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Abstract

Mixed models are commonly used to analyze stepped wedge trials (SWTs) to account for 

clustering and repeated measures on clusters. One critical issue researchers face is whether 

to include a random time effect or a random treatment effect. When the wrong model is 

chosen, inference on the treatment effect may be invalid. We explore asymptotic and finite-

sample convergence of variance component estimates when the model is misspecified and how 

misspecification affects the estimated variance of the treatment effect. For asymptotic results, 

we rely on analytical solutions rather than simulation studies, which allows us to succinctly 

describe the convergence of misspecified estimates, even though there are multiple roots for each 

misspecified model. We found that both direction and magnitude of the bias associated with 

model-based standard errors depends on the study design and magnitude of the true variance 

components. We identify some scenarios in which choosing the wrong random effect has a large 

impact on model-based inference. However, many trends depend on trial design and assumptions 

about the true correlation structure, so we provide tools for researchers to investigate specific 

scenarios of interest. We use data from a SWT on disinvesting from weekend services in hospital 

wards to demonstrate how these results can be applied as a sensitivity analysis, which quantifies 

the impact of misspecification under a variety of settings and directly compares the potential 

consequences of different modeling choices. Our results will provide guidance for pre-specified 

model choices and supplement sensitivity analyses to inform confidence in the validity of results.
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1. Introduction

Stepped wedge trials (SWTs) are a type of cluster randomized trial that have been growing 

in application.1 In a typical SWT, all clusters begin in the control state at baseline, and at 

every subsequent time point some of the clusters cross over until all clusters have received 

treatment. A group of clusters that adhere to the same unique pattern of crossing over is 
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called a sequence or wave. Cross-over times are pre-specified for each sequence and clusters 

are typically randomized into sequences. See Hughes, Granston, and Heagerty2 for a more 

thorough introduction to SWTs.

One of the most common tools used for the analysis of SWTs is a mixed model.1 The 

overall treatment impact is represented by a fixed effect, and because time and treatment 

are confounded in SWTs it is critical to also include a fixed effect for time.3 The unique 

SWT structure gives rise to three natural choices for random effects: random intercept 

effects (sometimes called random cluster effects since each cluster is allowed a unique 

intercept), random time effects, and random treatment effects. Random intercept effects 

have been recommended as the most fundamental random effect by Hussey and Hughes.3 

Other authors have also recommended adding random time effects4 and/or random treatment 

effects5 in addition to the random intercept effects. Most researchers using a mixed model 

for a SWT choose a model somewhere between the “full model” (random intercept, time, 

and treatment effects) and the random intercepts only model. SWTs that follow cohorts 

of individuals or that have more than two levels (e.g. subjects are grouped into schools, 

schools are grouped into school districts) may have additional random effects, but we do 

not address these designs here. Misspecification of the mean model via fixed effects is also 

an important topic, but in this manuscript we focus on potential misspecification of the 

covariance structure via the choice of random effects.

There has been ample research on the impacts of over-fitting and under-fitting random 

effects in mixed models. Choosing the full model may be inefficient but this strategy ensures 

that inference on the treatment effect is valid.6 Researchers who choose a random intercepts 

only model when there are actually additional random effects risk invalid inference on the 

treatment effect.6 As a result, some scientists advise erring in the direction of including 

potentially unnecessary random effects.6

Unfortunately, it is not always possible or practical to fit the full model. If a SWT has a 

limited number of clusters, a researcher might be hesitant to specify such a complex model 

given limited replication across clusters. Even when a SWT has a large number of clusters, 

sometimes mixed model software will fit variance components as exactly zero, effectively 

simplifying the model’s covariance structure; in this case, it may be unclear whether fitted 

values are actually the maximum likelihood estimators (MLEs) or are the result of algorithm 

convergence issues that may be associated with multiple roots. Alternatively, software might 

fit non-zero variance components but encounter other convergence issues, and the researcher 

might decide to remove a random effect to improve convergence. This decision to reduce 

the model is equivalent to a partially data-driven model selection procedure, which may not 

be desirable or appropriate. Some of these issues with model fit can be mitigated without 

removing components from the model, e.g. using strategies presented by Cheng et al.7 

However, if the full model is an over-parameterization, this can cause convergence issues 

which cannot be mitigated without removing terms from the model. Therefore, choice of 

a primary pre-specified model is often challenging and driven by both desire for insurance 

of broad potential validity (favoring more complex models) and desire for stable estimation 

properties (favoring more simple models).
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A researcher selecting a reduced random effects model must decide which component 

is the least important. In a SWT, the random intercept effects are the highest level of 

correlation, so we do not want to remove those from the model; instead, we may choose 

to remove either time or treatment random effects. Unfortunately, practical guidance on 

model choice and robustness is not readily available in the current literature. Other papers 

have examined the impact of excluding nested random effects,8 but time and treatment 

random effects are not nested in SWTs, so it is not immediately apparent which one 

might be less detrimental to exclude. Thompson et al.4 used simulation studies to examine 

misspecification of random effects in a specific SWT design. They found that including a 

random time effect can account for some variation coming from a random treatment effect 

(and vice versa), although a model with random time effects was more robust than a model 

with random treatment effects. However, these simulations only covered binary outcomes in 

a cohort SWT with an unusual design: three sequences observed over only two time points, 

where one sequence remains exclusively on control, one crosses over, and the last receives 

treatment at both time points. It is unknown whether the observations from these simulations 

hold for more general SWT designs.

