the relationship between them (PAFs). 
This is in contrast to the top–down approach, for which the relationship between 
body parts is implicitly encoded in the cropping. There are many possible skeletons 
that can be defined for a set of body parts, but, in practice, we find that optimal 
results are obtained when the depth of the skeleton graph is kept low (to reduce 
internode dependencies during matching) and the lines formed between the nodes 
actually overlap with the animal’s morphology in the image (making curved body 
parts such as rodent tails particularly challenging without intermediate keypoints).

A skeleton is defined as S = (N, E), where N is the set of n nodes (body parts) 
and E is the set of (s, d) tuples denoting the directed edge (connection) from a 
source node s ∈ {1,…, n} to a destination node d ∈ {1,…, n}/{s}. The direction at 
each point in the PAF derived from labeled data is generated from the coordinates 
of the body parts in labeled images by computing the distance-weighted edge unit 
vector for each edge e at each image grid coordinate xp,

Pe = exp
(

−

M(xp)
2σ2

)

ueδsδd, (3)

where xs and xd are the coordinates of the source and destination nodes, 
respectively. Similar to confidence maps, xp may come from a subsampled image 
grid, σ controls the spatial spread of the PAF, M is the magnitude and δs and δd are 
the visibility flags for the source and destination nodes, respectively. The edge unit 
vector ue is defined as the source-centered direction vector

ue = (xd − xs)(∥ xd − xs ∥)−1. (4)

The magnitude M at each point in the PAF is defined as the Euclidean distance 
between the grid point xp and its projection x̂p onto the line segment formed 
between xs and xd, M(xp) =∥ xp − x̂p∥2, where x̂p = r(xd − xs) + xs and
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We note that the original description of PAFs19 uses a hard threshold to compute 
the distance weighting, but we adopt a Gaussian instead as a means of scaling the 
relative contribution of pixels as a function of distance from the edge, resulting 
in smoother PAFs with improved signal when animals are closely interacting as it 
reduces the effect of nearby opposing vectors canceling out their magnitudes.

PAFs computed for a given edge are combined for multiple instances by 
summation. After PAFs are generated for all edges in the skeleton, the full set of 
PAFs for the image P are of shape (H/so, W/so, 2∣E∣), formed by concatenating all 
individual edge PAFs, which contain the x and y components of the vectors along 
the third axis.

After confidence maps are converted to peaks via local peak detection, sets of 
candidate source and destination peaks are grouped via greedy bipartite matching 
using the PAFs to compute the score of each putative connection. For each pair of 
source and destination nodes, a line integral is computed by sampling ten evenly 
spaced points between source and destination coordinates in the predicted PAFs. 
The score for the connection is calculated as the average dot product between the 
sampled vectors ( p̂s) and the unit normalized vector formed between the predicted 
source ( x̂s) and destination points ( x̂d) in the candidate connection,

10
∑

s=1

x̂d − x̂s
∥ x̂d − x̂s∥2

· p̂s. (5)

Once all pairs of connections are scored, instances are assembled by 
growing their skeletons greedily edge by edge, assigning source candidates to 
destination candidates via Hungarian matching36. The detailed description of 
the instance-assembly algorithm and proof of its correctness can be found in the 
Supplementary Note.

Top–down multi-animal pose estimation. In the top–down approach (Fig. 3b), 
each animal is first detected within the full-resolution image, and a bounding 
box is drawn around each animal to crop it from the frame. Each of the resulting 
crops will be centered on an animal but may contain pixels that belong to other 
animals. This centering is crucial as it provides spatial context to the second stage 
of the top–down approach, serving as an indicator of which animal’s body parts to 
predict within the cropped image. In our framework, we select a labeled body part 
type to use as an anchor, ideally one close to the center of the animal’s bounding 
box and infrequently occluded (if occluded, the centroid of the bounding box 
of the remaining parts is used as the anchor). The anchored part serves as the 
target for the first-stage neural network, which is trained to predict multi-peak 
confidence maps corresponding to the anchor part of all animals in the frame. 
Typically, this network is trained on downsampled full-frame images as coarsely 
locating the animals does not require high spatial resolution and saves on compute 
cost. Anchor part confidence maps are converted to coordinates using local 
peak finding and cropped from the full-resolution images with a fixed bounding 
box size computed automatically from the labels. In the second stage, we train 
a separate neural network that takes an instance-anchored image from the first 
stage and predicts single-peak confidence maps only for the anchored instance. 
The confidence maps are converted into coordinates using global peak finding 
as only a single set of body parts are expected. This network implicitly addresses 
the part-grouping problem by leveraging the location of the body parts relative to 
that of the anchor part (that is, the image center) as a cue for which body part to 
predict confidence maps for when multiples of the same body part type may be 
present within the crop. This form of implicit modeling of the geometry between 
body parts is simple and has been employed in animal pose literature previously6,7. 
The disadvantages of the top–down approach are that it fails to capture global 
contextual information present in the relationship between instances, is limited  
by the accuracy of the first-stage detector and requires a full forward pass through 
the second-stage network for each animal detected (although this may actually 
require less computation for images with few animals that occupy a small fraction 
of the image).

