
Articles
https://doi.org/10.1038/s41592-022-01426-1

1Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA. 2Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
3Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA. 4Lewis–Sigler Institute for Integrative Genomics, Princeton
University, Princeton, NJ, USA. 5Department of Physics, Princeton University, Princeton, NJ, USA. 6Center for Neural Science, New York University,
New York, NY, USA. 7Department of Psychology and Department of Biology, New York University, New York, NY, USA. 8Present address: The Salk Institute
for Biological Studies, La Jolla, CA, USA. 9Present address: Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore,
MD, USA. 10These authors jointly supervised this work: Joshua W. Shaevitz, Mala Murthy. ✉e-mail: mmurthy@princeton.edu

Quantitative measurements of animal motion are founda-
tional to the study of animal behavior1,2. Methods for pose
estimation, the task of predicting the location of animal

body parts in images, have grown in popularity as a state-of-the-art
requirement for behavioral quantification across disciplines includ-
ing neuroscience3 and ecology4. Although adaptations of deep
learning-based approaches originally developed for human pose
estimation have made animal pose estimation for single individuals
possible5–7, reliably tracking multiple, interacting animals and their
poses remains a challenging problem, presenting an impediment to
studies of social behaviors.

Detecting body parts is sufficient for single-animal pose
estimation (Fig. 1a), but generalizing to multiple animals requires
solutions for assigning detections reliably to individuals both
within an image (Fig. 1b) and across frames (Fig. 1c)3. While
tools have been developed for tracking the identities of mul-
tiple animals across consecutive frames8,9, a unified approach
that simultaneously performs pose estimation and tracking is
needed10. Existing methods for multi-human pose estimation
adopt either a bottom–up (detect parts and then group them into
individuals) or top–down (find individuals and then detect parts)
strategy, but it is not clear which is better suited for the domain
of animals. Tools have been developed that implement one or the
other approach11,12 for animal pose estimation and tracking, but

these methods do not allow the user to compare the two compet-
ing approaches.

Here we present Social LEAP (SLEAP), a system for multi-animal
pose tracking and the successor of the single-animal pose-estimation
method LEAP6. SLEAP is a general-purpose framework developed
from the ground up and meets the needs of the entire multi-animal
pose-tracking workflow, including interactive labeling, training,
inference and proofreading. SLEAP implements both top–down
and bottom–up approaches, animal identity tracking through
motion or appearance models and over 30 state-of-the-art neural
network backbones and modular network architectures. We dem-
onstrate the importance of this flexibility by evaluating SLEAP
across seven datasets with different species, numbers of animals,
body parts, imaging conditions and environments (Extended Data
Fig. 1 and Supplementary Video 1). We show that SLEAP is accu-
rate (<0.11 mm for flies, <3.3 mm for mice in 90% of the data),
data efficient (<200 labels for 90% peak accuracy in flies and mice),
fast to train (90% peak accuracy within 4.4 min without pretrain-
ing) and fast to predict (up to 804 frames per second (FPS) with-
out downsampling). SLEAP is able to perform end-to-end tracking
of high-resolution multi-animal data at low latencies (<3.5 ms for
1,024 × 1,024-pixel images), making it compatible with real-time
processing. To demonstrate how SLEAP can enable experimental
paradigms intractable without reliable real-time multi-animal

SLEAP: A deep learning system for multi-animal
pose tracking
Talmo D. Pereira   1,8, Nathaniel Tabris   1, Arie Matsliah1, David M. Turner1, Junyu Li1,
Shruthi Ravindranath1, Eleni S. Papadoyannis1, Edna Normand1,2, David S. Deutsch   1, Z. Yan Wang3,4,
Grace C. McKenzie-Smith5, Catalin C. Mitelut6, Marielisa Diez Castro6, John D’Uva1,9,
Mikhail Kislin   1, Dan H. Sanes6,7, Sarah D. Kocher3,4, Samuel S.-H. Wang   1,2, Annegret L. Falkner1,
Joshua W. Shaevitz   1,4,5,10 and Mala Murthy   1,10 ✉

The desire to understand how the brain generates and patterns behavior has driven rapid methodological innovation in tools
to quantify natural animal behavior. While advances in deep learning and computer vision have enabled markerless pose esti-
mation in individual animals, extending these to multiple animals presents unique challenges for studies of social behaviors
or animals in their natural environments. Here we present Social LEAP Estimates Animal Poses (SLEAP), a machine learning
system for multi-animal pose tracking. This system enables versatile workflows for data labeling, model training and inference
on previously unseen data. SLEAP features an accessible graphical user interface, a standardized data model, a reproducible
configuration system, over 30 model architectures, two approaches to part grouping and two approaches to identity tracking.
We applied SLEAP to seven datasets across flies, bees, mice and gerbils to systematically evaluate each approach and architec-
ture, and we compare it with other existing approaches. SLEAP achieves greater accuracy and speeds of more than 800 frames
per second, with latencies of less than 3.5 ms at full 1,024 × 1,024 image resolution. This makes SLEAP usable for real-time
applications, which we demonstrate by controlling the behavior of one animal on the basis of the tracking and detection of social
interactions with another animal.

Nature Methods | VOL 19 | April 2022 | 486–495 | www.nature.com/naturemethods486

mailto:mmurthy@princeton.edu
http://orcid.org/0000-0001-9075-8365
http://orcid.org/0000-0003-4639-3121
http://orcid.org/0000-0002-8587-2435
http://orcid.org/0000-0002-5447-8881
http://orcid.org/0000-0002-0490-9786
http://orcid.org/0000-0001-8809-4723
http://orcid.org/0000-0003-3063-3389
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-022-01426-1&domain=pdf
http://www.nature.com/naturemethods

ArticlesNature Methods

tracking, we implement a closed-loop system to optogeneti-
cally control the behavior of one animal on the basis of social
interactions with another animal detected in real time. Finally,
we have made SLEAP available at https://sleap.ai, together with
an accessible user interface, open-source code, extensive docu-
mentation and tutorials as well as all datasets and annotations to
establish a reproducible and comprehensive multi-animal pose-
tracking benchmark.

Results
SLEAP is a complete framework for multi-animal pose track-
ing. The SLEAP multi-animal pose-tracking system is composed of
submodules that can be configured to enable a workflow starting
from data input and resulting in trained pose-estimation models
and pose-tracked videos (Extended Data Fig. 2a). Such a system is
needed to make SLEAP general purpose or, in other words, to enable
it to flexibly perform well on any dataset or training regime. SLEAP
implements an input–output layer that supports data input in raw
video or array format as well as importing annotations from other
pose-tracking software5,7 and standardized formats13 (Fig. 1d). Once
imported, data can be labeled interactively using a versatile graphi-
cal user interface (GUI) (Extended Data Fig. 2b and Supplementary
Video 2) that can then export images and annotations as a single-file
‘training package’ to facilitate remote training and data sharing.
Predictions from trained models can be imported, sorted based on
prediction score and used to initialize ground truth labels for frames
that performed poorly, requiring less time to correct than de novo
labeling. This functionality enables a human-in-the-loop workflow
in which the user alternates between labeling and training mod-
els to produce progressively more accurate predictions. The GUI
also provides functionality for launching and monitoring training,
proofreading predicted data and exporting raw positional data in a
format convenient for analysis.

SLEAP supports multiple approaches to solving pose-estimation
problems as well as more than 30 neural network architectures
to learn from data (Fig. 1e). To enable this flexibility as well as to
ensure reproducibility, we implemented a configuration system that
captures all hyperparameters related to model creation and training.
These configuration files describe data-preprocessing steps, neural
network architecture, optimization settings and output formats.
This can be used to reproduce training results and is used to docu-
ment the inputs and outputs of a saved model. We provide several
built-in configuration profiles that are applicable for a wide range of
use cases and datasets as well as online documentation and trouble-
shooting workflows for common problems that users may encoun-
ter (Extended Data Fig. 3).

Once trained, SLEAP models can be used to predict poses
from previously unseen data (Fig. 1f). We implemented effi-
cient approach-specific algorithms in graphics processing unit
(GPU)-accelerated code, which is automatically added based on
the model configuration. This enables high-performance inference
either through a command-line interface (CLI) or through low-level
or high-level application programming interfaces (APIs) to enable

custom applications that use SLEAP as a component. Inference
modules provide low-level functionality in native TensorFlow code
for GPU compatibility, including peak finding, subpixel refinement
and other operations necessary for complex multi-stage models.
Tracking modules can optionally be enabled to associate poses
over time (Fig. 1c) or disabled when labeling discontiguous frames.
Results from any mode of inference can be saved with associated
metadata, allowing the user to open predictions in the GUI for con-
venient inspection and proofreading.

As part of the framework, we developed a standardized data
model that encompasses the needs of general-purpose multi-animal
pose tracking (Fig. 1g and Supplementary Table 3). This data model
describes all structures used in labeling, training and inference,
including properties that are specific to the multi-animal setting
(for example, Track). Importantly, this data model is format agnos-
tic, which enables standardization and sharing of animal pose data
regardless of provenance. We implement this data model within
SLEAP and develop a self-contained format in which it can be saved
to a single, portable file that can optionally include image data.

SLEAP can be used entirely through its GUI with no program-
ming required; however, we also expose convenient high-level APIs
(Fig. 1h) that can be used to build applications and extensions
that use SLEAP14–16. To support the engineering complexities of a
large-scale software system, we adopted industry-standard practices
for software engineering and developer operations (Fig. 1i). We use
automated tools for versioning, continuous integration, packaging,
distribution and documentation to enable a reliable, reproducible
and documented software package. This allows SLEAP to work
across platforms and maximizes the validity and future reproduc-
ibility of scientific results derived from its use.

SLEAP is open-source software that builds upon a large number
of other state-of-the-art software packages for numerical analysis
and deep learning (Fig. 1j). Implemented entirely in Python, SLEAP
takes advantage of current and future developments in each layer of
its infrastructure.

Fast, efficient and accurate animal pose estimation. We use
the mean average precision (mAP) metric from the human
pose-estimation literature to summarize performance while taking
into account animal size, visibility of body parts and uncertainty
in human-labeling precision17. We implement this calculation with
the assumption that all animal landmarks are as ‘easy’ to label as
the most unambiguous human landmark (the eye). This provides a
lower bound on the true accuracy of these models.

The single-animal pose-estimation problem (Fig. 1a) that pre-
vious frameworks were developed to solve is a core component of
SLEAP. To evaluate how our system performs relative to previous
approaches, we applied SLEAP to a published single-animal data-
set6. When compared to DeepLabCut5, DeepPoseKit7 and LEAP6,
we found that SLEAP achieves comparable or improved accuracy
(mAP scores of 0.927 versus 0.928 for SLEAP and DeepLabCut,
respectively) at prediction speeds that are several times faster (2,194
versus 458 FPS) (Fig. 2a).

Fig. 1 | SLEAP is a general-purpose multi-animal pose-tracking system. a, Illustration of the part-localization problem. Single-animal pose estimation is
equivalent to the landmark-localization task in which there exists a unique coordinate corresponding to each body part. b, Illustration of the part-grouping
problem. In multi-animal pose estimation, there may be multiple detections of each body part, which must be grouped into sets that correspond to
distinct animals. c, Illustration of the identity-tracking problem. In multi-animal pose tracking, pose detections must be associated with a unique animal
ID that persists across frames. d–f, Diagram of the submodules in SLEAP, including all major machine learning system components: data annotation, data
processing, model configuration (config), model training, model evaluation and inference. DLC, DeepLabCut; DPK, DeepPoseKit; COCO, common objects
in context; I/O, input–output; train/val/test, training, validation and test; ops, operations. g, Diagram of SLEAP’s data model for describing the structure of
both training annotations and predictions in multi-animal pose tracking. h, Example of SLEAP’s high-level API for data loading, model configuration, pose
prediction and conversion to concrete numeric arrays. i, Diagram of development operations (DevOps) practices and components employed in SLEAP’s
engineering workflow. CI, continuous integration; CD, continuous deployment. j, Diagram of the stack of open-source and modern software libraries that
power functionality in SLEAP. IPC, inter-process communication.

Nature Methods | VOL 19 | April 2022 | 486–495 | www.nature.com/naturemethods 487

https://sleap.ai
http://www.nature.com/naturemethods

Articles Nature Methods

Next, we evaluated how SLEAP performs on multi-animal
datasets of both flies and mice. We found that SLEAP is able
to reach peak inference speeds of 762 and 358 FPS for flies and
mice, respectively (Fig. 2b), while achieving 50% peak accu-
racy with as few as 20 labeled frames and 90% accuracy with 200
labeled frames (Fig. 2c), comparable to the efficiency of previous

frameworks on single-animal data6. Inspecting the distributions of
landmark-localization errors, we found that SLEAP is able to iden-
tify the ground truth location of body parts of both flies (Fig. 2d,e)
and mice (Fig. 2f,g) with high accuracy at anatomical scales, with
95% of estimates within 0.084 mm (3.2% of body size) for flies and
3.04 mm (3.7% of body size) for mice. SLEAP recovers poses at high

Legend

Labels

IPCGraphics

Data models and serialization

Numerical analysis

Engines

Activities

LabeledFrame

Data Training Inference

Labeling GUI
SLEAP label

Train
Job config,

monitoring GUI

Raw videos
MP4, AVI, HDF5...

Imported labels
DLC, DPK, COCO...