Although researchers who are interested in a very specific and simple case may find it 

feasible to explore model misspecification via simulations, there are some issues which 

make simulation studies unattractive. First, they are very time-consuming, particularly if a 

study has many clusters or complex random effects. Second, issues with model fit make 

it difficult to reflect real-life research decisions in automated simulations. For example, 

Thompson et al.4 excluded simulations where the model failed to converge. Depending on 

the settings, this resulted in up to 33% of simulations being excluded from the results, 

potentially biasing conclusions. Last, reliance on simulations may conceal crucial details. 

For example, if there are multiple asymptotic solutions it may be very difficult to detect that 

with simulations. For these reasons, we avoid simulations and rely instead on closed-form 

solutions whenever possible. This enables one to quickly and accurately examine a vast 

range of settings and reveals some complexities which would be difficult to discern through 

simulations.

As a motivating example, we consider a study reported by Haines et al.9 that investigated the 

impact of removing weekend health services (or ‘disinvesting’) from 12 hospital wards in 

Australia. The original investigators did not report the use of any random time or treatment 

effects, yet we know that using an over-simplified covariance structure could impact the 

validity of their conclusions. A complex random effects model would be an ambitious choice 

given the limited number of clusters. Therefore, we use this concrete example to illustrate 

the practical issues around selection of alternative covariance models and in this case study 

we evaluate how that choice may affect inference.

The layout of the paper is as follows: in Section 2, we describe the models and notation. 

In Section 3, we examine the convergence of the misspecified parameters. In Section 4, we 

calculate and visualize the asymptotic impact of misspecification on the treatment effect 

variance. To demonstrate how our results might be used in practice, we apply this research to 

the disinvestment example in Section 5. Finally, a brief discussion is given in Section 6.
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2. Notation and models

2.1 The SWT design

In this paper, we consider SWT designs with M unique treatment sequences, each observed 

over J time points. We assume that each sequence contains N clusters, and each cluster 

contains K individuals at each point in time. We assume that each individual is observed 

only once; that is, a cross-sectional design as opposed to a cohort design. For each 

sequence, we denote Tm as the number of time points during which sequence m is receiving 

treatment. Throughout, m = 1 corresponds to the sequence that crosses over first, and m 
= M corresponds to the last sequence to cross over. Figure 1 shows an example of a 

‘classic’ SWT design; that is, every cluster starts on control and ends on treatment, and one 

sequence crosses over at each time point. In this example, there are M=4 sequences, J=5 

time points, N=6 clusters per sequence, and T1=4, T2=3, T3=2, and T4=1. In non-classic 

designs, modifications might include: extra time on treatment or control; some sequences 

never receiving treatment or control; or extra time points between transitions. Another 

common modification to the classic design is to vary the number of clusters per sequence or 

individuals per cluster; however, these generalizations of N and K are not addressed in this 

paper. Note that classic designs can be fully described by just M, N, and K, since J=M+1 

and T1,…, TM = M,…, 1.

2.2 The model

Let Yijk denote the response recorded for individual k from cluster i at time j, where k = 

1,…, K, j = 1,…, J, and i = 1,…, M * N. Also, let Xij have a value of one if cluster i is 

assigned to treatment at time j, and zero otherwise. Define the JK-by-1 vector of outcomes 

from cluster i as Yi = (Yi11, Yi12, …, YiJK)T. Then, for a Normal outcome and identity link, 

the mixed model can be written as

Y i = XiΦ + Ziai + ϵi (1)

where Xi is the design matrix for the fixed effects, Φ is the vector of fixed effect coefficients, 

Zi is the design matrix for the random effects, ai is the vector of random effects, and ϵi is 

the residual variance. We assume the JK-by-1 vector ϵi has a MVN (0, σ2IJK) distribution, 

where IJK represents an identity matrix of dimension JK. Throughout, we assume that ϵi and 

ai are independent. We also assume that ai ~ MVN(0, G), where Zi, ai, and G all depend on 

which random effects model we select. See below for details.

Although some results hold regardless of the mean model specification, we will primarily be 

considering fixed effects for just treatment and time, and modeling time as linear. Thus, the 

fixed effect component for Yijk is μ + (j − 1) * β + θ * Xij, where μ is an intercept, β is the 

time slope, and θ is the treatment effect. Then we can write Φ = (μ, β, θ)T, and Xi is JK-by-3 

with rows (1, j – 1, Xij).

Let α be the vector of all parameters in this model, including Φ, σ2, and any parameters 

contained in G.
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2.2.1 The random time effect model—In the random time effect model, ai = (ui, wi1, 

…, wiJ)T, where ui is the random intercept effect and wij is the random time effect, treating 

time as categorical for maximum flexibility. Note that frequently both the fixed and random 

time effects are categorical, but using the simplified linear fixed time effects allows us to 

compare designs with different numbers of time points while holding fixed effects constant. 

The covariance matrix of the random effects is G = diag(τ2, γ2, …, γ2), a diagonal matrix 

with dimension J+1. Note that this forces the strong assumption that the random intercept 

and random time effects are all independent. This is sometimes called a nested exchangeable 

correlation structure. Allowing random time effects to be correlated may be more realistic 

in some scenarios, but we leave that extension for future work. Zi is a JK-by-(J+1) matrix 

arranged so that the random effects component of Yijk is ui + wij.