Tracking. To address the problem of associating poses across frames, we devised 
a tracking algorithm that operates on grouped instances generated from the 
multi-animal pose estimation. The general tracking algorithm in SLEAP follows 
the standard multi-object tracking procedure. In brief, for each frame, we first 
generate a set of candidate instances from a window of recent frames that have 
been tracked, compute the matching cost between each candidate and each 
untracked instance in the current frame, perform optimal matching and assign 
them to tracks. For flow-shift-based tracking, we use optical flow37 to update past 
detection locations before computing the matching cost. See the Supplementary 
Note for a full description of the algorithm.

Appearance-based ID models. Tracking-based approaches to maintaining animal 
identities consistent across frames are not well suited to long-term recordings or 

real-time applications due to the error propagation inherent in having temporal 
dependencies. To address these issues, we developed two approaches that rely 
on purely appearance-based features to simultaneously assign identities while 
detecting and grouping landmarks. We extended both forms of multi-instance 
pose-estimation approaches to address identification by casting it as a  
classification problem.

For bottom–up ID models, we modify the PAF-based approach by substituting 
PAFs with class segmentation maps. In this construction, we leverage the 
point–coordinate form of pose annotations to generate a binary mask at a fixed 
radius around each body part location. Masks for body parts are collapsed into 
distinct channels for each distinct animal class ID. We train this network with a 
cross-entropy loss for the class map head and mean square error for the multi-peak 
confidence maps, which are generated as in the conventional bottom–up approach. 
We note that, unlike the approach recently described in an update to DeepLabCut, 
we discard the PAFs in our ID models as they are redundant with the class maps. 
During inference, we group body parts via optimal matching of peaks to distinct 
classes based on the class map score sampled at the peak location. This bottom–
up classification procedure implicitly groups body parts without requiring a 
superfluous skeleton model and an associated graph-parsing procedure.

For top–down ID models, we integrate conventional top–down pose estimation 
with simple classification of anchor-centered crops. Anchors are detected 
using the same first-stage network to generate locations for cropping. Next, we 
modify the centered-instance network to additionally predict class probabilities 
for the crop in the same fashion as previously described neural network-based 
identity-tracking approaches8. We project features from the deepest layer of the 
encoder into a 2D global maximum pooling layer, followed by a stack of three 
standard fully connected layers with 256 units and ReLU activations and finally a 
softmax layer to normalize the output logits. We train the classification head with 
a standard cross-entropy loss and weigh this loss term at a ratio of 0.0001 relative 
to the mean squared error term for the confidence maps. During inference, we 
aggregate classification probabilities for all crops in a frame and perform optimal 
matching between all candidate instances. This matching ensures that there are 
not more detections than classes and enforces mutually exclusive class assignments 
in addition to providing robustness to uncertainty in classifying individuals by 
leveraging probabilities from the others in the frame.

Importantly, we intuited that features from the deepest encoder layer carry 
considerably more information for resolving identities despite having poor spatial 
resolution. This is a well-known property of deep image-recognition networks 
from the extensive work in the image-classification domain in which a decoder 
is not typically employed to recover spatial resolution. We also posit this because 
confidence maps are a representation that are by construction disentangled from 
identity-specific features in favor of learning representations of morphological 
features that are invariant to variability in individual appearance. We empirically 
observed this behavior when we attempted to train top–down ID models  
using the penultimate decoder layer features instead of the deepest encoder layer 
features, resulting in extreme training instability and poor performance in both 
training targets.