Data model
Labels, video, skeleton, LabeledFrame,

instance, point, track

Input/output adapters

Training package
labels, images,

provenance metadata

Data pipelines (tf.data)
Preprocessing, GT

generation, augmentation

Training job configuration (JSON)
Data, architecture, model, optimization, outputs

stored with model for reproducibility

Backbone architectures
Modular UNet, DLCResNet, 30+

pretrained backbones

Evaluation metrics
Localization, OKS, VOC, PCK

Checkpointing
Portable SavedModel +

TrainingJobConfig +
train/val/test labels

Trainer

Logging
Visualization, TensorBoard,

ZMQ

Heads
SingleInstance, centroid,

CenteredInstance, BottomUp,
ID

Predictors
High-level interface

Inference models
(tf.keras.model)

Low-level interface

Inference ops
Peak finding, subpixel

refinement, part grouping,
anchored crops, ID matching

Engines
AutoGraph, TensorRT

Predictions
Labels with

PredictedInstances

Raw tensors/arrays

CLI
SLEAP train

CLI
SLEAP track

Predict
Human in the loop,

batch inference

Tracking
Simple, flow shift

Proofread
Fix tracking errors

Export for analysis
HDF5, concrete arrays

Instance

Skeleton
Points
Track

Skeleton

Nodes
Edges
Symmetries

Video

Filename
Shape
Backend

PredictedInstance

Skeleton
Points
Track
Point_scores
Instance_score
Tracking_score

LabeledFrame

Video
frame_idx
Instances

Track

Name

Data model

DevOps

Version control
GitHub, SemVer, issue tracking

Code quality
Static typing, linting, Google-style docstrings

CI/CD
GitHub action pipelines (multi-platform)

high unit test coverage, auto-build releases

Documentation
API auto-generated from docstrings,

guides, tutorials, user reference

Packaging/deployment
Cross-platform (Windows/Linux/Mac), PyPI, Conda (one-line GPU

support), Google Colab

Software stack

Python 3

TensorFlow

PySide2

NumPy

CUDA TensorRT

h5pyattrs

PyZMQ

OpenCV

jsmin

Matplotlib

Media Input/output

imgstoreFFmpeg scikit-video

High-level API

LabeledFrame

Video
frame_idx
Instances

LabeledFrame

Video
frame_idx
Instances

Video

Filename
Shape
Backend

Video

Filename
Shape
Backend

Track

Name
Track

Name
SLP file format
HDF5 based

Can include embedded images

SLEAP moduleInputs

Outputs GUI

Instance

Skeleton
Points
Track

Instance

Skeleton
Points
Track

PredictedInstance

Skeleton
Points
Track
Point_scores
Instance_score
Tracking_score

PredictedInstance

Skeleton
Points
Track
Point scores
Instance score
Tracking score

import sleap

video = sleap.load_video("session1.mp4")
predictor = sleap.load_model("model1")
predictions = predictor.predict(video)
poses = predictions.numpy()# raw coordinates

a b c
Landmark localization Part grouping Identification

Single-animal pose estimation Multi-animal pose estimation Multi-animal pose tracking

d

5 mm

e f

g h

i

j

5 mm 0.5 mm

SLEAP system

Nature Methods | VOL 19 | April 2022 | 486–495 | www.nature.com/naturemethods488

http://www.nature.com/naturemethods

ArticlesNature Methods

mAP scores (0.821 for flies and 0.774 for mice) as compared to top
scores previously reported on multi-person pose-estimation bench-
marks (0.774 (ref. 18)).

Flexible approaches to multi-instance pose estimation. SLEAP
implements two classes of approaches for solving the multi-instance
pose-estimation problem (Fig. 1b): the bottom–up and the top–
down approach (Supplementary Video 3). These approaches differ
in how they model the relationship between animal instances and
their body parts and come with different performance trade-offs.
In particular, we note that SLEAP is agnostic to the specific neu-
ral network architecture underlying a particular model and can
use any fully convolutional architecture with either approach.
Note that the nomenclature of bottom–up and top–down refers
to the conceptual organization of the algorithmic approaches, and
does not refer to camera orientation (either can be used with any
camera placement).

In the bottom–up approach, all body parts are detected within
an image and then grouped into animals based on their connectiv-
ity (Fig. 3a). This approach has the advantage that it only requires
a single pass through the neural network, which outputs multi-part
confidence maps and part affinity fields (PAFs)19, a set of vector
fields that represent spatial relationships between pairs of body

parts. The multi-part confidence maps are used to recover indi-
vidual body part coordinates, which are then grouped into com-
plete animals by evaluating the connectivity score between pairs
of detected points for each body part type. We implement this
approach with GPU-accelerated operations for evaluating and
matching potential connections efficiently. This approach explicitly
models animal morphology by describing its skeleton as a directed
tree (Supplementary Note).

In the top–down approach, we first detect all animals and then
locate their body parts (Fig. 3b). In the first stage, a neural network
detects an anchor point (for example, centroids) on each animal,
which can then be recovered via local peak finding. In the sec-
ond stage, the anchor points are used to generate anchor-centered
sub-images cropped around each animal, which are then provided
as input to a second neural network. This centered-instance network
is trained to predict unimodal confidence maps only for the cen-
tered animal even if other animals are visible in the sub-image. The
set of sub-images in each frame are processed in parallel, and part
coordinates are estimated from confidence maps through global
peak finding. In contrast to the bottom–up approach, this approach
models animals implicitly through the use of an animal-centered
sub-image, which encodes a spatial prior on the relative positioning
of body parts in the sub-images.

d e f g

a b c
Dataset, single fly; batch size, 16 Inference throughput Sample efficiency

Single-animal pose estimation Multi-animal pose estimation Multi-animal pose estimation

1.0

0.8

0.6

0.4

0.2

0
0 500 1,000 1,500

Speed (FPS)

S
pe

ed
 (

F
P

S
)

2,000 2,500

DeepLabCut
DeepPoseKit
LEAP
SLEAP

0
1 4

Batch size (images)

8 16

Flies
Mice (OF)

0

0.2

0.4

A
cc

ur
ac

y
(m

A
P

)

101 102

Number of labels (frames)

103

0.6

0.8

1.0

200

400

600

800

Flies
Mice (OF)

A
cc

ur
ac

y
(m

A
P

)

Head

Thorax

Abdomen

‘wingL’

‘wingR’

‘forelegL4’

‘forelegR4’

‘midlegL4’

‘midlegR4’

‘hindlegL4’

‘hindlegR4’

‘eyeL’

‘eyeR’

0 0.1

Error (mm)

5 mm

0.2

0.5 mm

0 2

Error (mm)

‘Tail_end’

‘Tail_mid’

‘R_Hi_paw’

‘L_Hi_paw’

‘Tail_base’

‘R_Fr_paw’

‘L_Fr_paw’

‘R_ear’

‘L_ear’

Nose

4

Neck

Fig. 2 | SLEAP is fast, efficient and accurate. a, Speed versus accuracy of different animal pose-estimation frameworks on a single-animal dataset6. Points
correspond to sampled measurements of batch-processing speed over 1,280 images with the highest-accuracy model replicate from each framework.
Accuracy was evaluated on a held-out test set of 150 images. b, Speed versus batch size for multi-animal datasets. Points correspond to sampled
measurements of batch-processing speed over 1,280 images and five replicates. OF, open field. c, Sample efficiency across multi-animal datasets. Points
indicate accuracy of model training replicates on the held-out test set. d–g, Body part-wise landmark-localization accuracy. Circles denote the 95th
percentile of localization errors, and histograms correspond to full error distribution evaluated on held-out test sets (n = 150 frames for flies, n = 100 frames
for mice). L, left; R, right; hi, hind; fr, front.

Nature Methods | VOL 19 | April 2022 | 486–495 | www.nature.com/naturemethods 489

http://www.nature.com/naturemethods

Articles Nature Methods

a

b Top-down (animals → parts)

Bottom–up (parts → animals)

Anchor NN

Confidence maps (all parts)

PAFs Scored connections

Local peaks Poses

Matched connections

Confidence maps
(centered instance only) Global peaks Poses

Neural network

Centered-
instance

NN

Raw image

Raw image
Anchor-centered crops

around animals

Shared
weights

Anchor CMs

Stage 1

Local
peaks

Stage 2 →

Bottom–up Top–down1.0

0.8

0.6

0.4

0.2

0
0 100 200 300

Speed (FPS)

400

Dataset
Flies
Mice (OF)
Bees
Mice (HC)

Approach
Top–down
Bottom–up

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8
0

100

200

300

S
pe

ed
 (

F
P

S
)

S
pe

ed
 (

F
P

S
)

400

500
Flies

Multi-animal speed scalingMulti-animal speed scalingSpeed–accuracy comparison

Mice (OF)

Number of animals

1 2 3 4 5 6 7 8

Number of animals

A
cc

ur
ac

y
(m

A
P

)

Flies

Mice (OF)

c d e

0.5 mm

0.5 mm

Fig. 3 | Multi-animal pose-estimation approaches in SLEAP. a, Workflow for the bottom–up approach. From left to right: a neural network takes an
uncropped image as input and outputs confidence maps and PAFs; these are then used to detect body parts as local peaks in the confidence maps and
score all potential connections between them; on the basis of connection scores, a matching algorithm then assigns the connections to distinct animal
instances. b, Workflow for the top–down approach. From left to right: the first-stage neural network (NN) takes an uncropped image as input and
outputs confidence maps for an anchor point on each animal; the anchors are detected as local peaks in the confidence maps (CMs); a centered crop is
performed around each anchor point and provided as parallel inputs to the second-stage neural network; the network outputs confidence maps for all
body parts only for the centered instance, which are then detected as global peaks. c, Speed versus accuracy of models trained using the two approaches
across datasets. Points denote individual model replicates and accuracy evaluated on held-out test sets. Top–down models were evaluated here without
TensorRT optimization for direct comparison to the bottom–up models. HC, home cage. d, Inference speed scaling with the number of animals in the
frame for bottom–up models. Points correspond to sampled measurements of batch-processing speed (batch size of 16) over 1,280 images with the
highest-accuracy model for each dataset. e, Inference speed scaling with the number of animals in the frame for top–down models. Points correspond
to sampled measurements of batch-processing speed (batch size of 16) over 1,280 images with the highest-accuracy model for each dataset. Top–down
models were evaluated here without TensorRT optimization for direct comparison to the bottom–up models.

Nature Methods | VOL 19 | April 2022 | 486–495 | www.nature.com/naturemethods490

http://www.nature.com/naturemethods

ArticlesNature Methods

To evaluate the performance of each approach, we trained mod-
els on four different multi-animal datasets with flies, bees, mice
in a high-contrast featureless arena (open field) and mice in their
cages with bedding and other visual features (home cage). For all
datasets except the one with mice in their home cage, we observed
higher accuracy with top–down models and considerably higher
speed across all datasets (Fig. 3c). While top–down models are
typically faster than bottom–up models with few animals, their
performance varies with the number of animals. Bottom–up mod-
els scale efficiently with increasing numbers of animals owing to
their single-stage construction (Fig. 3d), while top–down models
(Fig. 3e) scale linearly as their second stage will run once per ani-
mal. These results demonstrate that the bottom–up approach may
be advantageous in datasets in which there are many animals that
occupy a large fraction of the field of view, while the top–down
approach is preferable for datasets with few animals.

Flexible configuration of neural network architectures. Optimal
neural network architecture design is an area of active research,
and little is known about optimal architectures in applied domains
such as animal pose estimation. SLEAP can be configured to use
any fully convolutional neural network architecture backbone while
being agnostic to the specific approach employed (for example,
top–down, bottom–up), making it an ideal platform for studying
the performance of neural network architecture properties. To this

end, we implemented a generic formulation of the encoder–decoder
architectural pattern (Fig. 4a). These types of models are composed
of building blocks that imbue the network with different capabili-
ties, such as increasing the maximum receptive field size (RF) to
enable the model to learn and reason about image features across
spatial scales20.

The primary architecture type used in SLEAP is a modular ver-
sion of UNet, a simple encoder–decoder architecture commonly
used in biomedical applications21. UNet can be configured with a
variable number of downsampling blocks to modulate the RF size
of the network, controlling its ability to reason over larger regions
of the image at the cost of increased memory and computation time
(Fig. 4b). In general, larger receptive fields require larger networks
and thus are slower to train and evaluate. To evaluate the effect of
modulating the RF size of neural network architectures, we evalu-
ated the pose-estimation accuracy of different model configurations
across datasets (Extended Data Fig. 4). We found that increasing
RF size improved accuracy, but the relative improvement saturated
at different points depending on the dataset (Fig. 4c). These results
indicate that these networks can be configured with the RF size best
suited to capturing the image features unique to the dataset, thereby
achieving high accuracy while reducing computational and mem-
ory costs of larger models. We note that the scale of these image
features is determined by a combination of animal size, imaging
resolution and the target morphological features.

a b

d e f

E
nc

od
er

D
ecoder

Input Output
General encoder–decoder

Downsampling block

Increases RF

Upsampling block

Recovers spatial resolution

Skip connection

Fuses multi-scale features

Convolutional block

Filters

Height/width

Filters increase
representational capacity

Modular UNet to control RF

Down blocks: 2
RF: 16 px Down blocks: 3

RF: 36 px

c

Fixed encoder architecture (optionally pretrained)
ResNet, MobileNet, EfficientNet, etc.

Pretrained encoder

Best

Best

Best

Optimal RF size varies by dataset

Flies Mice (HC) Bees
0.8

0.6

0.4

A
cc

ur
ac

y
(m

A
P

)

A
cc

ur
ac

y
(m

A
P

)

Accuracy (mAP)

0.2

0

16 36 76 156

Receptive field (px) Receptive field (px)

Speed–accuracy comparison

Speed (FPS)

0 100 200 300 400 500

Model name
EfficientNetB7
SEResNet101
VGG16
ResNet50 (ours)
EfficientNetB0
MobileNetV1
UNet (accurate)
UNet (fast)

Mobile type

Randomly initialized
Pretrained

01.00.80.60.40.20

ResNet50 (ours)

VGG16

EfficientNet57E
nc

od
er SEResNet101

EfficientNetB0

MobileNetV1

Transfer learning performance

0.2Best UNet
Randomly initialized
Pretrained

0.4

0.6

0.8

1.0

Receptive field (px)

316 636 16 36 76 156 316 636 16 36 76 156 316 636

Fig. 4 | Neural network architectures are highly configurable in SLEAP. a, Schematic of the general encoder–decoder neural network architecture, which
is composed of standard blocks with different properties (bottom). b, Schematic of the modular version of UNet in SLEAP, which can be configured to
control the maximum RF of the network by varying the number of downsampling blocks at the cost of more computations. px, pixels. c, Accuracy of
UNets configured at different RFs across datasets. Points correspond to model training replicates, and the black line denotes the maximum accuracy
achieved across all replicates (n = 3–5 per RF size per dataset, total of n = 115 models). Accuracy was evaluated on held-out test sets. d, Schematic of how
SLEAP can use fixed network architectures as the encoder backbone to enable transfer learning. e, Accuracy of encoders with commonly used network
architectures initialized with random or pretrained weights (transfer learning). Bars and error whiskers (mean and 95% confidence interval) correspond to
top–down model training replicates (n = 3–5 per model architecture) on a held-out test set of the fly dataset. The gray line denotes the randomly initialized
modular UNet baseline. MobileNetV1, MobileNet version 1. f, Speed versus accuracy comparison of the pretrained encoder and UNet model variants.
Points correspond to average speed evaluated over 1,280 images for the most accurate model of each category. Accuracy was evaluated on the held-out
test set of the fly dataset.