In cluster trials, the intra-cluster correlation (ICC) is frequently used to summarize the 

dependence between observations within the same cluster.10 Note that, in this model, the 

ICC is τ2 + γ2
σ2 + τ2 + γ2 , which represents a ratio of the between-cluster and total variance.

2.2.2 The random treatment effect model—In the random treatment effect model, 

ai = (ui, vi)T, where ui is the random intercept effect and vi is the random treatment effect. 

The covariance matrix of the random effects is G = diag(τ2, η2), a diagonal matrix with 

dimension two. Note that this forces the strong assumption that the random intercept and 

random treatment effects are independent. Sometimes random intercept and treatment effects 

are allowed to be correlated,5 which involves an additional parameter. Although a correlation 

between random effects may be important in some studies, in this paper we make the 

simplifying assumption of independence for tractability and interpretability of results. Zi is a 

JK-by-2 matrix arranged so that the random effects component of Yijk is ui + Xijvi.

In this model, ICC is not well-defined because clusters have different correlations while on 

control and treatment. For convenience, we will define the average cluster correlation (ACC) 

as 
τ2 + 1

JM ∑m = 1
M Tm η2

σ2 + τ2 + 1
JM ∑m = 1

M Tm η2
, which represents a ratio of the average of the between-cluster 

and total variances when Xij = 0 and Xij = 1, weighted by the proportion of cluster-time 

spent on treatment. For a classic design where there are an equal number of cluster-periods 

on and off treatment, the expression simplifies to ACC = τ2 + η2/2
σ2 + τ2 + η2/2

. For convenience, we 

will use ACC to refer collectively to ACC in the random treatment effect model and ICC in 

the random time effect model. Note that in a random time effect model, since correlation is 

constant over all clusters and time points, calculating an ACC in an analogous way produces 

the ICC.

2.3 The misspecified models

We are considering two primary cases. In the first case, the researcher chooses the random 

time effect model, but the true model is actually the random treatment effect model. We call 

this the ‘time-fitted random treatment’ case. In the second case, the researcher chooses the 

random treatment effect model, but the true model is actually the random time effect model. 
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We call this the ‘treatment-fitted random time’ case. Table 1 shows what parameters are fit 

in each model, and the true parameter values. Throughout, the ‘t’ subscript denotes a true 

parameter value.

3. Convergence of misspecified parameters

The maximum likelihood estimator of the parameters in the misspecified model (vector α, 

where components depend on the case in question; see Table 1) converges to the value α* 

that satisfies

lim
N ∞

Eαt ∑i = 1
MN ∂

∂α logpα Y i Xi α* = 0 (2)

where αt represents the true values of the (correctly specified) parameters and pα (Yi|Xi) is 

the marginal (misspecified) likelihood for cluster i.11 Note that under the model described 

above, pα (Yi|Xi) is the same for every cluster within the same sequence, and we assumed 

that each sequence has the same number of clusters N, so using Ym to represent an arbitrary 

Yi from sequence m we can reduce this equation to:

Eαt ∑m = 1
M ∂

∂α logpα Y m Xm α* = 0 (3)

Thus, the values the misspecified parameters converge to do not depend on the number 

of clusters per sequence. However, these values can be written as a function of the true 

parameters (αt) and elements of the SWT design (e.g. M, J, K). Unfortunately, this system is 

not restricted to a single, unique root. Finding the roots of this system of equations allows us 

to determine what the misspecified parameters may converge to, which enables us to assess 

the variance of the treatment effect estimate under a variety of scenarios when the number of 

clusters N is sufficiently large (see Section 4).

The roots for both misspecification cases are presented below; see supplemental materials 

for derivation of the system of equations. Because we are using a linear link and only 

the random effects are misspecified, the fixed effects are unbiased and consistent.6 Note 

that these roots are valid for any reasonable set of fixed effects, e.g. using categorical 

time adjustment in the mean model instead of linear. For solving the system of estimating 

equations, some steps were done using Mathematica, version 12.12

For the time-fitted random treatment case, closed-form solutions could be found for all the 

roots of Equation 3. We found four different roots which were real and non-negative (see 

Table 2). Note that these roots all have the same total variance (i.e. the denominator of the 

ACC), and each root is a linear combination of the true variance components. The total 

variance σt2 + τt2 + 1
JM ∑m = 1

M Tm ηt2 is an average between the total variance under control 

and the total variance under treatment, weighted by how many cluster-periods were on 

treatment vs control.
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For the treatment-fitted random time case, two of the roots (Roots 3 and 4) are analogous to 

the roots from the time-fitted random treatment case and can be written in closed-form (see 

Table 2). However, we were not able to obtain closed-form solutions to the other roots (see 

supplemental files). From numerical solutions, it appears that there are two other roots, one 

with τ2* = 0 (Root 2) and one with all components non-zero (Root 1). The components of 

these two roots are more complicated than the ones from the time-fitted random treatment 

case. Although Roots 3 and 4 have the same total variance of σt2 + τt2 + γt2, it is difficult to 

detect a pattern in the total variance or average total variance of the numerical solutions to 

Root 1.