Inference models. During training, SLEAP models are saved with configuration 
metadata, and the neural network model architecture and weights are stored 
in HDF5-serialized SavedModel format only with the core native layers and 
operations in the high-level tf.keras API. This makes SLEAP models portable 
and free of external dependencies other than TensorFlow, but they do not include 
any custom operations necessary for inference.

During inference, SLEAP’s sleap.load_model() high-level API can 
be used to construct an inference model that wraps efficient, TensorFlow–
AutoGraph-optimized38 data-preprocessing and prediction postprocessing 
routines (for example, peak finding, refinement and grouping) around the core 
model forward pass. Multi-stage models (that is, top–down) are assembled from 
individually trained submodels (for example, centroid and centered instance). 
Bottom–up model inference including PAF scoring, matching and grouping are 
largely reimplemented as GPU-native routines. Both local and global peak-finding 
operations as well as subpixel refinement are executed entirely on the GPU, thereby 
avoiding the bottleneck from transferring large tensors (that is, confidence maps) 
to the CPU. Once assembled, inference models can optionally be serialized as 
complete end-to-end SavedModels compatible with subsequent optimization 
and quantization using TensorRT. Post-training quantization into half-precision 
(FP16) models with TensorRT results in improvements in both inference 
throughput and latency but requires additional system configuration, which we 
describe in our extended installation instructions at https://sleap.ai.

Accuracy metrics. To estimate the overall multi-animal accuracy, we calculated the 
object keypoint similarity (OKS) score, an accuracy metric that takes into account 
the uncertainty in landmark localization, visibility and animal scale17. To account 
for the uncertainty in landmarks that are difficult to label (such as subcutaneous 
landmarks), the OKS calculation uses a per-body part uncertainty factor derived 
from the variability across repeated labels of the same images by many individuals. 
Here, we set the uncertainty factor in our calculations to be equal to the least 
ambiguous human keypoint (eyes). This allowed us to interpret the OKS as a 
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lower bound for the true accuracy of our models as some animal keypoints are 
challenging to locate precisely. We compute the OKS in its standard form:

OKS(X, X̂) =

N
∑

i=1
exp

(

−

∥ Xi − X̂i∥
2
2

2ασ2
i

)

δi(
N

∑

i=1
δi)−1, (6)

where X and X̂ are the ground truth and predicted instance coordinates, 
respectively, for an instance with N nodes. δi denotes the visibility, which is 0 if the 
node is missing from the ground truth instance. The inner term essentially expresses 
the distance from the ground truth coordinate as the posterior of a Gaussian with 
two scaling terms: α, the bounding box area occupied by the GT instance, and σi, the 
uncertainty factor (set to 0.025 for all measurements, equivalent to the uncertainty 
in labeling human eyes). Importantly, note the denominator, which indicates the 
count of visible body parts. In the case in which we have fewer body parts, such as 
in the ‘mice_hc’ dataset, having even a single missed body part will decrease the 
score considerably (for example, 4 ÷ 5 = 0.8) as compared to in the ‘mice_of ’ dataset, 
which is labeled with more nodes (for example, 10 ÷ 11 = 0.91).

From the distribution of OKS scores, we derive the mAP as a summary 
of accuracy over the entire dataset. We adopt the same procedures as those 
employed in the widely used PoseTrack benchmark for human pose tracking39. 
Specifically, we compute the overall mAP using the same procedure employed 
for the PoseTrack benchmark and widely reported in human pose literature, 
a metric originally described in the Pascal visual object classes (VOC) 
challenge40. Briefly, mAP computation involves classifying each pairing of 
(greedily matched) GT and predicted instance as a true positive (TP) or false 
positive (FP) by using the OKS as a cutoff at each of the following thresholds: 
{0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}. Precision at a single threshold 
is calculated as TP/(TP + FP), and recall as TP/(TP + FN). All predictions 
are sorted by their OKS, and cumulative TPs and FPs are computed for each 
prediction, and recall and precision values are calculated from these partial TPs 
and FPs, that is, for each pair of GT and predicted instance. Next, a set of 101 recall 
thresholds are defined with even spacing from 0 to 1, and the best precision value 
for samples that fall below each recall threshold is retrieved from the data, yielding 
101 precision values. The average precision is computed by taking the mean over 
all 101 precision values, whereas the average recall is defined as the best recall at 
the current OKS threshold. This procedure is repeated for all ten OKS thresholds, 
and the final mAP and mean average recall are the average of the average precision 
and average recall over all thresholds. Although their calculation is nontrivial, the 
mAP and mean average recall provide balanced estimates of consistently reliable 
precision and recall performance across many certainty thresholds.