Nature Methods | VOL 19 | April 2022 | 486–495 | www.nature.com/naturemethods 491

http://www.nature.com/naturemethods

Articles Nature Methods

Other popular tools for animal pose estimation, however,
make use of standard neural network architectures for which pre-
trained weights are available to enable transfer learning, which is
thought to improve performance for datasets that have few labels5,22.
SLEAP allows for the configuration of these types of models by
using them as the backbone for the encoder portion of the model
and connecting intermediate-layer activations with the decoder
to recover spatial resolution (Fig. 4d). To test the effectiveness of
transfer learning, we evaluated the performance of a large num-
ber of state-of-the-art network architectures with either randomly
initialized or pretrained initial weights (Extended Data Fig. 5). We
found that transfer learning typically results in accuracy improve-
ments over random initialization but does not confer advantages
over the optimal randomly initialized UNet (Fig. 4e and Extended
Data Fig. 5a). While pretrained encoder models can achieve high
accuracy, we find that these general-purpose architectures come
at the cost of a considerable increase in computations (Extended
Data Fig. 5b). This results in slower inference speeds (Extended
Data Fig. 5c) at the same accuracy as simpler and more lightweight
models that do not require pretraining (Fig. 4f). We find that these
results are reflected in both 3–4× longer training times and 7–11×

slower inference speeds in architectures such as those used in
DeepLabCut (Extended Data Fig. 6).

Tracking identities via temporal and appearance models. To
address the identification problem (Fig. 1c), SLEAP implements
two classes of techniques for maintaining animal identities across
frames using either temporal-based or appearance-based cues
(Supplementary Video 4).

First, we implemented a flow-shift-based tracking approach23 that
uses optical flow to estimate the displacement of poses across frames.
Past poses shifted onto the current frame can then be used to associ-
ate previous pose detections with new ones (Fig. 5a). We note that
our implementation uses a simple optical flow algorithm that does
not require model training, enabling users to perform tracking with
no additional labeling of consecutive frames. Using SLEAP’s proof-
reading GUI to identify and correct identity switches in two large
multi-session datasets, we find that identification (ID) switches are
rare across datasets (0.91 and 22.7 switches per 100,000 frames for flies
and mice, respectively) (Fig. 5b). We corrected ID switches in only
62 of 11.7 million frames for flies and 83 of 367,000 frames for mice,
which took only minutes to identify and proofread with our GUI.

a b

c d e
Bottom–up ID model

f

Shift past poses forward Match to assign tracks

Top–down ID model

Pr[]

Flow-shift tracking

Neural network

Confidence maps Class maps

Full image

Neural network

Anchor-
centered

crops

Confidence maps

Class
probabilities

Dataset

GerbilsFlies

Dataset

GerbilsFlies
0

100

100

80

200

300S
pe

ed
 (

F
P

S
)

A
ni

m
al

s
w

ith
 c

or
re

ct
 ID

 (
%

)

400

500

600

700

800
Bottom–up (ID)

ID model speed

Tracking accuracy

ID model accuracy

Top–down (ID)

60

40

20

0

Bottom–up (ID)

Top–down (ID)

Dataset

Mice (HC)Flies

100

101

ID
 s

w
itc

he
s

pe
r

10
5 fr

am
es

102

Untracked Flow shifted

t = 5t = 5t = 0
0.5 mm

0.5 mm

Fig. 5 | Tracking and identification using temporal and appearance models in SLEAP. a, Schematic of flow-shift tracking in which SLEAP associates
poses across frames by using temporal context to predict where past poses will be in the current frame, allowing identities to be matched across time.
b, ID-switching accuracy of flow-shift tracking over entire proofread datasets. Points correspond to ID-switching rate per 100,000 frames for individual
videos in each dataset (n = 11.7 million frames over 87 videos for flies; n = 367,000 frames over 30 videos for mice). Bars and error whiskers correspond to
mean and 95% confidence intervals. c, Schematic of the bottom–up ID approach, in which each distinct animal ID is treated as a class that is characterized
by distinctive appearance features. d, Schematic of the top–down ID approach (only the second stage is shown), in which crops are used to predict
confidence maps for the centered instance as well classification probabilities for matching instances to IDs (probability vector denotes with Pr[] in
schematic). e, ID model accuracy across approaches and datasets. Points correspond to the fraction of animals identified correctly in each video in the
held-out test sets (n = 150 frames for flies, n = 42 frames for gerbils). Bars and error whiskers correspond to the mean and 95% confidence intervals.
f, Inference speed of each approach across datasets. Points correspond to sampled measurements of batch-processing speed over 1,280 images with the
highest-accuracy model for each approach and dataset. The fastest batch size for each approach was selected (32, bottom–up; 16, top–down).

Nature Methods | VOL 19 | April 2022 | 486–495 | www.nature.com/naturemethods492

http://www.nature.com/naturemethods

ArticlesNature Methods

The inherent drawback of temporal tracking, however, is that
errors such as identity switches propagate over time. This results in
incorrect identity assignments for long spans of time even in cases in
which tracking errors occur rarely, making this technique less useful
for very long videos (which would be intractable to proofread) or
real-time applications (which cannot be proofread). To address this,
we developed extensions to our multi-instance pose-estimation
models that leverage appearance as a cue for identity assignment on
a single-frame basis.

In our bottom–up ID models, we replace the PAFs of the stan-
dard approach with multi-class segmentation maps, a representa-
tion similar to those of conventional segmentation tasks (Fig. 5c).
These models predict the probability that each unique animal class
is occupying the region surrounding each landmark, enabling iden-
tity assignment through an optimal assignment of the probabilities

at each detected landmark location. The class maps make PAFs
unnecessary as grouping is implicit in the ID assignment.

In our top–down ID models, we employ a technique similar to
that in previously described appearance models8. Here, we predict
animal class probabilities for each animal-centered sub-image in
addition to pose (Fig. 5d). In these models, classification prob-
abilities are computed from the features output by the deepest layer
in the network. These classification probabilities are then used as
scores for an optimal matching of instances to unique animal IDs.
Bottom–up and top–down ID models both produced high accuracy
for flies (99.7%, bottom–up; 100%, top–down; Fig. 5e).

To further test the ability of these approaches to correctly iden-
tify individuals in more difficult situations, we used multi-day mov-
ies of four gerbils in a home cage. This dataset presents challenges
including lens distortion, suboptimal focus, motion blur and highly

PC

a b c d

e f g

h Trigger onset Opto stimulation OE start OE peak

OE threshold
(~325 ms)

System latency
(~70 ms)

Camera

Loopback

SLEAP
(online)

Save

SLEAP
(offline)

Compute
thorax–thorax

distance

DAQ

Latency-estimation setup

Compute
thorax–thorax

distance

PC

Camera

SLEAP (online)

DAQDetect male approach
(trigger condition)

Optogenetic stimulation

Female OE

Closed-loop behavior control setup Closed-loop behavioral response

Male
approach

Online–offline tracking lag

20

10

0

20

10

0

0

154
D

is
ta

nc
e

(m
m

)
D

is
ta

nc
e

(m
m

)
155

Offline tracking
Online tracking

156 157 158

Experiment time (s)

159 160

50 100 150 200 250 300

0.08

System latency Inference latency

0.06

0.04

0.02

50
Online tracking lag (ms)

100

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

1,000800600400200

Time from male approach (ms)

–200
0

0.1

0.2

O
E

 le
ng

th
 (

m
m

)

0.3

0.4

0.5

0
0 200

Time from opto stimulation to
OE threshold (ms)

400 600 800 1,000

0 2.5 5.0 7.5
0

0.1

0.2

0.3

0.4

0.5

0

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

P
ro

ba
bi

lit
y

Single-image prediction
time (ms)

Biological latency

0 ms

0 ms 66 ms 300 ms 453 ms

453 ms

200 µm

Virgin female (DNp13-csChrimson)

Virgin female (WT)

Fig. 6 | SLEAP can detect social behavior for real-time control. a, Schematic of hardware setup for detecting poses, calculating thorax–thorax distance
and estimating round-trip latency through a DAQ loopback. PC, personal computer. b, Lag between online and offline distance traces estimates round-trip
system latency. c, Distribution of round-trip system latency estimated by aligning 1-s segments between offline and online traces (mean = 71.0 ms,
s.d. = 17.0 ms, n = 50,000 1-s segments). d, Distribution of end-to-end top–down ID model inference latency for single images (mean = 3.45 ms,
s.d. = 0.16 ms, n = 1,280 images over five replicates). e, Hardware setup for detecting poses, trigger condition (male approach), optogenetic stimulation
(of DNp13) and control of virgin female behavior (OE). f, Female behavioral response (change in OE length) to male approach-triggered optogenetic
activation of DNp13 neurons expressing csChrimson (red) or in virgin WT females (green). The line and shaded regions denote mean and 95% confidence
intervals (n = 48 bouts, DNp13; n = 282 bouts, WT). g, Distribution of latency from optogenetic (opto) stimulation onset to OE threshold, indicating the
biological latency of the system (mean = 249.0 ms, s.d. = 148.1 ms, n = 48 bouts). h, Example closed-loop behavioral control event. From left to right: male
in approach pose at condition trigger onset; optogenetic stimulation onset; start of female OE response to optogenetic stimulation; peak of female OE
response with male still in close proximity.

Nature Methods | VOL 19 | April 2022 | 486–495 | www.nature.com/naturemethods 493

http://www.nature.com/naturemethods

Articles Nature Methods

variable illumination. The experimental conditions are challenging
as gerbils frequently engage in huddling, resulting in heavy occlu-
sion, the home cage bedding visually blends with the animals’ fur
and enrichment objects occlude the animals from the camera.
Unlike the other datasets that we used, which consist of sessions on
the order of tens of minutes, this dataset was recorded continuously
over a period of days so that even rare identity switching would
make proofreading laborious as errors would be difficult to identify
and correct, in addition to propagating over millions of frames. This
is further compounded by having four animals, which considerably
increases the number of possible incorrect combinations of identity
assignments. This dataset is ideally suited for appearance-based ID
models that can leverage variability in body morphology and fur
patterning across animals as distinguishing features and do not rely
on temporal dependencies across frames, thereby guaranteeing that
ID errors will not be propagated over time, which effectively elimi-
nates the need for proofreading. We find that these models perform
well with this dataset, despite the challenging conditions (82.2%,
bottom–up; 93.1%, top–down; Fig. 5e).

Next, we measured the speed of the ID models to evaluate their
batch inference performance. We found that, while our bottom–up
ID models exhibited performance similar to that of their coun-
terparts without the ID branch (49 and 43 FPS for flies and ger-
bils, respectively), the top–down ID models exhibited the highest
performance of all models that we tested, reaching up to 137 and
804 FPS for gerbils and flies, respectively (Fig. 5f). As these mod-
els are end to end, these performance measures correspond to the
entire inference pipeline, demonstrating that SLEAP is capable of
tracking 13 landmarks on two animals and assigning unique identi-
ties from raw high-resolution (1,024 × 1,024) frames at over 800 FPS
with no downsampling or any other preprocessing or postprocess-
ing required.

While the appearance-based approach has the advantage of not
propagating identity errors (Supplementary Video 4), it comes with
the trade-off that it requires animals with sufficiently distinctive
appearance cues such that they can be manually identified during
labeling. By contrast, temporal models do not require additional
labeling or training, can be used with visually hard-to-distinguish
animals and can work downstream of any standard pose-estimation
approach. We offer both approaches in SLEAP.

Detection and control of behavior in real time. Real-time appli-
cations that use feedback on animal pose require a low-latency
solution for image capture, pose estimation and feedback output.
To measure the time required to estimate animal pose in a single
image, we measured the single-frame (batch size of 1) inference
latency of these models and found that they were able to produce
predictions with delays as short as 3.2 ms (312 FPS, Fig. 5f). As
compared to previous approaches for real-time single-animal pose
estimation, which achieve a latency of 14 ms with smaller images
on similar hardware24, SLEAP can achieve a latency of 3.2 ms with
full-resolution images (1,024 × 1,024 pixels), 13 body parts and
multi-animal tracking.

We next developed a hardware setup to measure the full
end-to-end latency for real-time feedback on animal pose. First,
we evaluated the latency of the entire closed-loop system using
online SLEAP tracking (Fig. 6a). In this setup, a high-precision data
acquisition (DAQ) triggers camera frame capture and records the
exposure time for synchronization. Frames are sent to both a video
encoder for offline processing and to an online SLEAP pose predic-
tor running in parallel. We use the online predictions to encode a
pose-derived social feature (thorax to thorax distance) in an ana-
log output signal that is sent through the DAQ and read back in
through a loopback connection (Fig. 6b). The delay between the
computation of social pose features offline versus online can be
used to estimate the full-system latency, which includes overhead

from hardware communication and other software layers. We esti-
mate that our system exhibits a 70-ms latency from the time when
the frame is captured to when an output signal can be generated
based on predicted poses (Fig. 6c), and only about 3 ms (Fig. 6d)
are taken up by SLEAP model inference, suggesting that more opti-
mized hardware and software could achieve lower latencies.

Next, we modified the setup to test online SLEAP pose track-
ing to control the behavior of one animal based on the behavior of
its socially interacting partner (Fig. 6e). To do this, we expressed
a light-activated cation channel (CsChrimson) in a subset of fly
neurons (called DNp13 (ref. 25) or pMN1) that controls ovipositor
extrusion (OE) in females, a rejection behavior normally produced
by mated females during courtship25,26. We selected this behavior
as it is rarely elicited by unmated, virgin female flies during court-
ship. To drive OE behavior in virgin females, we activated DNp13
neurons using optogenetics contingent on a social behavior, male
approach, which we detected using a set of pose-derived features
from both social partners (the male must be close to the female,
behind her and oriented toward her).

By aligning OE to the time of male approach, we find that our
closed-loop control system can reliably trigger OE in virgin female
flies with a total latency of 326 ± 150 ms (mean ± s.d.; Fig. 6f and
Supplementary Video 5). Of this time, 77 ± 11 ms represents the sys-
tem latency, measured by monitoring the onset of the optogenetic
stimulus, and we estimate a biological latency (time from optoge-
netic stimulation to OE) of 249 ± 148 ms (Fig. 6g,h). We further
show that OE is not observed following male approach in wild-type
(WT) virgin females (Fig. 6f). These proof-of-principle experi-
ments demonstrate that SLEAP can be used for online detection of
social behaviors (here, male approach) in optogenetic perturbation
experiments.