In both cases, Root 1 is the most appealing because it does not reduce the desired fitted 

model and does not have boundary issues like the roots where some components are exactly 

zero. Roots 2 and 4 are associated with models most scientists would find unsatisfying for 

an SWT, since they exclude random intercept effects. Root 3 corresponds to a reduced model 

with only random intercept effects. Although this is a common model used for SWTs, we 

are considering a scenario where the scientist was originally interested in fitting the richer 

model so presumably Root 1 would be preferable over Root 3. Based on the abundance 

of sophisticated model fitting options, we hope that a researcher would rarely be forced to 

settle for Root 3. In fact, simulations (see Appendix A and Figure A1) show that Root 3 is 

relatively uncommon even when default fitting procedures are used, especially in scenarios 

where the study design is large enough to appeal to asymptotics; in those cases, Root 1 is by 

far the most common.

Because of the appeal and prevalence of Root 1, we will focus the rest of the discussion on 

this root and refer to it as the unreduced root since all components are nonzero. Researchers 

interested in other roots may modify the code provided (see supplemental files) to obtain 

results specific to their design and settings.

4. Impact on treatment effect variance

4.1 Calculating variance

For inference on the estimated treatment effect, we are interested in the variance of the 

estimated fixed effects Φ. A simple and wide-spread practice is to use the model-based 

variance.6 However, the true variance of Φ is given by the sandwich-based standard error 

form, which reduces to the model-based variance when the model is correct.13 Some 

researchers prefer to use sandwich-based standard errors when there is a sufficiently 

large number of clusters, since they are consistent regardless of whether the random 

effects are misspecified.14 In scenarios where use of a sandwich estimator is appropriate, 

large differences between the model-based and sandwich estimators can indicate model 

misspecification.15 Throughout, we assume that N is large so that we can rely on asymptotic 

results on parameter convergence.

For a model with fitted covariance matrices of Σ(α)i = cov(Yi) for clusters i = 1, …, MN, 

the model-based variance estimate is cov Φ ≈ ∑i = 1
MN Xi

TΣ(α)i−1Xi
−1

. Since we assumed 

every sequence has N clusters and clusters within a sequence all have the same Xi and Zi, 
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we can rewrite this as a sum over sequences: cov Φ ≈ N∑m = 1
M Xm

TΣ(α)m−1Xm
−1

. Note that 

this is only possible because the fixed effects in this model do not include any additional 

cluster-level covariates. That is, all clusters within a sequence have a common mean design 

matrix.

We will use varm θ t  to denote the model-based variance of the estimated treatment effect 

from the correctly specified model. That is, the covariance matrices are correctly specified 

and contain the true parameter values.

We will use varm θ  for the model-based variance of the estimated treatment effect from the 

misspecified model. This involves the limit of the covariance matrices from the misspecified 

model, which are functions of the true parameter values. For example, in the treatment-fitted 

random time case, G will be a 2-by-2 diagonal matrix but instead of plugging in τ2 and η2, 

we will plug in the roots τ2* and η2*, which are functions of the true parameters σt2, τt2, and 

γt2 (see Table 2).

We will use vars θ  to denote the true variance of the estimated treatment effect from 

the misspecified model (‘s’ for sandwich-form, as opposed to ‘m’ for model-based). In 

the misspecified model the true variance has a sandwich form cov Φ = A−1BA−1, where 

A = N∑m = 1
M Xm

TΣ(α)m−1Xm (see above), and B = N∑m = 1
M Xm

TΣ(α)m−1Σ(αt)mΣ(α)m−1Xm. Since 

the model is misspecified, we use the limit of the covariance matrices again for Σ(α)m, and 

the true covariance matrices for Σ(αt)m. Note that if the model is correctly specified, this 

expression simplifies and vars θ = varm θ t .

4.2 Ratios of variances

Note that in both the model-based and sandwich-form variance estimators, the only place N 

appears is as a multiplier of 1
N  of the whole term, so the ratio of any two of these variances 

does not depend on N. That is, the multiplicative error of the misspecified model-based 

variance estimate is constant regardless of the number of clusters per sequence. Because it 

simplifies discussion of design choice, we will focus on multiplicative differences between 

variance estimates.

To examine the validity of misspecified model-based variances, we will use varm θ /vars θ . 

If this ratio is greater than one, it means that using varm θ  would result in conservative 

inference. If this ratio is less than one, using varm θ  is anti-conservative.

To examine how much efficiency is lost by choosing the incorrect model, we will use 

varm θ t /vars θ . Values much smaller than one indicate large losses of efficiency. In 

situations where it is appropriate to apply the sandwich-form estimator, we would expect 

this ratio to never be above one.
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4.3 Results

Plots and calculations were done with R, version 3.6.1.16

We focus on classic designs for simplicity, since they can be completely described by only 

M and K. Recall that the validity and efficiency ratios do not depend on N, so these results 

hold for any number of clusters per sequence.

In the time-fitted random treatment case, we found that the misspecified model-based 

variance varm θ  was conservative for some designs, and anti-conservative for others 

(Figures 2, 3). The validity moved further from one as the number of observations per 

cluster-period (K) increased. For the time-fitted random treatment case, the trends in validity 

are dramatically different for a design with two sequences versus a design with more than 

two sequences, so we address these two scenarios separately.