For evaluating tracking performance, we leverage the open-source 
py-motmetrics (https://github.com/cheind/py-motmetrics) framework for 
multi-object-tracking benchmarking41. Here we primarily report on ID switches 
because it is the most actionable and relevant measure for practitioners as it 
directly quantifies the amount of proofreading labor required after tracking.

Speed benchmarking. To evaluate model speed, we extracted 1,280-frames-long 
representative clips from each dataset. For the ‘flies13’ and ‘mice_of ’ datasets, 
additional clips were created for videos with different numbers of animals to 
evaluate scaling with instance count.

To evaluate model inference performance, we first preloaded both the raw 
images for the entire clip and SLEAP-trained saved model weights. For top–down 
(centered-instance) models, we used the same dataset-specific centroid model. 
After loading, we performed one inference pass through the images to warm up the 
GPU and trigger AutoGraph tracing. In real-world scenarios, this warm-up cost is 
quickly amortized after the first few batches of data; therefore, we did not consider 
the first run in our timing measurements. Next, using the highest-resolution timer 
available on the system (PEP 418), we recorded the round-trip inference time, that 
is, the time elapsed between when a batch of images are accessed on the CPU to 
when results are received from the GPU and copied back to the CPU. This accounts 
for not only the model forward pass but also data transfer and other inference 
operations so as to reflect real-world performance. We repeated this procedure a 
minimum of three times and pooled the batch-wise results across all replicates.

All speed measurements were made on the same machine equipped with an 
Intel Core i7-10700K CPU, 64 GB of RAM and a Nvidia Titan RTX (24-GB) GPU 
running on Ubuntu 20.04 (64 bit). Unless otherwise noted, throughput (‘offline’) 
performance measurements were made with a batch size of 16 and TensorRT 
optimization (for top–down models, such as in Fig. 2).

Experiments. Single-animal pose-estimation performance. To evaluate 
part-localization performance of each method independently of errors related to 
part grouping or identification, we used the ‘fly32’ dataset as it has been previously 
used to evaluate the performance of multiple pose-estimation tools. The large 
number of body parts, simple imaging conditions and large number of labels make 
it useful for establishing baseline performance in the optimal setting.

For DeepLabCut5, we fine tuned a ResNet50 with ImageNet-initialized weights. 
See Comparisons with DeepLabCut for more details on our implementation.

For DeepPoseKit7, we used the best DenseNet model trained on this dataset 
downloaded from the published repository at https://github.com/jgraving/

DeepPoseKit-Data/blob/0aa5e3f5e8f9df63c48ba2bf491354472daa3e7e/datasets/fly/
best_model_densenet.h5. We ran the native inference procedures in DeepPoseKit 
version 0.3.9.

For LEAP6, we trained a slightly modified version of the reference model 
described in the original paper, substituting transposed convolutions with bilinear  
interpolation for upsampling. We also used a higher-output stride to improve 
performance at the cost of confidence map resolution (in the original implementa
tion, an output stride of 1 was used). We compensated for this loss of spatial resolu
tion by using the subpixel-refinement routines that we implemented for SLEAP.

For SLEAP, we trained a UNet-based architecture on ‘fly32’ data. This is similar 
to the LEAP network but adds skip connections to recover spatial resolution in the 
feature maps of the decoder and uses a fewer number of filters per convolution.

Speed measurements were made as described in Speed benchmarking. 
Accuracy was measured using mAP as described in Accuracy metrics.

Multi-animal pose-estimation performance. Multi-animal pose-estimation speed 
and accuracy were evaluated as described in the above sections. For speed 
measurements in Fig. 2 (as related to batch size and number of animals), we 
used TensorRT-optimized versions of the best UNet-based SLEAP model for 
each dataset. For non-UNet architectures in subsequent analyses, we used the 
standard TensorFlow–AutoGraph inference models without TensorRT for speed 
measurements. Except for ‘best-model’-based analyses, we trained a minimum of 
three replicates of each model configuration in all experiments. Models that failed 
to converge within 200 epochs were excluded from subsequent analyses.