Discussion
Here we have presented SLEAP, a general-purpose deep learning sys-
tem for multi-animal pose tracking. This method advances the state
of the art for both single-animal and multi-animal pose estimation
and implements these innovations within a flexible and performant
open-source framework designed for and tested by non-technical
practitioners. SLEAP was built using industry-standard best prac-
tices in both software engineering and machine learning system
design27. The modular construction of the subcomponents of
SLEAP makes it easy to identify the source of errors or poor per-
formance, which can then guide adjustments to the data-collection
process and experimental design. In addition, we expose SLEAP’s
modular functionality through documented APIs, which can be
flexibly adopted in other frameworks15, and provide data-export
formats to enable portability of SLEAP’s outputs for use in down-
stream analysis frameworks such as SimBA14 and B-SOiD16.

SLEAP’s modular design ensures that it is flexible. We find that
SLEAP’s modular UNet architecture enables a ‘specialist’ paradigm
in which small, lightweight models have just enough representa-
tional capacity to generalize to the low variability typically found
in scientific data. This contrasts with the ‘generalist’ approach of
training a single model that works on all datasets, a substantially
harder task that comes as the cost of additional compute resource
requirements and sacrifices accuracy within narrow domains (such
as laboratory data) for generalizability in a broader domain. Indeed,
without sacrificing accuracy, we observe large gains in performance,
up to 11 times faster than the core network architecture used in
DeepLabCut5. Additionally, by developing high-performance GPU
implementations of core algorithms and leveraging state-of-the-art
inference libraries, we achieve a latency four times lower than that
reported in the DLCLive! package24, which was designed explicitly
for real-time applications. Nonetheless, bridging the gap between
specialist-level accuracy with generalist-level capacity remains an
open problem in machine learning, which future work may seek to

Nature Methods | VOL 19 | April 2022 | 486–495 | www.nature.com/naturemethods494

http://www.nature.com/naturemethods

ArticlesNature Methods

address in the domain of animal pose tracking. The dataset pro-
vided here (15,441 animal instances over 7,631 labeled frames and
337 trained models) should facilitate future developments.

Future work leading to the creation of new model types and
approaches will be used to further improve SLEAP’s capabilities,
including better incorporation of temporal information for more
consistent tracking over time, alignment across multiple camera
views to enable three-dimensional pose tracking and emerging
techniques for self-supervised learning to improve the sample effi-
ciency and generalizability of SLEAP on new datasets. The extensive
documentation and software engineering practices employed in the
development of SLEAP will facilitate these advances and serve as a
resource for tool builders and practitioners alike.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
s41592-022-01426-1.

Received: 6 July 2021; Accepted: 15 February 2022;
Published online: 4 April 2022

References
	1.	 Altmann, J. Observational study of behavior: sampling methods. Behaviour

49, 227–267 (1974).
	2.	 Datta, S. R., Anderson, D. J., Branson, K., Perona, P. & Leifer, A.

Computational neuroethology: a call to action. Neuron 104, 11–24 (2019).
	3.	 Pereira, T. D., Shaevitz, J. W. & Murthy, M. Quantifying behavior to

understand the brain. Nat. Neurosci. 23, 1537–1549 (2020).
	4.	 Christin, S., Hervet, É. & Lecomte, N. Applications for deep learning in

ecology. Methods Ecol. Evol. 10, 1632–1644 (2019).
	5.	 Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined

body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).
	6.	 Pereira, T. D. et al. Fast animal pose estimation using deep neural networks.

Nat. Methods 16, 117–125 (2019).
	7.	 Graving, J. M. et al. DeepPoseKit, a software toolkit for fast and robust

animal pose estimation using deep learning. eLife 8, e47994 (2019).
	8.	 Romero-Ferrero, F., Bergomi, M. G., Hinz, R. C., Heras, F. J. H. & de

Polavieja, G. G. idtracker.ai: tracking all individuals in small or large
collectives of unmarked animals. Nat. Methods 16, 179–182 (2019).

	9.	 Walter, T. & Couzin, I. D. TRex, a fast multi-animal tracking system with
markerless identification, and 2D estimation of posture and visual fields. eLife
10, e64000 (2021).

	10.	Vogt, N. Automated behavioral analysis. Nat. Methods 18, 29 (2021).
	11.	Chen, Z. et al. AlphaTracker: a multi-animal tracking and behavioral

analysis tool. Preprint at bioRxiv https://doi.org/10.1101/2020.12.04.405159
(2020).

	12.	Lauer, J. et al. Multi-animal pose estimation and tracking with DeepLabCut.
Preprint at bioRxiv https://doi.org/10.1101/2021.04.30.442096 (2021).

	13.	Lin, T.-Y. et al. Microsoft COCO: common objects in context. In European
Conference on Computer Vision 740–755 (Springer, 2014).

	14.	Nilsson, S. R. O. et al. Simple behavioral analysis (SimBA)—an open source
toolkit for computer classification of complex social behaviors in
experimental animals. Preprint at bioRxiv https://doi.
org/10.1101/2020.04.19.049452 (2020).

	15.	Schweihoff, J. F. et al. DeepLabStream enables closed-loop behavioral
experiments using deep learning-based markerless, real-time posture
detection. Commun. Biol. 4, 130 (2021).

	16.	Hsu, A. I. & Yttri, E. A. B-SOiD, an open-source unsupervised algorithm for
identification and fast prediction of behaviors. Nat. Commun. 12, 5188 (2021).

	17.	Ronchi, M. R. & Perona, P. Benchmarking and error diagnosis in
multi-instance pose estimation. In Proceedings of the IEEE International
Conference on Computer Vision 369–378 (CVF, 2017).

	18.	Zhang, F., Zhu, X., Dai, H., Ye, M. & Zhu, C. Distribution-aware coordinate
representation for human pose estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition 7093–7102
(CVF, 2020).

	19.	Cao, Z., Simon, T., Wei, S.-E. & Sheikh, Y. Realtime multi-person 2D pose
estimation using part affinity fields. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition 7291–7299 (CVF, 2017).

	20.	Araujo, A., Norris, W. & Sim, J. Computing receptive fields of convolutional
neural networks. Distill https://doi.org/10.23915/distill.00021 (2019).

	21.	Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for
biomedical image segmentation. In Medical Image Computing and
Computer-Assisted Intervention—MICCAI 2015 234–241 (Springer
International, 2015).

	22.	Mathis, A., Yüksekgönül, M., Rogers, B., Bethge, M. & Mathis, M. W.
Pretraining boosts out-of-domain robustness for pose estimation. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision 1859–1868 (CVF, 2021).

	23.	Xiao, B., Wu, H. & Wei, Y. Simple baselines for human pose estimation and
tracking. In Proceedings of the European Conference on Computer Vision
(ECCV) 466–481 (CVF, 2018).

	24.	Kane, G. A., Lopes, G., Saunders, J. L., Mathis, A. & Mathis, M. W. Real-time,
low-latency closed-loop feedback using markerless posture tracking. eLife 9,
e61909 (2020).

	25.	Wang, F., Wang, K., Forknall, N., Parekh, R. & Dickson, B. J. Circuit and
behavioral mechanisms of sexual rejection by Drosophila females. Curr. Biol.
30, 3749–3760 (2020).

	26.	Mezzera, C. et al. Ovipositor extrusion promotes the transition from
courtship to copulation and signals female acceptance in Drosophila
melanogaster. Curr. Biol. 30, 3736–3748 (2020).

	27.	Sculley, D. et al. Hidden technical debt in machine learning systems. In
Advances in Neural Information Processing Systems Vol. 28 (eds Cortes, C.,
Lawrence, N., Lee, D., Sugiyama, M. & Garnett, R.) (Curran Associates, 2015).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons license and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.
© The Author(s) 2022, corrected publication 2022

Nature Methods | VOL 19 | April 2022 | 486–495 | www.nature.com/naturemethods 495

https://doi.org/10.1038/s41592-022-01426-1
https://doi.org/10.1038/s41592-022-01426-1
https://doi.org/10.1101/2020.12.04.405159
https://doi.org/10.1101/2021.04.30.442096
https://doi.org/10.1101/2020.04.19.049452
https://doi.org/10.1101/2020.04.19.049452
https://doi.org/10.23915/distill.00021
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturemethods

Articles Nature Methods

Methods
Datasets. To evaluate how SLEAP performs across species, imaging conditions,
experimental conditions and other properties of behavioral data that may affect
pose-tracking performance, we built a collection of diverse animal pose datasets
(Supplementary Table 1 and Supplementary Video 1). These data were manually
labeled using the SLEAP labeling workflow (Supplementary Video 2). Below we
describe in detail the seven datasets that we used in our analyses, which
constitute a total of 7,636 labeled images with 15,441 animal instances. See the
Supplementary Note for further description of the technical motivations for
inclusion of each dataset.

To encourage further development and to provide the means for reproducible
benchmarking of animal pose-tracking tools, we make these datasets available
together with the images and training, validation and test set splits to ensure that
new models are directly comparable with SLEAP. The 14 GB of labeled data are
available in ref. 28.

Single fly. The ‘fly32’ dataset is a single-animal dataset that has been previously
described and annotated with poses6,29. Here we use it for evaluating
part-localization accuracy and inference performance for comparison with
existing methods5–7.

Briefly, this dataset consists of 59 videos of a freely moving adult fruit fly
(Drosophila melanogaster). During acquisition, a camera followed the animal in an
arena 100 mm in diameter in real time; therefore, all frames are roughly centered
on the fly. The chamber was backlit to provide maximum contrast; however, details
on the top of the animal are not visible. Videos were recorded at 100 FPS with a
resolution of 35 pixels per mm with a frame size of 192 × 192 × 1 in grayscale at a
resolution of 35 pixels per mm.

For this dataset, we used the existing manual labels for a 32-node skeleton split
into 1,200 training, 150 validation and 150 test frames6. No body parts are marked
as not visible even when they are occluded; therefore, models trained on this
dataset will be forced to ‘hallucinate’ missing body parts.

Flies. The ‘flies13’ dataset consists of 30 videos of freely interacting pairs of virgin
male and female fruit flies (strain NM91) 3–5 d after eclosion. The animals were
allowed to engage in courtship for up to 30 min or until copulation within a
custom-fabricated behavioral monitoring chamber consisting of a 30-mm × 30-mm
three-dimensional printed base (Formlabs Form 2, Black V3), a clear PETG
vacuum-moulded dome (WidgetWorks Unlimited), a Blackfly S 13YM3-M USB3
camera (FLIR), an MVL35M23 35-mm FL C-mount lens (Thorlabs), a 25-mm
premium 850-nm longpass filter (Thorlabs, FELH0850) and 850-nm IR LED
strips for side illumination. The arena floor has visible microphone inlets for
recording acoustic signals (not used in this study). The acquisition computers were
custom-built workstations with Intel i7-8700K central processing units (CPUs),
64 GB of RAM, a Samsung 860 Evo Series 4-TB SSD for data and an EVGA
GeForce GTX 1080 Ti 11-GB GPU. Videos were recorded from above at 150 FPS
with an exposure time of 5 ms and a frame size of 1,024 × 1,024 × 1 and a resolution
of 30.3 pixels per mm. Images were compressed in real time using Motif acquisition
software (Loopbio) using GPU-accelerated H264 encoding with the ‘superfast’
preset of the libx264 library, resulting in nearly lossless videos with independently
seekable frames.

We also collected but did not label videos in this behavioral monitoring setup
with one, three, four and eight flies for inference speed benchmarking with variable
number of animals.

For this dataset, we labeled 2,000 frames (4,000 instances) with a skeleton
consisting of 13 nodes spanning clearly visible anatomical landmarks: head,
thorax, abdomen, ‘wingL’, ‘wingR’, ‘forelegL4’, ‘forelegR4’, ‘midlegL4’, ‘midlegR4’,
‘hindlegL4‘, ‘hindlegR4’, ‘eyeL’ and ‘eyeR’; and 12 edges: thorax to head, thorax
to abdomen, thorax to ‘wingL’, thorax to ‘wingR’, thorax to ‘forelegL4’, thorax to
‘forelegR4’, thorax to ‘midlegL4’, thorax to ‘midlegR4’, thorax to ‘hindlegL4’, thorax
to ‘hindlegR4’, head to ‘eyeL’ and head to ‘eyeR’. Labels were randomly split into
1,600 training, 200 validation and 200 test frames. Additionally, for this dataset, we
labeled each instance with the animal’s identity class as either ‘female’ or ‘male’ to
enable ID model training.

For the closed-loop experiment, we generated an additional dataset (‘flies17’)
in the same behavioral monitoring setup with an extended skeleton that included
four additional nodes: ‘ovipositortip’, proboscis, ‘antennaeL’ and ‘antennaeR’. This
smaller dataset (428 frames, 851 instances) was only used for the closed-loop
analysis as it included the ‘ovipositortip’ landmark needed to measure OEs. To
drive OE, we used a CsChrimson-expressing GAL4 split: DNp13-SS2 (SS61090; gift
from B. Dickson (Janelia Research Campus); full genotype, 20xUAS-csChrimson/
VT038159.AD;VT029317.DBD/Sb).

Bees. The ‘bees’ dataset consisted of 18 videos of pairs of female worker bumblebees
(Bombus impatiens) freely interacting in a Petri dish with hexagonal beeswax
flooring for up to 30 min. The videos were recorded from above at 100 FPS with a
frame size of 2,048 × 1,536 × 1 in grayscale at a resolution of 14 pixels per mm.

Queenright colonies of common eastern bumblebees (B. impatiens, n = 7) were
purchased from Koppert Biological Systems between June and September 2019.
Colonies were maintained in their original packaging under red light in a room

with an ambient temperature of 74 °F. Bees were fed ad libitum on commercial
sugar water (Koppert, 1.9-l bag per colony). All bees used for this dataset were 10 d
old (10 d after eclosion).