For a design with two sequences in the time-fitted random treatment case, varm θ  was 

conservative for all the scenarios examined here. The validity was worse with high ACC, but 

trends related to the relative size of random intercept effects vs. treatment random effects 

were unintuitive and dependent on the ACC (Figure 3).

For designs with more than two sequences in the time-fitted random treatment case, varm θ
was anti-conservative for all the scenarios examined here, and would therefore lead to 

inflated Type I error. In the scenarios we examined, varm θ  was the worst for: larger number 

of sequences; higher ACC; and larger contribution of ηt2 to the average between-cluster 

variance (Figures 2, 3).

For the treatment-fitted random time case, we found that the misspecified model under-

estimated the variance of the treatment effect in all the scenarios we examined (Figures 2, 

3). The validity moved further from one as the number of observations per cluster-period 

(K) increased. For the treatment-fitted random time case, validity of varm θ  was worst for: 

smaller number of sequences; higher ACC; and larger contribution of γt2 to the average 

between-cluster variance.

In both cases, for the scenarios examined in Figure 2 (classic designs with 2 ≤ M ≤ 7, K 

≤ 200, and σt2 = 5, τt2 = 0.1, ηt2 = 0.1 or γt2 = 0.05 so ACC=0.03), the loss of efficiency from 

using the misspecified model with a robust variance was not more than 5% (Figure A2). 

Also, in both cases efficiency worsens as K increases. For an ACC of 0.03, loss of efficiency 

is not very significant; however, in some scenarios efficiency can be impacted dramatically 

(Figure 4). For the time-fitted random treatment case, efficiency is worse for higher ACC 

and larger ηt2 when there were two or three sequences. For the six-sequence design, these 

trends only hold for some ranges of ACC and/or ηt2. For the treatment-fitted random time 

case, efficiency is worse for higher ACC and larger γt2.
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The relative loss of efficiency for the two cases depends on the study design and values of 

the true variance components. However, in the scenarios considered here the treatment-fitted 

random time case had the largest potential losses in efficiency (Figure 4).

For non-classic designs, it is very difficult to predict trends in validity, and even (for 

the time-fitted random treatment case) whether the misspecified model is conservative or 

anti-conservative (see Appendix B). For some non-classic designs, whether the misspecified 

model is conservative or anti-conservative even depends on the ACC (Figure A3). 

Researchers wondering about a specific design can use the roots in Table 2 (or system 

of equations in the supplemental files, for the treatment-fitted random time case Roots 1 

and 2) to calculate validity and efficiency for their exact design. These roots hold for many 

non-classic designs but do rely on the assumption that the number of clusters per sequence 

and number of observations per cluster-period are constant.

These results have demonstrated some broad trends in validity and efficiency and have 

shown that the impact of misspecification can be very severe. Although we examined only 

classic designs here, it is clear that the precise design of a SWT plays a key role in how 

misspecification affects inference. For this reason, it is important for researchers to examine 

these effects for their specific SWT design. See supplemental files for R code which can 

be used to perform these calculations, which can be easily adapted for most SWT designs, 

alternative roots, and other ways of modeling time. Other fixed effects can also be included, 

although consideration must be given to the asymptotic nature of these results.

5. Example

We will use a study reported by Haines et al.9 as an example of how these results might 

be used. Researchers conducted a SWT in two metropolitan teaching hospitals in Australia. 

The study involved 14,834 patients clustered into 12 hospital wards. Researchers were 

interested in the effect of removing weekend allied health services from wards, which 

included physical therapy, social work, and other patient services. Researchers listed several 

outcomes of interest, but for the purposes of this example we will focus on log-transformed 

length of stay in days. Start times at the two hospitals were slightly different, but for 

simplicity we will disregard this so that we are considering a classic six-sequence SWT 

with two clusters in each sequence. We will also assume that there was no hospital-level 

clustering, although it would be straightforward to add hospital as a fixed effect.

Haines et al.9 used mixed-effects models, but focused on traditional nested mixed effects 

(i.e. hospital and ward effects). Suppose that we are conducting a post-hoc exploratory 

analysis which also considers random time and treatment effects. Using the data published 

by Haines et al.,9 we attempt to fit a full model with random intercept, time, and treatment 

effects in R (see supplemental files for code and complete output). Unfortunately, we find 

that the fitted random treatment variance is zero, and additional warning messages suggest 

that the fitted values may not be very accurate. For the purposes of this example, suppose 

we have followed the suggestions of Cheng et al.7 without success (see supplemental files 

for details), and that there is no previously reported study which can be used to inform the 

choice of random effects in this particular setting.
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To improve model fit, we abandon the full model and fit two reduced models: a random 

time effect model, and a random treatment effect model. Both models produce similar 

estimates of the random intercept standard deviation (SD) τ (0.28) and residual SD σ (1.02 

vs. 1.03 for the random time and random treatment models, respectively). In the random 

time model, the estimated random time SD γ is 0.12. In the random treatment model, the 

estimated random treatment SD η is 0.10. Unfortunately, these two models also produce 

different estimates of the treatment effect (0.13 vs. 0.10) and model-based treatment effect 

standard error (0.05 vs. 0.04). We might be inclined to use the random time model, since 

that was favored when fitting the full model. However, information on which model is more 

robust to misspecification might influence our decision. Quantifying the impact of potential 

misspecification may also affect our confidence in our results.