Sample efficiency. To estimate how accurate SLEAP models are when trained using 
different numbers of labeled frames, we generated labeled datasets with 5, 10, 20, 
50, 100, 200, 300, 400, 500, 750, 1,000 and 1,500 frames sampled randomly from 
the training split of the ‘flies13’ and ‘mice_of ’ datasets, which had the largest 
number of labels. The remaining held-out splits were kept fixed to ensure that 
accuracy was measured on the same test set.

Receptive field size. We evaluated the effectiveness of varying the maximum 
theoretical RF20 of our modular UNet network architecture as a mechanism for 
imposing an inductive bias toward relevant feature scales in models specialized to 
each dataset. We trained network configurations with two to seven downsampling 
blocks and adjusted the number of upsampling blocks to maintain a fixed output 
stride of 4 to control for spatial resolution of the outputs. We tested both top–down 
and bottom–up approaches and report the best of the two for each dataset. We 
conducted these experiments with the ‘flies13’, ‘mice_hc’ and ‘bees’ datasets to span 
a diversity of imaging conditions and anatomical feature scales.

Transfer learning. As the domain of animal pose estimation lacks large-scale 
labeled datasets for every species, imaging and experimental conditions, transfer 
learning has been proposed as an approach for reducing the need for labeled data5. 
To test this idea in the multi-animal setting, we trained top–down models on the 
‘flies13’ dataset using 33 commonly used state-of-the-art network architectures 
as the encoder backbone with skip connections to a standard upsampling stack 
(bilinear interpolation, two refinement convolutions with 256 filters each, 
output stride of 4). Weights for the encoder were initialized either randomly or 
using ImageNet-pretrained weights. At least three replicates were trained for 
each encoder architecture and weight initialization approach; however, some 
architectures failed to converge entirely and were excluded from the analysis, 
although this may be addressed with further optimization hyperparameter tuning 
such as higher initial learning rates or additional training time. To measure the 
inference speed of these models, we applied our speed benchmarking procedure 
to a subset of the trained models (MobileNetV1, EfficientNetB0, SEResNet101, 
EfficientNetB7, VGG16 and ResNet50). For the remaining models, and to 
guide future network architecture configuration, we counted the number of 
computations (FLOPS) required to perform a forward pass of one image through 
the model and found that this static property of network architectures was highly 
correlated with real inference speed (Supplementary Fig. 4c).

Comparisons with DeepLabCut. To precisely implement the TF-Slim (https://
github.com/google-research/tf-slim) version of ResNet used in DeepLabCut, we 
set the stride of the deepest convolution block to 1 to retain a higher-resolution 
output feature map with a stride of 16 and increased the block’s dilation rate to 
compensate for the decreased RF. For upsampling, we used nearly identical decoder 
architecture as the reference DeepLabCut implementation by stacking transposed 
convolutions with a stride of 2,256 filters and a kernel size of 4, followed by two 
regular convolutions for refinement. Their implementation, however, suffers from 
a loss of spatial resolution due to the repeated downsampling steps in the encoder; 
therefore, to encourage fairness in the comparisons, we added skip connections 
from the output of each downsampling block to the equivalently strided block in 
the decoder and fused the higher-resolution features through addition.

Our implementation of ResNet50 is more general and enables additional 
optimizations over that of DeepLabCut. The biggest architectural feature added 
in SLEAP’s version is the ability to use interpolation-based versus transposed 
convolution-based upsampling. We evaluated these two approaches on the ‘flies13’ 
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and ‘mice_hc’ datasets and found that, while they achieve comparable accuracy 
(Supplementary Fig. 4d), interpolation-based upsampling considerably reduces the 
number of computations required.

We further compared both training and inference across ‘flies13’ and ‘mice_of ’ 
datasets for convenient direct comparison of this implementation of the DLC 
ResNet and SLEAP’s UNet (Supplementary Fig. 5). These models use the same 
decoder for the ResNet and UNet, which is more compute efficient than the default 
DeepLabCut implementation.