For this dataset, we labeled 804 frames (1,604 instances) with a skeleton
consisting of 21 nodes: ‘thor’, head, ‘abdo’, ‘Lant1’, ‘Lant2’, ‘Rant1’, ‘Rant2’, ‘fLleg1’,
‘fLleg2’, ‘fRleg1’, ‘fRleg2’, ‘mLleg1’, ‘mLleg2’, ‘mRleg1’, ‘mRleg2’, ‘hLleg1’, ‘hLleg2’,
‘hRleg1’, ‘hRleg2’, ‘Lwing’ and ‘Rwing’; and 20 edges: ‘thor’ to head, ‘thor’ to ‘abdo’,
head to ‘Lant1’, head to ‘Rant1’, ‘Lant1’ to ‘Lant2’, ‘Rant1’ to ‘Rant2’, ‘thor’ to ‘fLleg1’,
‘fLleg1’ to ‘fLleg2’, ‘thor’ to ‘fRleg1’, ‘fRleg1’ to ‘fRleg2’, ‘thor’ to ‘mLleg1’, ‘mLleg1’ to
‘mLleg2’, ‘thor’ to ‘mRleg1’, ‘mRleg1’ to ‘mRleg2’, ‘thor’ to ‘hLleg1’, ‘thor’ to ‘hRleg1’,
‘hLleg1’ to ‘hLleg2’, ‘hRleg1’ to ‘hRleg2’, ‘thor’ to ‘Lwing’ and ‘thor’ to ‘Rwing’.
Labels were randomly split into 642 training, 81 validation and 81 test frames.

Mice (home cage). The ‘mice_hc’ dataset was used to evaluate performance under
challenging imaging conditions with low contrast and a naturalistic setting. The
dataset consisted of 40 videos of pairs of male and female 16-week-old white Swiss
Webster mice (Mus musculus). Animals freely interacted for 5 min in a home
cage environment with bedding to encourage naturalistic courtship behavior. The
videos were recorded from above at 40 FPS with a frame size of 1,280 × 1,024 × 1
in grayscale using infrared illumination and a Blackfly Mono S camera (model
BFS-US-13Y3M-C) at a resolution of 1.9 pixels per mm.

Experimental procedures were approved by the Princeton University
Institutional Animal Care and Use Committee and conducted in accordance
with the National Institutes of Health guidelines for the humane care and use
of laboratory animals. Mice used in this dataset were purchased from Taconic
Biosciences and had at least 1 week of acclimation to the Princeton Neuroscience
Institute vivarium before experimental procedures were performed. Mice were
co-housed with food and water ad libitum under a reversed 12-h–12-h dark–light
cycle (light, 22:00–10:00).

For this dataset, we labeled 1,474 frames (2,948 instances) with a skeleton
consisting of five nodes: snout, ‘earL’, ‘earR’, ‘trtb’ (tail base) and ‘tt’ (tail tip); and
four edges: snout to ‘earL’, snout to ‘earR’, snout to ‘tb’ and ‘tb’ to ‘tt’. Labels were
randomly split into 1,178 training, 148 validation and 148 test frames. We chose
not to label the legs or paws because they were very rarely visible from a single
top–down camera.

Mice (open field). The ‘mice_of ’ dataset was used to evaluate performance for
tracking mice under optimal imaging conditions (high contrast) and with variable
numbers of animals. The dataset consisted of videos from C57BL/6J male (n = 17)
and female (n = 20) mice acquired from Jackson Laboratory (RRID:IMSR_
JAX:000664, Jackson Laboratory). Groups of four and five mice were formed from
same-sex littermates, and groups of two same-sex mice were picked randomly
from different litters and interacted with each other in the open field for the first
time. During video recording, mice moved freely in a 45.7 × 45.7-cm open-field
arena with a clear acrylic floor. Videos were captured from below with infrared
illumination using a Point Grey Blackfly S camera at a resolution of 1.97 pixels per
mm at 80 FPS.

Experimental procedures were approved by the Princeton University
Institutional Animal Care and Use Committee and conducted in accordance
with the National Institutes of Health guidelines for the humane care and use of
laboratory animals. Mice used in this study had at least 1 week of acclimation
to the Princeton Neuroscience Institute vivarium in group cages with food and
water ad libitum under a reversed 12-h–12-h dark–light cycle (light, 19:30–07:30)
and were habituated in the dark test room for at least 30 min before experimental
procedures were performed.

For this dataset, we labeled 1,000 frames (2,950 instances) with a skeleton
consisting of 11 nodes: nose, neck, ‘L_ear’, ‘R_ear’, ‘L_Fr_paw’, ‘R_Fr_paw’,
‘tail_base’, ‘L_Hi_paw’, ‘R_Hi_paw’, ‘tail_mid’ and ‘tail_end’; and ten edges: neck to
‘L_Fr_paw’, neck to ‘R_Fr_paw’, ‘tail_base’ to ‘R_Hi_paw’, ‘tail_base’ to ‘L_Hi_paw’,
‘tail_base’ to ‘tail_mid’, ‘tail_mid’ to ‘tail_end’, neck to nose, neck to ‘R_ear’, neck
to ‘L_ear’ and ‘tail_base’ to neck. Labels were randomly split into 800 training, 100
validation and 100 test frames.

Gerbils. The ‘gerbils’ dataset consisted of 23 selected videos from a continuous
monitoring setup of a home cage with two pup and two adult gerbils (Meriones
unguiculatus) from P15 to 8 months old. Animals lived freely in an open-field cage
of approximately 60 cm × 40 cm with a clear acrylic floor for 20 d. Videos were
captured continuously from above during white light and infrared illumination
using a Point Grey Blackfly S camera at a resolution of approximately 2 pixels per
mm at 25 FPS, totaling over 40 million frames over the 20-d study. Experimental
procedures were approved by the New York University Institutional Animal Care
and Use Committee and conducted in accordance with the National Institutes of
Health guidelines for the humane care and use of laboratory animals. Gerbils used
in this study were obtained from Charles River. Gerbils were kept in group cages
with food and water ad libitum under a normal 12-h–12-h light–dark cycle
(light, 07:00–18:00).

For this dataset, we labeled 425 frames (1,588 instances) with a skeleton
consisting of 14 nodes: nose, left eye, right eye, left ear, right ear, ‘spine1’, ‘spine2’,
‘spine3’, ‘spine4’, ‘spine5’, ‘tail1’, ‘tail2’, ‘tail3’ and ‘tail4’; and 13 edges: ‘spine3’ to

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

ArticlesNature Methods

‘spine2’, ‘spine2’ to ‘spine1’, ‘spine1’ to left eye, ‘spine1’ to left ear, ‘spine1’ to nose,
‘spine1’ to right eye, ‘spine1’ to right ear, ‘spine3’ to ‘spine4’, ‘spine4’ to ‘spine5’,
‘spine5’ to ‘tail1’, ‘tail1’ to ‘tail2’, ‘tail2’ to ‘tail3’ and ‘tail3’ to ‘tail4’. Labels were
randomly split into 340 training, 43 validation and 42 test frames for training,
validation and testing, respectively. Additionally, for this dataset, we labeled
each instance with the animal’s identity class as female, male, ‘pupshaved’ or
‘pupunshaved’ to enable ID model training.

Framework. Below, we describe the submodules that enable SLEAP’s functionality
and outline the engineering considerations that were required in its design.

Labeling workflow. The SLEAP labeling workflow is enabled by its sophisticated
user interface, allowing for consistent labeling practices to minimize differences
across annotators and to facilitate user experience. This workflow is described in
the Supplementary Note, illustrated in Supplementary Video 2 and described in the
online documentation (https://sleap.ai).

Data model. SLEAP implements a comprehensive data model for describing
and storing multi-animal pose-tracking data, for which no standard format has
yet been described. In particular, we designed our data model with the goal of
mitigating the risk of data dependencies in complex machine learning systems27
as well as to promote reproducibility and FAIR scientific data-stewardship
best practices30.

To decouple a specific implementation of this data model from a logical
schema that can be adapted without imposing a new software dependency, we
describe a set of data structures that address two distinct needs in multi-animal
pose tracking: training data and predictions. We provide a detailed description in
Supplementary Table 3.

Model configuration. One of the design principles in SLEAP architecture
was to decouple the configuration of training and inference jobs from their
actual implementation(s). Consequently, SLEAP can import and export all
user-controlled configuration parameters as standalone configuration dictionaries
that are serializable to plain JSON files. These configuration files specify all the
parameters required to run a training job or to perform inference from a trained
model. Parameter specification is carried out through simple attributes that can be
read and edited by a human as well as edited in a dedicated configuration GUI.

Decoupling configuration from implementation enables clean experimentation
and hyperparameter tuning as well as convenient sharing of model training
configurations (along with datasets) for reproducibility of results. See ref. 28 for
our publicly available repository with 337 models (approximately 90 GB) that were
trained over the course of this paper with various configurations.

Development and operations. Testing and code quality The test coverage in the
SLEAP codebase is approximately 60%. We perform static type checking with
MyPy (https://mypy.readthedocs.io/), and we automate code formatting with Black
(https://black.readthedocs.io/).

Packaging and distribution SLEAP is automatically built and packaged on
every merge to one of the primary branches (main, develop) using GitHub Actions.
Upon release, the packages are published on PyPI and Conda package repositories.
For PyPI distributions, users can configure GPU support on their own on any OS,
while Conda distributions come with automatic GPU support for Windows
and Linux.

Deployment and execution options SLEAP can be installed and executed
locally on Windows, Linux or macOS (with or without GPU support) both in
GUI or CLI modes. For remote execution (use cases include batch training or
inference or access to a remote workstation with GPU support), SLEAP can be
operated through a CLI as well as a high-level programmatic interface in Python.
In particular, SLEAP training and inference can be executed in a Google Colab
notebook with GPU support after exporting the labeled data package from the
user’s local installation (one-click operation from the GUI).

Documentation A dedicated documentation website (https://sleap.ai) contains
extensive documentation for end users as well as developers. Specifically, it
provides a high-level overview of the main workflows, end-to-end tutorials with
screenshots, detailed guides for specific features and tools, workshop videos,
example data and sample training, inference and analysis code ready to launch in
Google Colab with one click. For developers interested in contributing to SLEAP,
the codebase is documented in detail throughout with Google-style docstrings.

Software stack. For the current version of SLEAP (version 1.1.4), the software stack
consists of
•	 Graphics: PySide2 (5.14.1), Matplotlib (3.3.3)
•	 Interprocess communication: PyZMQ (20.0.0)
•	 Media input/output: FFmpeg (4.2.3), imgstore (0.2.9), scikit-video (1.1.11)
•	 Data models and serialization: attrs (19.3.0), cattrs (1.0.0rc0), h5py (2.10.0),

jsmin (2.2.2)
•	 Numerical analysis: TensorFlow (2.3.1), imgaug (0.3.0), NumPy (1.18.5),

OpenCV-Python (4.2.0.34)
•	 Engines: CUDA Toolkit (10.1.243), cuDNN (7.6.5), TensorRT (7.2.3.4).

For ease of distribution, we package several of our core dependencies
(TensorFlow, NumPy, OpenCV, PySide2) as Conda packages for Windows and
Linux. These are available at https://github.com/talmo/conda_packages.

We manage this software stack through Python buildtools-based
requirements.txt as well as Conda environments. At every modification to
the codebase, continuous integration enables verification of these dependencies
through automated builds and tests on both Windows and Linux.

Network architectures. SLEAP supports a large number of modular neural
network architectures that are compatible with all approaches that we have
implemented for multi-animal pose-tracking tasks. To standardize the
configuration of these architectures and support exploratory research into the
performance of different properties of neural networks, we describe all our models
in terms of an encoder–decoder framework (Fig. 4a). This architectural motif
was popularized by early work on image segmentation31,32, a task closely related
to pose estimation in its construction (dense prediction). Namely, by leveraging
fully convolutional architectures, we reduce the large space of hyperparameters of
possible network instantiations to simple arrangements of a few blocks of layers
that control high-level properties that can be easily explored:

	1.	 Convolutional blocks are composed of one or more simple two-dimensional
(2D) convolutional layers. We use a kernel size of 3 with a stride of 1 and
ReLU activation for all layers. The main hyperparameter that we tune in this
block is the number of filters in each block (16 to 64), which is secondarily
controlled by a growth rate across sequential blocks (1.5 or 2). Increasing
the number of filters affords the network greater representational capacity to
learn more complex features at the cost of more parameters, which increase
memory usage and computations.

	2.	 Downsampling blocks are composed of a convolutional block that provides
input to a two-strided maximum pooling layer with a kernel size of 3. Adding
more downsampling blocks increases the maximum receptive field of the
network and affords it the ability to integrate over larger-scale image features
at the cost of more parameters and a loss in spatial resolution.

	3.	 Upsampling blocks are composed of a convolutional block that provides
input into either a transposed convolutional layer or a bilinear interpolant.
We always use a stride of 2 when upsampling. These layers may be followed
by additional 2D convolutional layers for refinement, a configuration that is
more efficient when combined with bilinear upsampling than when using
transposed convolutions alone. These blocks recover spatial resolution lost
in the downsampling blocks but increase the memory and computations re-
quired as feature maps get larger. We typically use enough upsampling blocks
to ensure an output stride of 2–4, that is, 1–2 fewer upsampling blocks than
downsampling blocks.

	4.	 Skip connections are topological features of fully convolutional architectures
as they help to recover details from early downsampling blocks in the encoder
by directly fusing these features with the correspondingly sized feature maps
in the decoder. We employ skip connections for all variants of our models,
including pretrained backbones by fusing intermediate-layer activations
through simple addition of feature maps, possibly preceded by a 1 × 1 linear
convolution to adjust the number of filters if they differ.

These basic components can be arranged to form the original network
architecture that we employed in LEAP6 as well as modular UNet-like
architectures21, which we now use as a default in SLEAP. Despite the simplicity of
their design, our empirical evaluations have demonstrated that properties such
as the RF of a model can be used to outperform even state-of-the-art pretrained
network architectures with many times the number of parameters (Fig. 4f).

To calculate the maximum RF for a specific architecture, we use a closed-form
equation for general convolutional architectures that can be derived from the
configuration of the layers in these blocks20:

RF = 1 +

L
∑

i=1



(Ki − 1)
i

∏

j=1
Sj



 , (1)

where L is the total number of layers in the encoder part of the network, Ki is the
size of the convolutional kernel for the ith layer and Sj is the stride for the jth layer.