Figure 5 shows the impact on validity of the two models considered in this example. Using 

the results of the reduced models in which both random time and treatment SDs were around 

0.1, it is clear that choosing the wrong model in this scenario could have a dramatic effect 

on the validity of our conclusions, underestimating the variance of the treatment effect by 

around 35% asymptotically. The impact of incorrectly excluding a random time effect is 

slightly more extreme than the impact of incorrectly excluding a random treatment effect. 

These results support the choice of the random time effect model. However, because the 

effect of misspecification may be large in this scenario, these results also suggest that 

scientific conclusions from the random time effect model should be made with caution. We 

did not examine trends in efficiency for this example, since calculating a sandwich variance 

based on only 12 clusters may not be advisable.14

6. Discussion

In this paper, we have explored how choosing the wrong random effect in a SWT mixed 

model analysis can affect the estimated variance of the treatment effect. Since our method 

relies on analytical solutions instead of simulations, we were able to precisely study a vast 

landscape of study designs and settings. We focus here on the results for scenarios most 

relevant to a SWT: small ACC (<0.25) and the variance of the excluded random effect 

makes up a small portion of the average between-cluster variance. Some unsurprising trends 

hold across both cases. Validity and efficiency tended to be closer to 1.0 for smaller ACC 

and smaller variance of the excluded random effect. Other trends were more unexpected. 

Validity and efficiency both worsen as the number of observations per cluster-time period 

K increases. When the true model includes a random treatment effect but the researcher 

incorrectly fits a random time effect (time-fitted random treatment case), the number of 

sequences in a classic design has a dramatic impact on trends in both validity and efficiency. 

Our exploration of efficiency showed that in most cases, the cost of using the misspecified 

model with sandwich-based variance is relatively small. Although it was not the focus of this 

paper, researchers might consider using robust variance estimates when there are a sufficient 

number of clusters.

We used analytical solutions instead of simulations, which avoided some key issues. In 

addition to the obvious computational burden and variability of results, simulation studies 

in these types of settings can struggle significantly with the convergence of fitted models. 
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This reduces efficiency and could bias results. Using analytical solutions also allowed us to 

gain more insight into the details of the model misspecification. For example, if we had used 

simulations we would not have detected the issue with multiple roots.

Through our motivating example, we have demonstrated how our methods may be used as 

a sensitivity analysis to assess robustness to misspecification without the use of simulations. 

Ideally, model selection including the choice of random effects would be informed primarily 

by scientific beliefs and analyses of similar data. However, when choosing random effects 

these may not be readily available, forcing researchers to rely more heavily on other 

considerations such as robustness to misspecification. For a large trial, if researchers have 

already committed to using robust standard errors then it may be helpful to focus on 

efficiency as a metric for model choice instead of validity.

In our motivating example, we used the data to inform assumptions about values of true 

variance parameters. To use this method for creating a pre-specified analysis, assumptions 

about true variance parameters would be based on pre-existing data17 and scientific beliefs 

instead of being estimated from the data of interest. This may sometimes be difficult, but 

we hope researchers can draw on their experience in estimating power for SWTs, since the 

methods of making assumptions about variance components before data collection should 

be similar. If some parameters are particularly difficult to estimate, it is easy to consider a 

range of potential values as we did in our example. In settings with abundant pre-existing 

data from similar studies, it may be possible to use that data to directly test for the existence 

of specific random effects.

The practical impact of the existence of multiple asymptotic solutions is unclear. Since 

these are asymptotic results and simulations suggest that the unreduced root (Root 1) 

becomes more common as the number of clusters increases, we believe that our focus on 

the unreduced root is appropriate for studies that are large enough to appeal to asymptotics. 

We informally examined some simulated datasets to determine whether multiple roots might 

exist for a single dataset. Although this was not an exhaustive analysis, we found no 

evidence of multiple roots within a dataset, so we hypothesize that this is a between-datasets 

issue rather than within-datasets. To see whether the issue of multiple roots is unique to 

misspecified models, we examined the behavior of a correctly specified model using the 

same methods described in this paper. In the few cases we checked, the correctly specified 

model equations also had four potential roots following the same pattern as the four roots 

identified in misspecified models, with only one root having all nonzero components. 

Although solutions on the boundary corresponding to roots 2, 3, and 4 occur in correctly 

specified models, consistency of the maximum likelihood estimator suggests that only Root 

1 is asymptotically relevant when the model is correctly specified.

These results cannot be applied directly to simulations done by Thompson et al.4 since 

those simulations were for a cohort SWT with binary outcomes. However, our observations 

suggest that the specific SWT design can have a dramatic impact on results, and even the 

direction (conservative vs. anti-conservative) of validity in the time-fitted random treatment 

case. Thus, researchers concerned about misspecification in cohort SWTs with binary 
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outcomes may want to conduct their own simulations similar to those done by Thompson et 

al.4 instead of relying on results that may not generalize to other SWT designs.