Other network architectures used in DeepLabCut include MobileNet and 
EfficientNet, which we evaluated (in addition to dozens of others) in our transfer 
learning experiments.

The only other important difference between DeepLabCut and SLEAP’s 
low-level mechanics relates to subpixel localization of landmarks. DeepLabCut uses 
learnable refinement offset maps to regress more precise spatial coordinates than 
those afforded by their lower-resolution confidence maps. While SLEAP supports 
this functionality, we opted for an approach based on integral regression35 (see Part 
localization for details). We made this decision as integral regression is extremely 
fast at inference time and requires no additional loss term or costly optimization of 
an additional output target, thereby speeding up training and decreasing instability 
inherent in multi-task learning.

Closed-loop control. Our closed-loop control system was built on a custom- 
fabricated behavioral monitoring chamber described earlier for the ‘flies13’ and 
‘flies17’ datasets. For analog generation and acquisition, computers were equipped 
with a PCIe-6353 X Series DAQ board (National Instruments) interfaced with a 
BNC-2111 shielded connector block (National Instruments).

Custom experiment scripts for Motif software (version 0.1.9) were used 
for acquisition and GPU-accelerated compression and real-time streaming 
(Loopbio). Cameras were configured to trigger a 5-ms exposure at 150 FPS with 
1,024 × 1,024-pixel frames, and videos were encoded with the ’superfast’ preset of 
the libx264 codec to ensure seekability.

For real-time control, custom scripts were written to query the image stream 
published by Motif during acquisition and perform online inference. SLEAP 
models were loaded and generated predictions on the latest image received from 
the camera in a separate thread from the acquisition and output generation. Using 
the detected poses, we classified whether the male was in an ‘approach’ pose based 
on the following criteria:

(min_dist < 2mm) and (|ang _f_rel_m| < 25◦) and (|ang _m_rel_ f| > 145◦),

where min_dist is the distance between the male’s head and the female’s abdomen 
tip, ang_f_rel_m is the angular location of the female thorax relative to the male’s 
heading and ang_m_rel_f is the angular location of the male thorax relative to the 
female’s heading. Together, these criteria will elicit a trigger condition when the 
male is behind the female, facing the female and within close proximity.

These criteria are evaluated in a separate thread every 25 ms, after which a 
25-ms constant pulse of stimulation is output to the DAQ if the trigger condition 
was met or no stimulation voltage if it was not. These analog output signals 
were used to drive an array of 650-nm Luxeon Star LEDs to deliver optogenetic 
stimulation to the female. LEDs were positioned to achieve stimulation of roughly 
100 μW mm−2.

For calibration experiments, we instead output the distance between the thorax 
of the male and female, scaled to 1.0–5.0 V and read back in through a loopback 
connection to an analog input on the same DAQ. These signals were then scaled 
back to physical units and aligned to offline tracking to estimate the system latency 
by using dynamic time warping on non-overlapping 1-s segments across the entire 
session.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
We provide all model weights, training logs, configuration files and evaluation 
metrics for over 300 models (more than 90 GB) used in this paper in the associated 
repository28. An overview of the datasets is provided in Supplementary Table 1. Best 
models for each dataset are summarized in Supplementary Table 2. Full metadata 
for each dataset are provided in Supplementary Table 4. All model metadata are 
provided in Supplementary Table 5, including which figures they are associated 
with. Source data are provided with this paper.

Code availability
Our software is freely available as open-source software at https://github.com/
murthylab/sleap. It can be installed via standard Python package repositories: 
conda install -c sleap -c conda-forge -c nvidia sleap or 
pip install sleap. Documentation, guides, notebooks, tutorials and more are 
available on the main website at https://sleap.ai. SLEAP is licensed under a modified 
BSD-3 license, which permits unrestricted usage for non-commercial applications. To 
ensure reproducibility of the analyses presented in all figures of this paper, we provide 
code to generate all non-schematic figure panels as a Code Ocean capsule.

References
	28.	Pereira, T. D. et al. SLEAP Datasets and Models https://doi.org/10.17605/OSF.

IO/36HAR (2021).
	29.	Berman, G. J., Choi, D. M., Bialek, W. & Shaevitz, J. W. Mapping the 

stereotyped behaviour of freely moving fruit flies. JR Soc. Interface 11, 
20140672 (2014).