To compare configurations of our modular UNet to those of commonly used
neural network architectures, we adapted a minimal open-source implementation
of 32 reference architectures typically used for fully convolutional tasks such as
semantic segmentation (https://github.com/qubvel/segmentation_models). This
includes the ResNet, DenseNet, MobileNet, VGG, Inception and EfficientNet families
of architectures and their variants, in addition to ImageNet-pretrained weights.

As described in more detail in Comparisons with DeepLabCut, we also
implemented a faithful reproduction of the TF-Slim (https://github.com/google-
research/tf-slim) version of ResNet. In particular, we developed extensive unit and
integration tests with layer-by-layer and pretrained weight checksum comparisons.
Additionally, a particularly relevant feature of the TF-Slim variant is the ability to
adaptively modify select convolutional layers to use dilated (atrous) convolutions,
which afford improved feature resolution typically lost in the encoder.

Nature Methods | www.nature.com/naturemethods

https://sleap.ai
https://mypy.readthedocs.io/
https://black.readthedocs.io/
https://sleap.ai
https://github.com/talmo/conda_packages
https://github.com/qubvel/segmentation_models
https://github.com/google-research/tf-slim
https://github.com/google-research/tf-slim
http://www.nature.com/naturemethods

Articles Nature Methods

All these network architectures can be instantiated through SLEAP’s
standardized configuration system, which is serializable into JSON files and
stored with every trained model to enable reproduction of training configurations.
We provide all model weights, training logs, configuration files and evaluation
metrics for over 300 models (more than 90 GB) used in this paper in the
associated repository28.

Model training. Production-scale deep learning typically requires a large amount
of expensive hardware to accelerate model training through the use of many GPUs
or TPUs. Because the average practitioner typically only has access to a workstation
equipped with consumer-grade GPUs, we designed our training procedures for
high performance on single-GPU machines with relatively limited memory and
computational resources. In addition to developing network architectures that
can be configured with 10–100× fewer parameters than the more commonplace
larger architectures, we also implemented a data pipeline system using performant
CPU-parallelizable and GPU-parallelizable data loading, preprocessing,
augmentation, shuffling, batching and caching by using the state-of-the-art tf.
data system33.

We use a standard learning rate schedule with plateau detection for learning
rate reduction and early stopping. We use the Adam optimizer with AMSGrad
enabled and a default initial learning rate of 1 × 10−4. We use a mean squared error
loss for all training targets except classification heads in ID models, in which case
we use a cross-entropy loss. We train our models for 200 epochs at most, but very
few training jobs reach this threshold before converging. We define an epoch as
the total number of batches that are required to perform one iteration over the
training dataset or 200, whichever is larger. At smaller sample sizes (10–100),
this is compensated for by employing data shuffling and augmentation to reduce
repeated training iterations on the same exact data samples. To maintain parity
with most consumer-grade GPUs with limited memory, we use a batch size of 4 for
all our training jobs. This enables model training even with high-resolution images
such as the ‘bees’ dataset that has 1,536 × 2,048-pixel images; all other datasets
are at least 1,024 × 1,024 pixels in size, which is often a minimum requirement
to record animals with a large enough field of view without compromising on
either experimental design or the spatial resolution required to resolve small body
parts. For augmentation, we provide access to a wide variety of schemes through
integration with the open-source imgaug library (https://github.com/aleju/
imgaug); however, for all experiments described here, rotation is the only form of
augmentation employed.

In the default SLEAP workflow, training and validation data splits are
automatically generated with a ratio of 0.9 and 0.1, respectively, but, for all datasets
in this paper, we pre-generated fixed training, validation and testing splits (ratios
of 0.8, 0.1 and 0.1, respectively) to ensure reproducibility and fair comparisons
of results across model runs. During the training procedure, SLEAP logs training
and validation values for all loss terms for real-time monitoring and post hoc
analysis. SLEAP publishes the training progress over a TCP port using ZeroMQ
to communicate with the interactive training monitor provided in the GUI, which
can also issue commands for manual early stopping of training jobs. SLEAP
also generates visualizations of the raw outputs of the neural networks, such as
confidence maps, evaluated on data sampled from the training and validation
sets separately, to provide qualitative observations of training progress and the
degree of overfitting. Additionally, losses and visualizations are saved to a disk in
CSV form and the more detailed TensorBoard log format, which can optionally
save performance-profiling data. Together, these features provide a rich source
of diagnostic information for troubleshooting model performance and building
intuition for dataset-specific nuances.

Part localization. The position of each landmark from the labeled data is encoded
for network training by a 2D array that we refer to as part confidence maps. For
each body part coordinate xi ∈ R

2, the value of the confidence map at pixel
xp ∈ R

2 is given by an unnormalized 2D Gaussian distribution,

Ci(xp) = exp
(

−

∥

∥xi − xp
∥

∥

2
2

2σ2

)

δi , (2)

where σ is a fixed scalar controlling the symmetric spread of the distribution and δi
is equal to 0 when the body part is labeled as ‘not visible’ and equal to 1 otherwise.

The confidence maps are evaluated at each image grid pixel coordinate
xp ∈ {((x, y) : x ∈ {0, ..., W}, y ∈ {0, ..., H}}, where W and H are the
image width and height, respectively. The grid can be subsampled to generate
lower-resolution confidence maps as targets for neural networks, trading off spatial
resolution for decreased memory usage and compute cost. For an animal with N
body part types (for example, head, thorax, etc.), we generate N confidence maps
that are stacked along the channels axis such that the full confidence map’s tensor C
is of shape (H/so, W/so, N), where so is the output stride of the network. Body parts
that are marked as ‘not visible’ during labeling are represented by a confidence map
filled with zeros. We set σ = 1.0 and scale by the output stride to maintain a fixed
scale with respect to image resolution. For images with multiple instances of each
body part type, the part confidence maps for each instance are combined by taking
their maximum value at each pixel, which helps to separate closely spaced peaks19.

The confidence maps generated from the labeled data are used to train
the neural network, which then predicts confidence maps for new data. The
confidence map representation has the benefit of enabling fully convolutional
neural network architectures that are both efficient and easier to train than
networks that directly regress the coordinates of each body part34. The trade-off is
that the coordinates must be computed from the confidence maps at inference time
(that is, when the model is predicting new confidence maps).

For single-instance confidence maps, we decode the coordinates by finding the
global peak, that is, the coordinates of the confidence map pixel with the highest
value. For multi-instance confidence maps, we employ local peak finding, where
we define a pixel as being a local peak if it is greater than its eight neighbors. In
practice, we employ non-maximum suppression computed using a 2D grayscale
dilation (maximum) filter with kernel

K =









0 0 0

0 −1 0

0 0 0









.

K is convolved with the confidence map, producing a tensor whose elements
contain the maximum of each 3 × 3 patch, excluding the central pixel. The pixels
in the confidence map with values greater than those in the dilated maps are
considered local peaks. In both global and local peak finding, we exclude peaks for
which confidence map values fall below a fixed threshold, which we set to 0.2 to
retain low-confidence predictions but exclude points that are definitively predicted
as ‘not visible’.

As both these peak-finding methods can only yield peak coordinates at the
resolution of the confidence map grid, localization accuracy is limited by the grid
sampling interval. This quantization error is particularly problematic for models
with larger output strides (that is, lower-resolution confidence maps); therefore, we
employ subpixel refinement to improve peak coordinate localization. We leverage
integral regression35 to compute real-valued offsets by taking the weighted average
of the 5 × 5 local patch of the confidence maps around each grid-aligned peak and
apply them to the coarser location estimates. We find that using σ values between
1.5 and 3.0 for the confidence maps is optimal for maximizing the performance of
this subpixel-refinement step as larger values will result in confidence maps that
are too broad.

Bottom–up multi-animal pose estimation. For the bottom–up approach (Fig. 3a),
we employ an image-based representation of the connectivity between body parts,
called PAFs, that has been previously proposed for human pose estimation19. This
representation captures the relationship between body parts explicitly by encoding
a vector field that locally points from each source body part to each destination
body part. This vector field is stored as two 2D images, one for each component in
the x, y plane. To generate PAFs from labeled data, the user must define a directed
graph, which we refer to as the skeleton, that connects all body parts to be tracked.
In the bottom–up approach, a single neural network takes the full image as input
and outputs both PAFs and multi-peak part confidence maps encoding the location
of all body parts across all instances. By predicting both these representations,
the network explicitly separates the task of localization and grouping, where, for
one representation, it must only learn to predict ‘what’ a body part is (confidence
maps), whereas, for the other, it must learn the relationship between them (PAFs).
This is in contrast to the top–down approach, for which the relationship between
body parts is implicitly encoded in the cropping. There are many possible skeletons
that can be defined for a set of body parts, but, in practice, we find that optimal
results are obtained when the depth of the skeleton graph is kept low (to reduce
internode dependencies during matching) and the lines formed between the nodes
actually overlap with the animal’s morphology in the image (making curved body
parts such as rodent tails particularly challenging without intermediate keypoints).

A skeleton is defined as S = (N, E), where N is the set of n nodes (body parts)
and E is the set of (s, d) tuples denoting the directed edge (connection) from a
source node s ∈ {1,…, n} to a destination node d ∈ {1,…, n}/{s}. The direction at
each point in the PAF derived from labeled data is generated from the coordinates
of the body parts in labeled images by computing the distance-weighted edge unit
vector for each edge e at each image grid coordinate xp,

Pe = exp
(

−

M(xp)
2σ2

)

ueδsδd, (3)

where xs and xd are the coordinates of the source and destination nodes,
respectively. Similar to confidence maps, xp may come from a subsampled image
grid, σ controls the spatial spread of the PAF, M is the magnitude and δs and δd are
the visibility flags for the source and destination nodes, respectively. The edge unit
vector ue is defined as the source-centered direction vector

ue = (xd − xs)(∥ xd − xs ∥)−1. (4)

The magnitude M at each point in the PAF is defined as the Euclidean distance
between the grid point xp and its projection x̂p onto the line segment formed
between xs and xd, M(xp) =∥ xp − x̂p∥2, where x̂p = r(xd − xs) + xs and

Nature Methods | www.nature.com/naturemethods

https://github.com/aleju/imgaug
https://github.com/aleju/imgaug
http://www.nature.com/naturemethods

ArticlesNature Methods

r = min









max









(xp − xs) · (xd − xs)

∥ xd − xs
2
∥

2

, 0









, 1









.

We note that the original description of PAFs19 uses a hard threshold to compute
the distance weighting, but we adopt a Gaussian instead as a means of scaling the
relative contribution of pixels as a function of distance from the edge, resulting
in smoother PAFs with improved signal when animals are closely interacting as it
reduces the effect of nearby opposing vectors canceling out their magnitudes.

PAFs computed for a given edge are combined for multiple instances by
summation. After PAFs are generated for all edges in the skeleton, the full set of
PAFs for the image P are of shape (H/so, W/so, 2∣E∣), formed by concatenating all
individual edge PAFs, which contain the x and y components of the vectors along
the third axis.

After confidence maps are converted to peaks via local peak detection, sets of
candidate source and destination peaks are grouped via greedy bipartite matching
using the PAFs to compute the score of each putative connection. For each pair of
source and destination nodes, a line integral is computed by sampling ten evenly
spaced points between source and destination coordinates in the predicted PAFs.
The score for the connection is calculated as the average dot product between the
sampled vectors (p̂s) and the unit normalized vector formed between the predicted
source (x̂s) and destination points (x̂d) in the candidate connection,

10
∑

s=1

x̂d − x̂s
∥ x̂d − x̂s∥2

· p̂s. (5)

Once all pairs of connections are scored, instances are assembled by
growing their skeletons greedily edge by edge, assigning source candidates to
destination candidates via Hungarian matching36. The detailed description of
the instance-assembly algorithm and proof of its correctness can be found in the
Supplementary Note.

Top–down multi-animal pose estimation. In the top–down approach (Fig. 3b),
each animal is first detected within the full-resolution image, and a bounding
box is drawn around each animal to crop it from the frame. Each of the resulting
crops will be centered on an animal but may contain pixels that belong to other
animals. This centering is crucial as it provides spatial context to the second stage
of the top–down approach, serving as an indicator of which animal’s body parts to
predict within the cropped image. In our framework, we select a labeled body part
type to use as an anchor, ideally one close to the center of the animal’s bounding
box and infrequently occluded (if occluded, the centroid of the bounding box
of the remaining parts is used as the anchor). The anchored part serves as the
target for the first-stage neural network, which is trained to predict multi-peak
confidence maps corresponding to the anchor part of all animals in the frame.
Typically, this network is trained on downsampled full-frame images as coarsely
locating the animals does not require high spatial resolution and saves on compute
cost. Anchor part confidence maps are converted to coordinates using local
peak finding and cropped from the full-resolution images with a fixed bounding
box size computed automatically from the labels. In the second stage, we train
a separate neural network that takes an instance-anchored image from the first
stage and predicts single-peak confidence maps only for the anchored instance.
The confidence maps are converted into coordinates using global peak finding
as only a single set of body parts are expected. This network implicitly addresses
the part-grouping problem by leveraging the location of the body parts relative to
that of the anchor part (that is, the image center) as a cue for which body part to
predict confidence maps for when multiples of the same body part type may be
present within the crop. This form of implicit modeling of the geometry between
body parts is simple and has been employed in animal pose literature previously6,7.
The disadvantages of the top–down approach are that it fails to capture global
contextual information present in the relationship between instances, is limited
by the accuracy of the first-stage detector and requires a full forward pass through
the second-stage network for each animal detected (although this may actually
require less computation for images with few animals that occupy a small fraction
of the image).

Tracking. To address the problem of associating poses across frames, we devised
a tracking algorithm that operates on grouped instances generated from the
multi-animal pose estimation. The general tracking algorithm in SLEAP follows
the standard multi-object tracking procedure. In brief, for each frame, we first
generate a set of candidate instances from a window of recent frames that have
been tracked, compute the matching cost between each candidate and each
untracked instance in the current frame, perform optimal matching and assign
them to tracks. For flow-shift-based tracking, we use optical flow37 to update past
detection locations before computing the matching cost. See the Supplementary
Note for a full description of the algorithm.

Appearance-based ID models. Tracking-based approaches to maintaining animal
identities consistent across frames are not well suited to long-term recordings or

real-time applications due to the error propagation inherent in having temporal
dependencies. To address these issues, we developed two approaches that rely
on purely appearance-based features to simultaneously assign identities while
detecting and grouping landmarks. We extended both forms of multi-instance
pose-estimation approaches to address identification by casting it as a
classification problem.