Some of the assumptions about the mixed models we considered here may be particularly 

restrictive. Because we focused on a Normal outcome with a linear link, our marginal and 

conditional fixed effects are equivalent and unbiased. With other link functions, marginal 

and conditional effects may differ, and the estimated treatment effect may be biased when 

random effects are misspecified. The assumption that all random effects are independent 

also has important implications. In particular, assuming that the random treatment effect is 

independent of the random intercept effect implies that variability of the outcome is higher 

in the treated time periods compared to control. Since these results about efficiency and 

validity are driven by nuanced differences in random effect structures, the exact correlation 

structure may be important. In addition to adding correlation between the random intercept 

and other effects, researchers might consider the many ways that random time effects 

could be related within a cluster. Popular choices include exchangeable and exponential 

decay models, but more complex alternatives are possible. Researchers could even consider 

a scenario where the true model is the full model, with correlations between random 

treatment and random time effects as well. Because of the complexity and diversity of 

these extensions, we have not addressed them in this paper. However, we have provided 

a Mathematica file that demonstrates how to obtain solutions for some of these extended 

cases. Alternatively, researchers could turn to simulations like Thompson et al.,4 who did 

allow for correlation between some random effects. Last, the fixed effects we considered 

were very minimal; in particular, we used a linear model for the fixed time effect, whereas it 

may often be important to use a more flexible model for time. If a model for time where the 

number of parameters depends on the study design (e.g. modeling time as categorical with 

J-1 indicator variables) is used, the trends relating validity or efficiency to the number of 

sequences may be different. Researchers familiar with R can modify the functions provided 

in the supplemental files in order to account for additional fixed effects or a more flexible 

time model.

We hope that scientists struggling to choose between random time effects and random 

treatment effects can use these results to understand how model choice might impact 

the validity and efficiency of inference on the treatment effect. Although there is no 

universal ‘correct’ choice, for some scenarios validity and efficiency are dramatically 

different between the time-fitted random treatment case and the treatment-fitted random time 

case. Particularly when supplementary data and pre-existing scientific beliefs are weak, the 

methods presented in this paper can be an important tool for developing statistical analysis 

plans and performing sensitivity analyses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Voldal et al. Page 13

Stat Med. Author manuscript; available in PMC 2023 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

Research reported in this paper was supported in part by the National Institutes of Health under award number 
AI29168. The content is solely the responsibility of the authors and does not necessarily represent the official views 
of the National Institutes of Health.

Appendix

Appendix A:

Relative frequencies of roots

To understand the practical importance of the roots of Equation 3, we use simulations to 

examine the relative frequencies of different roots under a variety of circumstances. We used 

the lme4 package18 (lmer command) in R (version 3.6.1)16 to fit mixed models, but these 

results may be different for other software. For example, one important characteristic of the 

lme4 package is that it allows fitted variance components to be exactly zero; other software 

packages that do not allow this may have a dramatically different distribution of roots. For 

these simulations, we used all the default settings in lme4, including fitting models using 

restricted maximum likelihoods (REML). In this paper, we present results from two designs: 

one minimal SWT design, and one large SWT design. The minimal design is a classic 

design with two sequences, six clusters per sequence, and two individuals per cluster per 

time point. The large design is a classic design with six sequences, ten clusters per sequence, 

and 100 individuals per cluster per time point. So the total number of clusters is 12 and 60 

for the minimal and large designs, respectively; the total number of individual observations 

is 72 and 42,000. We also considered different true values of the variance components. 

Fixing σt2 = 1, we allowed τt2, γt2, and ηt2 to be either 0.001 or 0.125. For both cases, we 

examined all four combinations of large and small variance components. Throughout, we fit 

a model with a minimal number of fixed effects (see Section 2.2). For each setting, relative 

frequencies were calculated based on 1,000 replications.

The results of these simulations are presented in Figure A1. For both misspecification 

cases, prevalence of Root 1 increased as the total sample size MNK increased. In some 

scenarios with sufficiently large total sample size, Root 1 was the only root observed. For 

the time-fitted random treatment case when the random treatment effect was small, Root 

3 was relatively common even when the total sample size was large. Roots 2 and 4 were 

only present when the total sample size was small. For the treatment-fitted random time case 

when the random time effect was small, Root 2 was relatively common even when the total 

sample size was large. Roots 3 and 4 were only present when the total sample size was 

small.

Through careful use of software settings and other strategies,7 it is possible to increase the 

prevalence of Root 1. Thus, these results are a ‘lower bound’ on how common Root 1 is. 

Additionally, we intentionally included settings which increase the presence of other roots 

(i.e. a very small minimal design, and a very small variance component lower bound). We 

would expect reasonable settings for most SWTs to be less extreme, and have a higher 
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prevalence of Root 1. The results of these simulations support the decision to focus on Root 

1 in this paper.