	30.	Wilkinson, M. D. et al. The FAIR guiding principles for scientific data 
management and stewardship. Sci. Data 3, 160018 (2016).

	31.	Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. L. 
Semantic image segmentation with deep convolutional nets and fully 
connected CRFs. Preprint at https://arxiv.org/abs/1412.7062 (2014).

	32.	Badrinarayanan, V., Kendall, A. & Cipolla, R. SegNet: a deep convolutional 
encoder–decoder architecture for image segmentation. IEEE Trans. Pattern 
Anal. Mach. Intell. 39, 2481–2495 (2017).

	33.	Murray, D. G., Simsa, J., Klimovic, A. & Indyk, I. tf.data: a machine learning 
data processing framework. Preprint at https://arxiv.org/abs/2101.12127 (2021).

	34.	Wei, S.-E., Ramakrishna, V., Kanade, T. & Sheikh, Y. Convolutional pose 
machines. In Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition 4724–4732 (CVF, 2016).

	35.	Nibali, A., He, Z., Morgan, S. & Prendergast, L. Numerical coordinate 
regression with convolutional neural networks. Preprint at https://arxiv.org/
abs/1801.07372 (2018).

	36.	Karp, R. M. Reducibility among Combinatorial Problems (Springer, 1972).
	37.	Farnebäck, G. Two-frame motion estimation based on polynomial expansion. 

In Image Analysis 363–370 (Springer, 2003).
	38.	Moldovan, D. et al. AutoGraph: imperative-style coding with graph-based 

performance. Preprint at https://arxiv.org/abs/1810.08061 (2018).
	39.	Andriluka, M. et al. PoseTrack: a benchmark for human pose estimation and 

tracking. In Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition 5167–5176 (CVF, 2018).

	40.	Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J. & Zisserman, A. 
The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 
303–338 (2010).

	41.	Ristani, E., Solera, F., Zou, R. S., Cucchiara, R. & Tomasi, C. Performance 
measures and a data set for multi-target, multi-camera tracking. In European 
Conference on Computer Vision 17–35 (Springer, 2016).

Acknowledgements
T.D.P. is supported by the NSF GRFP (DGE-1148900) and a Princeton Porter Ogden 
Jacobus fellowship. A.L.F. is funded by NIMH R00 MH109674, DP2 MH126375, a Brain 
and Behavior Research Foundation award and an Alfred P. Sloan fellowship. Z.Y.W. and 
S.D.K. are supported by the Princeton Catalysis Initiative. S.D.K. is supported by NIH 
New Innovator DP2 GM137424-01 and NSF DEB 1754476. D.H.S. is supported by NIH 
NIDCD R01 DC011284. M.M. and J.W.S. are supported by the NIH BRAIN Initiative (R01 
NS104899), an NSF Physics Frontier Center grant (NSF PHY-1734030) and a Princeton IP 
Accelerator award. M.M. is also supported by an HHMI Faculty Scholar award and an NIH 
NINDS R35 research program award. We extend a special thanks to all SLEAP beta testers 
who graciously devoted time and effort to helping us develop the software framework early 
on and all users who have reported issues and identified bugs since SLEAP was released 
publicly. We thank B. Cowley and S. Bergeler for comments on the manuscript.

Author contributions
Fly data were collected, labeled and analyzed by J.L., S.R., E.N., D.S.D., T.D.P. and M.M. 
Gerbil data were collected and labeled by C.C.M., M.D.C. and D.H.S. Mouse data (home 
cage) were collected and labeled by E.S.P., M.M. and A.L.F. Mouse data (open field) were 
collected and labeled by J.D’U., M.K., J.W.S. and S.S.-H.W. Bee data were collected and 
labeled by Z.Y.W., G.C.M.-S., J.W.S. and S.D.K. Software engineering was performed by 
T.D.P., N.T., A.M. and D.M.T. Analysis and generation of figures was performed by T.D.P. 
Writing was carried out by T.D.P., J.W.S. and M.M. Conceptualization was undertaken by 
T.D.P., J.W.S. and M.M.

Competing interests
A pending patent application (US application 17/282,818) was filed on 5 April 2021 by 
Princeton University on behalf of the inventors (T.D.P., J.W.S. and M.M.) on the system 
described here for multi-animal pose tracking. The remaining authors declare no 
competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41592-022-01426-1.

Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41592-022-01426-1.

Correspondence and requests for materials should be addressed to Mala Murthy.

Peer review information Nature Methods thanks Eric Yttri and the other, anonymous, 
reviewer(s) for their contribution to the peer review of this work. Primary Handling 
Editor: Nina Vogt, in collaboration with the Nature Methods team.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Methods | www.nature.com/naturemethods

https://github.com/murthylab/sleap
https://github.com/murthylab/sleap
https://sleap.ai
https://doi.org/10.17605/OSF.IO/36HAR
https://doi.org/10.17605/OSF.IO/36HAR
https://arxiv.org/abs/1412.7062
https://arxiv.org/abs/2101.12127
https://arxiv.org/abs/1801.07372
https://arxiv.org/abs/1801.07372
https://arxiv.org/abs/1810.08061
https://doi.org/10.1038/s41592-022-01426-1
https://doi.org/10.1038/s41592-022-01426-1
http://www.nature.com/reprints
http://www.nature.com/naturemethods


Articles Nature Methods

Extended Data Fig. 1 | Datasets. a, Single fly prealigned. b, Flies in 3D printed acoustic recording chamber. c, Bees in a behavioral chamber with 
honeycomb flooring. d, Mice in a home cage imaged from above. e, Mice in an open field chamber imaged from below. f, Gerbils in long-term monitoring 
home cage.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods


ArticlesNature Methods

Extended Data Fig. 2 | SLEAP labeling workflow. a, Schematic of the SLEAP labeling workflow, from raw data to tracked videos. b, Screenshot of 
interactive SLEAP labeling interface. This interface can also be used for inspection and proofreading.
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Extended Data Fig. 3 | Troubleshooting workflows. a, Schematics of starting stage workflows. Before the first training round, it is important to select the 
appropriate model type and adjust basic training parameters as needed. b, Schematics of early stage workflows. Poor performance is expected with few 
labeled frames, but certain types of errors may be mitigated by adjusting basic model parameters, such as receptive field size. c, Schematics of late stage 
workflows. Fine tuning performance once enough frames are labeled may be accomplished by trading off speed for accuracy, such as by increasing the 
resolution of the model features.
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Extended Data Fig. 4 | Receptive field sizes. a, Receptive field sizes overlaid on example frame from flies dataset. b, Receptive field sizes overlaid on 
example frame from mice dataset. c, Receptive field sizes overlaid on example frame from bees dataset.
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Extended Data Fig. 5 | Pretrained encoder backbone models. a, Transfer learning performance across all tested pretrained encoder model architectures. 
Accuracy evaluated on held-out test set of flies dataset using the top-down approach (n = 2-5 models per architecture and condition; 125 total models).  
b, Speed versus accuracy trade-off across all tested pretrained encoder model architectures as compared to optimal UNet. Accuracy evaluated on held-out 
test set of flies dataset using the top-down approach. Model floating point operations (GFLOPS) derived directly from configured architectures (n = 2-5 
models per architecture and condition; 68 total models). c, Relationship between inference speed and computations. Points correspond to speed of the 
best model replicate for each architecture. Line and shaded area denotes linear fit and 95% confidence interval. d, Accuracy of our implementation of DLC 
ResNet50 with different decoder architectures. Points denote model training replicates (n = 3-5 models per condition; 30 total models).
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Extended Data Fig. 6 | SLEAP UNet versus DeepLabCut ResNet performance for multi-animal pose estimation. a, Relative accuracy as a function of 
training time for flies and mice (OF) datasets. Accuracy evaluated on a held-out test set by using model checkpoints saved at every epoch (checkpointing 
time not included). Accuracy is normalized to the maximum accuracy (mAP) achieved over all epochs. b, Summary of training efficiency across different 
model types and datasets. Time is the minimum training time from (a) required to reach 90% peak accuracy. c, Speed versus accuracy trade-off of using 
SLEAP UNet versus DLC ResNet models for multi-instance pose estimation. Points denote benchmark replicates and lines connect means per condition. 
DLC ResNet in all panels refers to an implementation of a ResNet50-based architecture configured to mimic the default configuration in DeepLabCut.
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