For bottom–up ID models, we modify the PAF-based approach by substituting
PAFs with class segmentation maps. In this construction, we leverage the
point–coordinate form of pose annotations to generate a binary mask at a fixed
radius around each body part location. Masks for body parts are collapsed into
distinct channels for each distinct animal class ID. We train this network with a
cross-entropy loss for the class map head and mean square error for the multi-peak
confidence maps, which are generated as in the conventional bottom–up approach.
We note that, unlike the approach recently described in an update to DeepLabCut,
we discard the PAFs in our ID models as they are redundant with the class maps.
During inference, we group body parts via optimal matching of peaks to distinct
classes based on the class map score sampled at the peak location. This bottom–
up classification procedure implicitly groups body parts without requiring a
superfluous skeleton model and an associated graph-parsing procedure.

For top–down ID models, we integrate conventional top–down pose estimation
with simple classification of anchor-centered crops. Anchors are detected
using the same first-stage network to generate locations for cropping. Next, we
modify the centered-instance network to additionally predict class probabilities
for the crop in the same fashion as previously described neural network-based
identity-tracking approaches8. We project features from the deepest layer of the
encoder into a 2D global maximum pooling layer, followed by a stack of three
standard fully connected layers with 256 units and ReLU activations and finally a
softmax layer to normalize the output logits. We train the classification head with
a standard cross-entropy loss and weigh this loss term at a ratio of 0.0001 relative
to the mean squared error term for the confidence maps. During inference, we
aggregate classification probabilities for all crops in a frame and perform optimal
matching between all candidate instances. This matching ensures that there are
not more detections than classes and enforces mutually exclusive class assignments
in addition to providing robustness to uncertainty in classifying individuals by
leveraging probabilities from the others in the frame.

Importantly, we intuited that features from the deepest encoder layer carry
considerably more information for resolving identities despite having poor spatial
resolution. This is a well-known property of deep image-recognition networks
from the extensive work in the image-classification domain in which a decoder
is not typically employed to recover spatial resolution. We also posit this because
confidence maps are a representation that are by construction disentangled from
identity-specific features in favor of learning representations of morphological
features that are invariant to variability in individual appearance. We empirically
observed this behavior when we attempted to train top–down ID models
using the penultimate decoder layer features instead of the deepest encoder layer
features, resulting in extreme training instability and poor performance in both
training targets.

Inference models. During training, SLEAP models are saved with configuration
metadata, and the neural network model architecture and weights are stored
in HDF5-serialized SavedModel format only with the core native layers and
operations in the high-level tf.keras API. This makes SLEAP models portable
and free of external dependencies other than TensorFlow, but they do not include
any custom operations necessary for inference.

During inference, SLEAP’s sleap.load_model() high-level API can
be used to construct an inference model that wraps efficient, TensorFlow–
AutoGraph-optimized38 data-preprocessing and prediction postprocessing
routines (for example, peak finding, refinement and grouping) around the core
model forward pass. Multi-stage models (that is, top–down) are assembled from
individually trained submodels (for example, centroid and centered instance).
Bottom–up model inference including PAF scoring, matching and grouping are
largely reimplemented as GPU-native routines. Both local and global peak-finding
operations as well as subpixel refinement are executed entirely on the GPU, thereby
avoiding the bottleneck from transferring large tensors (that is, confidence maps)
to the CPU. Once assembled, inference models can optionally be serialized as
complete end-to-end SavedModels compatible with subsequent optimization
and quantization using TensorRT. Post-training quantization into half-precision
(FP16) models with TensorRT results in improvements in both inference
throughput and latency but requires additional system configuration, which we
describe in our extended installation instructions at https://sleap.ai.

Accuracy metrics. To estimate the overall multi-animal accuracy, we calculated the
object keypoint similarity (OKS) score, an accuracy metric that takes into account
the uncertainty in landmark localization, visibility and animal scale17. To account
for the uncertainty in landmarks that are difficult to label (such as subcutaneous
landmarks), the OKS calculation uses a per-body part uncertainty factor derived
from the variability across repeated labels of the same images by many individuals.
Here, we set the uncertainty factor in our calculations to be equal to the least
ambiguous human keypoint (eyes). This allowed us to interpret the OKS as a

Nature Methods | www.nature.com/naturemethods

https://sleap.ai
http://www.nature.com/naturemethods

Articles Nature Methods

lower bound for the true accuracy of our models as some animal keypoints are
challenging to locate precisely. We compute the OKS in its standard form:

OKS(X, X̂) =

N
∑

i=1
exp

(

−

∥ Xi − X̂i∥
2
2

2ασ2
i

)

δi(
N

∑

i=1
δi)−1, (6)

where X and X̂ are the ground truth and predicted instance coordinates,
respectively, for an instance with N nodes. δi denotes the visibility, which is 0 if the
node is missing from the ground truth instance. The inner term essentially expresses
the distance from the ground truth coordinate as the posterior of a Gaussian with
two scaling terms: α, the bounding box area occupied by the GT instance, and σi, the
uncertainty factor (set to 0.025 for all measurements, equivalent to the uncertainty
in labeling human eyes). Importantly, note the denominator, which indicates the
count of visible body parts. In the case in which we have fewer body parts, such as
in the ‘mice_hc’ dataset, having even a single missed body part will decrease the
score considerably (for example, 4 ÷ 5 = 0.8) as compared to in the ‘mice_of ’ dataset,
which is labeled with more nodes (for example, 10 ÷ 11 = 0.91).

From the distribution of OKS scores, we derive the mAP as a summary
of accuracy over the entire dataset. We adopt the same procedures as those
employed in the widely used PoseTrack benchmark for human pose tracking39.
Specifically, we compute the overall mAP using the same procedure employed
for the PoseTrack benchmark and widely reported in human pose literature,
a metric originally described in the Pascal visual object classes (VOC)
challenge40. Briefly, mAP computation involves classifying each pairing of
(greedily matched) GT and predicted instance as a true positive (TP) or false
positive (FP) by using the OKS as a cutoff at each of the following thresholds:
{0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95}. Precision at a single threshold
is calculated as TP/(TP + FP), and recall as TP/(TP + FN). All predictions
are sorted by their OKS, and cumulative TPs and FPs are computed for each
prediction, and recall and precision values are calculated from these partial TPs
and FPs, that is, for each pair of GT and predicted instance. Next, a set of 101 recall
thresholds are defined with even spacing from 0 to 1, and the best precision value
for samples that fall below each recall threshold is retrieved from the data, yielding
101 precision values. The average precision is computed by taking the mean over
all 101 precision values, whereas the average recall is defined as the best recall at
the current OKS threshold. This procedure is repeated for all ten OKS thresholds,
and the final mAP and mean average recall are the average of the average precision
and average recall over all thresholds. Although their calculation is nontrivial, the
mAP and mean average recall provide balanced estimates of consistently reliable
precision and recall performance across many certainty thresholds.

For evaluating tracking performance, we leverage the open-source
py-motmetrics (https://github.com/cheind/py-motmetrics) framework for
multi-object-tracking benchmarking41. Here we primarily report on ID switches
because it is the most actionable and relevant measure for practitioners as it
directly quantifies the amount of proofreading labor required after tracking.

Speed benchmarking. To evaluate model speed, we extracted 1,280-frames-long
representative clips from each dataset. For the ‘flies13’ and ‘mice_of ’ datasets,
additional clips were created for videos with different numbers of animals to
evaluate scaling with instance count.

To evaluate model inference performance, we first preloaded both the raw
images for the entire clip and SLEAP-trained saved model weights. For top–down
(centered-instance) models, we used the same dataset-specific centroid model.
After loading, we performed one inference pass through the images to warm up the
GPU and trigger AutoGraph tracing. In real-world scenarios, this warm-up cost is
quickly amortized after the first few batches of data; therefore, we did not consider
the first run in our timing measurements. Next, using the highest-resolution timer
available on the system (PEP 418), we recorded the round-trip inference time, that
is, the time elapsed between when a batch of images are accessed on the CPU to
when results are received from the GPU and copied back to the CPU. This accounts
for not only the model forward pass but also data transfer and other inference
operations so as to reflect real-world performance. We repeated this procedure a
minimum of three times and pooled the batch-wise results across all replicates.

All speed measurements were made on the same machine equipped with an
Intel Core i7-10700K CPU, 64 GB of RAM and a Nvidia Titan RTX (24-GB) GPU
running on Ubuntu 20.04 (64 bit). Unless otherwise noted, throughput (‘offline’)
performance measurements were made with a batch size of 16 and TensorRT
optimization (for top–down models, such as in Fig. 2).

Experiments. Single-animal pose-estimation performance. To evaluate
part-localization performance of each method independently of errors related to
part grouping or identification, we used the ‘fly32’ dataset as it has been previously
used to evaluate the performance of multiple pose-estimation tools. The large
number of body parts, simple imaging conditions and large number of labels make
it useful for establishing baseline performance in the optimal setting.

For DeepLabCut5, we fine tuned a ResNet50 with ImageNet-initialized weights.
See Comparisons with DeepLabCut for more details on our implementation.

For DeepPoseKit7, we used the best DenseNet model trained on this dataset
downloaded from the published repository at https://github.com/jgraving/

DeepPoseKit-Data/blob/0aa5e3f5e8f9df63c48ba2bf491354472daa3e7e/datasets/fly/
best_model_densenet.h5. We ran the native inference procedures in DeepPoseKit
version 0.3.9.

For LEAP6, we trained a slightly modified version of the reference model
described in the original paper, substituting transposed convolutions with bilinear
interpolation for upsampling. We also used a higher-output stride to improve
performance at the cost of confidence map resolution (in the original implementa
tion, an output stride of 1 was used). We compensated for this loss of spatial resolu
tion by using the subpixel-refinement routines that we implemented for SLEAP.

For SLEAP, we trained a UNet-based architecture on ‘fly32’ data. This is similar
to the LEAP network but adds skip connections to recover spatial resolution in the
feature maps of the decoder and uses a fewer number of filters per convolution.

Speed measurements were made as described in Speed benchmarking.
Accuracy was measured using mAP as described in Accuracy metrics.

Multi-animal pose-estimation performance. Multi-animal pose-estimation speed
and accuracy were evaluated as described in the above sections. For speed
measurements in Fig. 2 (as related to batch size and number of animals), we
used TensorRT-optimized versions of the best UNet-based SLEAP model for
each dataset. For non-UNet architectures in subsequent analyses, we used the
standard TensorFlow–AutoGraph inference models without TensorRT for speed
measurements. Except for ‘best-model’-based analyses, we trained a minimum of
three replicates of each model configuration in all experiments. Models that failed
to converge within 200 epochs were excluded from subsequent analyses.

Sample efficiency. To estimate how accurate SLEAP models are when trained using
different numbers of labeled frames, we generated labeled datasets with 5, 10, 20,
50, 100, 200, 300, 400, 500, 750, 1,000 and 1,500 frames sampled randomly from
the training split of the ‘flies13’ and ‘mice_of ’ datasets, which had the largest
number of labels. The remaining held-out splits were kept fixed to ensure that
accuracy was measured on the same test set.

Receptive field size. We evaluated the effectiveness of varying the maximum
theoretical RF20 of our modular UNet network architecture as a mechanism for
imposing an inductive bias toward relevant feature scales in models specialized to
each dataset. We trained network configurations with two to seven downsampling
blocks and adjusted the number of upsampling blocks to maintain a fixed output
stride of 4 to control for spatial resolution of the outputs. We tested both top–down
and bottom–up approaches and report the best of the two for each dataset. We
conducted these experiments with the ‘flies13’, ‘mice_hc’ and ‘bees’ datasets to span
a diversity of imaging conditions and anatomical feature scales.

Transfer learning. As the domain of animal pose estimation lacks large-scale
labeled datasets for every species, imaging and experimental conditions, transfer
learning has been proposed as an approach for reducing the need for labeled data5.
To test this idea in the multi-animal setting, we trained top–down models on the
‘flies13’ dataset using 33 commonly used state-of-the-art network architectures
as the encoder backbone with skip connections to a standard upsampling stack
(bilinear interpolation, two refinement convolutions with 256 filters each,
output stride of 4). Weights for the encoder were initialized either randomly or
using ImageNet-pretrained weights. At least three replicates were trained for
each encoder architecture and weight initialization approach; however, some
architectures failed to converge entirely and were excluded from the analysis,
although this may be addressed with further optimization hyperparameter tuning
such as higher initial learning rates or additional training time. To measure the
inference speed of these models, we applied our speed benchmarking procedure
to a subset of the trained models (MobileNetV1, EfficientNetB0, SEResNet101,
EfficientNetB7, VGG16 and ResNet50). For the remaining models, and to
guide future network architecture configuration, we counted the number of
computations (FLOPS) required to perform a forward pass of one image through
the model and found that this static property of network architectures was highly
correlated with real inference speed (Supplementary Fig. 4c).

Comparisons with DeepLabCut. To precisely implement the TF-Slim (https://
github.com/google-research/tf-slim) version of ResNet used in DeepLabCut, we
set the stride of the deepest convolution block to 1 to retain a higher-resolution
output feature map with a stride of 16 and increased the block’s dilation rate to
compensate for the decreased RF. For upsampling, we used nearly identical decoder
architecture as the reference DeepLabCut implementation by stacking transposed
convolutions with a stride of 2,256 filters and a kernel size of 4, followed by two
regular convolutions for refinement. Their implementation, however, suffers from
a loss of spatial resolution due to the repeated downsampling steps in the encoder;
therefore, to encourage fairness in the comparisons, we added skip connections
from the output of each downsampling block to the equivalently strided block in
the decoder and fused the higher-resolution features through addition.

Our implementation of ResNet50 is more general and enables additional
optimizations over that of DeepLabCut. The biggest architectural feature added
in SLEAP’s version is the ability to use interpolation-based versus transposed
convolution-based upsampling. We evaluated these two approaches on the ‘flies13’

Nature Methods | www.nature.com/naturemethods

https://github.com/cheind/py-motmetrics
https://www.python.org/dev/peps/pep-0418/
https://github.com/jgraving/DeepPoseKit-Data/blob/0aa5e3f5e8f9df63c48ba2bf491354472daa3e7e/datasets/fly/best_model_densenet.h5
https://github.com/jgraving/DeepPoseKit-Data/blob/0aa5e3f5e8f9df63c48ba2bf491354472daa3e7e/datasets/fly/best_model_densenet.h5
https://github.com/jgraving/DeepPoseKit-Data/blob/0aa5e3f5e8f9df63c48ba2bf491354472daa3e7e/datasets/fly/best_model_densenet.h5
https://github.com/google-research/tf-slim
https://github.com/google-research/tf-slim
http://www.nature.com/naturemethods

ArticlesNature Methods

and ‘mice_hc’ datasets and found that, while they achieve comparable accuracy
(Supplementary Fig. 4d), interpolation-based upsampling considerably reduces the
number of computations required.

We further compared both training and inference across ‘flies13’ and ‘mice_of ’
datasets for convenient direct comparison of this implementation of the DLC
ResNet and SLEAP’s UNet (Supplementary Fig. 5). These models use the same
decoder for the ResNet and UNet, which is more compute efficient than the default
DeepLabCut implementation.

Other network architectures used in DeepLabCut include MobileNet and
EfficientNet, which we evaluated (in addition to dozens of others) in our transfer
learning experiments.

The only other important difference between DeepLabCut and SLEAP’s
low-level mechanics relates to subpixel localization of landmarks. DeepLabCut uses
learnable refinement offset maps to regress more precise spatial coordinates than
those afforded by their lower-resolution confidence maps. While SLEAP supports
this functionality, we opted for an approach based on integral regression35 (see Part
localization for details). We made this decision as integral regression is extremely
fast at inference time and requires no additional loss term or costly optimization of
an additional output target, thereby speeding up training and decreasing instability
inherent in multi-task learning.

Closed-loop control. Our closed-loop control system was built on a custom-
fabricated behavioral monitoring chamber described earlier for the ‘flies13’ and
‘flies17’ datasets. For analog generation and acquisition, computers were equipped
with a PCIe-6353 X Series DAQ board (National Instruments) interfaced with a
BNC-2111 shielded connector block (National Instruments).

Custom experiment scripts for Motif software (version 0.1.9) were used
for acquisition and GPU-accelerated compression and real-time streaming
(Loopbio). Cameras were configured to trigger a 5-ms exposure at 150 FPS with
1,024 × 1,024-pixel frames, and videos were encoded with the ’superfast’ preset of
the libx264 codec to ensure seekability.

For real-time control, custom scripts were written to query the image stream
published by Motif during acquisition and perform online inference. SLEAP
models were loaded and generated predictions on the latest image received from
the camera in a separate thread from the acquisition and output generation. Using
the detected poses, we classified whether the male was in an ‘approach’ pose based
on the following criteria:

(min_dist < 2mm) and (|ang _f_rel_m| < 25◦) and (|ang _m_rel_ f| > 145◦),

where min_dist is the distance between the male’s head and the female’s abdomen
tip, ang_f_rel_m is the angular location of the female thorax relative to the male’s
heading and ang_m_rel_f is the angular location of the male thorax relative to the
female’s heading. Together, these criteria will elicit a trigger condition when the
male is behind the female, facing the female and within close proximity.

These criteria are evaluated in a separate thread every 25 ms, after which a
25-ms constant pulse of stimulation is output to the DAQ if the trigger condition
was met or no stimulation voltage if it was not. These analog output signals
were used to drive an array of 650-nm Luxeon Star LEDs to deliver optogenetic
stimulation to the female. LEDs were positioned to achieve stimulation of roughly
100 μW mm−2.

For calibration experiments, we instead output the distance between the thorax
of the male and female, scaled to 1.0–5.0 V and read back in through a loopback
connection to an analog input on the same DAQ. These signals were then scaled
back to physical units and aligned to offline tracking to estimate the system latency
by using dynamic time warping on non-overlapping 1-s segments across the entire
session.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
We provide all model weights, training logs, configuration files and evaluation
metrics for over 300 models (more than 90 GB) used in this paper in the associated
repository28. An overview of the datasets is provided in Supplementary Table 1. Best
models for each dataset are summarized in Supplementary Table 2. Full metadata
for each dataset are provided in Supplementary Table 4. All model metadata are
provided in Supplementary Table 5, including which figures they are associated
with. Source data are provided with this paper.

Code availability
Our software is freely available as open-source software at https://github.com/
murthylab/sleap. It can be installed via standard Python package repositories:
conda install -c sleap -c conda-forge -c nvidia sleap or
pip install sleap. Documentation, guides, notebooks, tutorials and more are
available on the main website at https://sleap.ai. SLEAP is licensed under a modified
BSD-3 license, which permits unrestricted usage for non-commercial applications. To
ensure reproducibility of the analyses presented in all figures of this paper, we provide
code to generate all non-schematic figure panels as a Code Ocean capsule.

References
	28.	Pereira, T. D. et al. SLEAP Datasets and Models https://doi.org/10.17605/OSF.

IO/36HAR (2021).
	29.	Berman, G. J., Choi, D. M., Bialek, W. & Shaevitz, J. W. Mapping the

stereotyped behaviour of freely moving fruit flies. JR Soc. Interface 11,
20140672 (2014).

	30.	Wilkinson, M. D. et al. The FAIR guiding principles for scientific data
management and stewardship. Sci. Data 3, 160018 (2016).

	31.	Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. L.
Semantic image segmentation with deep convolutional nets and fully
connected CRFs. Preprint at https://arxiv.org/abs/1412.7062 (2014).

	32.	Badrinarayanan, V., Kendall, A. & Cipolla, R. SegNet: a deep convolutional
encoder–decoder architecture for image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 39, 2481–2495 (2017).

	33.	Murray, D. G., Simsa, J., Klimovic, A. & Indyk, I. tf.data: a machine learning
data processing framework. Preprint at https://arxiv.org/abs/2101.12127 (2021).

	34.	Wei, S.-E., Ramakrishna, V., Kanade, T. & Sheikh, Y. Convolutional pose
machines. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition 4724–4732 (CVF, 2016).

	35.	Nibali, A., He, Z., Morgan, S. & Prendergast, L. Numerical coordinate
regression with convolutional neural networks. Preprint at https://arxiv.org/
abs/1801.07372 (2018).

	36.	Karp, R. M. Reducibility among Combinatorial Problems (Springer, 1972).
	37.	Farnebäck, G. Two-frame motion estimation based on polynomial expansion.

In Image Analysis 363–370 (Springer, 2003).
	38.	Moldovan, D. et al. AutoGraph: imperative-style coding with graph-based

performance. Preprint at https://arxiv.org/abs/1810.08061 (2018).
	39.	Andriluka, M. et al. PoseTrack: a benchmark for human pose estimation and

tracking. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition 5167–5176 (CVF, 2018).

	40.	Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J. & Zisserman, A.
The PASCAL visual object classes (VOC) challenge. Int. J. Comput. Vis. 88,
303–338 (2010).

	41.	Ristani, E., Solera, F., Zou, R. S., Cucchiara, R. & Tomasi, C. Performance
measures and a data set for multi-target, multi-camera tracking. In European
Conference on Computer Vision 17–35 (Springer, 2016).

Acknowledgements
T.D.P. is supported by the NSF GRFP (DGE-1148900) and a Princeton Porter Ogden
Jacobus fellowship. A.L.F. is funded by NIMH R00 MH109674, DP2 MH126375, a Brain
and Behavior Research Foundation award and an Alfred P. Sloan fellowship. Z.Y.W. and
S.D.K. are supported by the Princeton Catalysis Initiative. S.D.K. is supported by NIH
New Innovator DP2 GM137424-01 and NSF DEB 1754476. D.H.S. is supported by NIH
NIDCD R01 DC011284. M.M. and J.W.S. are supported by the NIH BRAIN Initiative (R01
NS104899), an NSF Physics Frontier Center grant (NSF PHY-1734030) and a Princeton IP
Accelerator award. M.M. is also supported by an HHMI Faculty Scholar award and an NIH
NINDS R35 research program award. We extend a special thanks to all SLEAP beta testers
who graciously devoted time and effort to helping us develop the software framework early
on and all users who have reported issues and identified bugs since SLEAP was released
publicly. We thank B. Cowley and S. Bergeler for comments on the manuscript.

Author contributions
Fly data were collected, labeled and analyzed by J.L., S.R., E.N., D.S.D., T.D.P. and M.M.
Gerbil data were collected and labeled by C.C.M., M.D.C. and D.H.S. Mouse data (home
cage) were collected and labeled by E.S.P., M.M. and A.L.F. Mouse data (open field) were
collected and labeled by J.D’U., M.K., J.W.S. and S.S.-H.W. Bee data were collected and
labeled by Z.Y.W., G.C.M.-S., J.W.S. and S.D.K. Software engineering was performed by
T.D.P., N.T., A.M. and D.M.T. Analysis and generation of figures was performed by T.D.P.
Writing was carried out by T.D.P., J.W.S. and M.M. Conceptualization was undertaken by
T.D.P., J.W.S. and M.M.

Competing interests
A pending patent application (US application 17/282,818) was filed on 5 April 2021 by
Princeton University on behalf of the inventors (T.D.P., J.W.S. and M.M.) on the system
described here for multi-animal pose tracking. The remaining authors declare no
competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41592-022-01426-1.

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41592-022-01426-1.

Correspondence and requests for materials should be addressed to Mala Murthy.

Peer review information Nature Methods thanks Eric Yttri and the other, anonymous,
reviewer(s) for their contribution to the peer review of this work. Primary Handling
Editor: Nina Vogt, in collaboration with the Nature Methods team.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Methods | www.nature.com/naturemethods

https://github.com/murthylab/sleap
https://github.com/murthylab/sleap
https://sleap.ai
https://doi.org/10.17605/OSF.IO/36HAR
https://doi.org/10.17605/OSF.IO/36HAR
https://arxiv.org/abs/1412.7062
https://arxiv.org/abs/2101.12127
https://arxiv.org/abs/1801.07372
https://arxiv.org/abs/1801.07372
https://arxiv.org/abs/1810.08061
https://doi.org/10.1038/s41592-022-01426-1
https://doi.org/10.1038/s41592-022-01426-1
http://www.nature.com/reprints
http://www.nature.com/naturemethods

Articles Nature Methods

Extended Data Fig. 1 | Datasets. a, Single fly prealigned. b, Flies in 3D printed acoustic recording chamber. c, Bees in a behavioral chamber with
honeycomb flooring. d, Mice in a home cage imaged from above. e, Mice in an open field chamber imaged from below. f, Gerbils in long-term monitoring
home cage.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

ArticlesNature Methods

Extended Data Fig. 2 | SLEAP labeling workflow. a, Schematic of the SLEAP labeling workflow, from raw data to tracked videos. b, Screenshot of
interactive SLEAP labeling interface. This interface can also be used for inspection and proofreading.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

Articles Nature Methods

Extended Data Fig. 3 | Troubleshooting workflows. a, Schematics of starting stage workflows. Before the first training round, it is important to select the
appropriate model type and adjust basic training parameters as needed. b, Schematics of early stage workflows. Poor performance is expected with few
labeled frames, but certain types of errors may be mitigated by adjusting basic model parameters, such as receptive field size. c, Schematics of late stage
workflows. Fine tuning performance once enough frames are labeled may be accomplished by trading off speed for accuracy, such as by increasing the
resolution of the model features.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

ArticlesNature Methods

Extended Data Fig. 4 | Receptive field sizes. a, Receptive field sizes overlaid on example frame from flies dataset. b, Receptive field sizes overlaid on
example frame from mice dataset. c, Receptive field sizes overlaid on example frame from bees dataset.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

Articles Nature Methods

Extended Data Fig. 5 | Pretrained encoder backbone models. a, Transfer learning performance across all tested pretrained encoder model architectures.
Accuracy evaluated on held-out test set of flies dataset using the top-down approach (n = 2-5 models per architecture and condition; 125 total models).
b, Speed versus accuracy trade-off across all tested pretrained encoder model architectures as compared to optimal UNet. Accuracy evaluated on held-out
test set of flies dataset using the top-down approach. Model floating point operations (GFLOPS) derived directly from configured architectures (n = 2-5
models per architecture and condition; 68 total models). c, Relationship between inference speed and computations. Points correspond to speed of the
best model replicate for each architecture. Line and shaded area denotes linear fit and 95% confidence interval. d, Accuracy of our implementation of DLC
ResNet50 with different decoder architectures. Points denote model training replicates (n = 3-5 models per condition; 30 total models).

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

ArticlesNature Methods

Extended Data Fig. 6 | SLEAP UNet versus DeepLabCut ResNet performance for multi-animal pose estimation. a, Relative accuracy as a function of
training time for flies and mice (OF) datasets. Accuracy evaluated on a held-out test set by using model checkpoints saved at every epoch (checkpointing
time not included). Accuracy is normalized to the maximum accuracy (mAP) achieved over all epochs. b, Summary of training efficiency across different
model types and datasets. Time is the minimum training time from (a) required to reach 90% peak accuracy. c, Speed versus accuracy trade-off of using
SLEAP UNet versus DLC ResNet models for multi-instance pose estimation. Points denote benchmark replicates and lines connect means per condition.
DLC ResNet in all panels refers to an implementation of a ResNet50-based architecture configured to mimic the default configuration in DeepLabCut.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

	SLEAP: A deep learning system for multi-animal pose tracking

	Results

	SLEAP is a complete framework for multi-animal pose tracking.
	Fast, efficient and accurate animal pose estimation.
	Flexible approaches to multi-instance pose estimation.
	Flexible configuration of neural network architectures.
	Tracking identities via temporal and appearance models.
	Detection and control of behavior in real time.

	Discussion

	Online content

	Fig. 1 SLEAP is a general-purpose multi-animal pose-tracking system.
	Fig. 2 SLEAP is fast, efficient and accurate.
	Fig. 3 Multi-animal pose-estimation approaches in SLEAP.
	Fig. 4 Neural network architectures are highly configurable in SLEAP.
	Fig. 5 Tracking and identification using temporal and appearance models in SLEAP.
	Fig. 6 SLEAP can detect social behavior for real-time control.
	Extended Data Fig. 1 Datasets.
	Extended Data Fig. 2 SLEAP labeling workflow.
	Extended Data Fig. 3 Troubleshooting workflows.
	Extended Data Fig. 4 Receptive field sizes.
	Extended Data Fig. 5 Pretrained encoder backbone models.
	Extended Data Fig. 6 SLEAP UNet versus DeepLabCut ResNet performance for multi-animal pose estimation.