Appendix B:

Non-classic designs

For simplicity, we have focused primarily on classic designs. However, there are a wide 

variety of SWT designs that do not follow the standard crossover schedule that typifies a 

‘classic’ SWT. For example, some SWTs may observe all sequences in the control condition 

for multiple time periods before beginning crossover. Figure A3 compares the validity and 

efficiency for some non-classic designs that have differing numbers of all-control periods 

as an example of how relatively simple design changes can impact inference. Because the 

design elements of a SWT are inexorably linked, it is difficult to isolate the effects of design 

choices. For example, in Figure A3, adding extra all-control periods also increases the total 

number of time points, increases the total number of observations, and changes how much 

of the total variation is attributed to the random treatment effect (by changing the proportion 

of cluster-periods that are assigned to treatment 1
JM ∑m = 1

M Tm). One plausible explanation 

for the association between worsening validity and adding extra control periods in Figure 

A3 is that when 1
JM ∑m = 1

M Tm is close to zero, most cluster-periods have no additional 

variation beyond a random intercept, which causes the variance of a fitted random time 

effect to be close to zero. In contrast, in a classic design where 1
JM ∑m = 1

M Tm = 1
2 , half 

of the cluster-periods have no additional variation and half have some additional variation 

from the random treatment effect, so we might expect a fitted random time effect to be a 

more balanced average between those states that has more flexibility to account for variation 

coming from the random treatment effect. Although it is difficult to identify universal trends 

in non-classic designs because of their complexity, the supplemental materials provide 

code that allows researchers to explore many non-classic designs. One important type of 

non-classic design which is not covered in the supplemental materials is a design in which 

the number of observations per cluster-period (K) varies. Simulations suggest that having a 

sample size that differs by sequence and/or time period can affect validity and efficiency, 

possibly by affecting the relative weights of cluster-periods on treatment and control.
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Figure A1: 
Frequency at which each root is observed in simulations using lme4’s default settings. 

Throughout, σt2 = 1. For the ‘large’ values of τt2, γt2, and ηt2, we used 0.125. For the ‘small’ 

values, we used 0.001. Note that these correspond to ACCs ranging between 0.001 and 

0.16 for the time-fitted random treatment case, and ranging between 0.002 and 0.20 for the 

treatment-fitted random time case.
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Figure A2: 
Efficiency of Root 1 for both cases, for a variety of classic designs. For each case, σt2 = 5

and τt2 = 0.1. To keep the ACC consistent, we chose ηt2 = 0.1 and γt2 = 0.05 for the time-fitted 

random treatment and treatment-fitted random time cases, respectively.
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Figure A3: 
Validity and efficiency of Root 1 for the time-fitted random treatment case, for four different 

SWT designs and a variety of true ACC’s. The designs each have two sequences and K=5 

observations per cluster per time period. Throughout, σt2 = 1 and the balance of τt2 and ηt2 is 

fixed at ηt2 = τt2/2.
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Figure 1: 
A classic SWT design with M=4 sequences and N=6 clusters per sequence. Dotted lines 

delineate clusters within sequences.
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Figure 2: 
Validity (varm θ /vars θ ) of Root 1 for both cases, for a variety of classic designs. Ratios 

above 1 (indicated by blue outlines) correspond to conservative varm θ  estimates. Ratios 

below 1 (indicated by red outlines) correspond to anti-conservative varm θ  estimates. For 

each case, σt2 = 5 and τt2 = 0.1. To keep the ACC consistent, we chose ηt2 = 0.1 and γt2 = 0.05
for the time-fitted random treatment and treatment-fitted random time cases, respectively.
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Figure 3: 
Validity (varm θ /vars θ ) of Root 1 for both cases, for three designs and a variety of 

true ACC’s. The three classic designs (M=2, M=3, and M=6 sequences) each have K=20 

observations per cluster per time period. Throughout, σt2 = 1. Each ACC is achieved in 

three different ways by adjusting the balance of τt2 and γt2 or ηt2/2. If γt2 or ηt2/2 = τt2, 

50% of the average between-cluster variance (the numerator of the ACC) comes from 

random intercepts. Similarly, if γt2 or ηt2/2 = τt2/10, then 90% of the variance comes from 

random intercepts and if γt2 or ηt2/2 = τt2 * 10, then 10% of the variance comes from random 

intercepts.
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Figure 4: 
Efficiency (varm θ t /vars θ ) of Root 1 for both cases, for three designs and a variety of 

true ACC’s. The three classic designs (M=2, M=3, and M=6 sequences) each have K=20 

observations per cluster per time period. Throughout, σt2 = 1. Each ACC is achieved in 

three different ways by adjusting the balance of τt2 and γt2 or ηt2/2. If γt2 or ηt2/2 = τt2, 

50% of the average between-cluster variance (the numerator of the ACC) comes from 

random intercepts. Similarly, if γt2 or ηt2/2 = τt2/10, then 90% of the variance comes from 

random intercepts and if γt2 or ηt2/2 = τt2 * 10, then 10% of the variance comes from random 

intercepts.
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Figure 5: 
Validity of the two proposed models in the disinvestment example if they were both 

misspecified. Throughout, τt = 0.28 and σt = 1.03 were fixed, based on their average fitted 

values from the two models. We assumed there were K=177 observations per cluster per 

time period, which was the average K across the trial.
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Table 1:

Parameters used in the fitted α  and true (αt) models for the two cases.

Model Fixed effects
Random intercept 
variance

Random time 
variance

Random treatment 
variance Residual variance

Time-fitted random treatment

 Fitted model Φ τ2 γ2 0 σ2

 True model Φ t τt2 0 ηt2 σt2

Treatment-fitted random time

 Fitted model Φ τ2 0 η2 σ2

 True model Φ t τt2 γt2 0 σt2
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Table 2:

Roots of the system of equations in Equation 3. In the treatment-fitted random time case, cells marked ‘No 

closed form’ indicate values that do not have a simple closed form, but can be found via numerical methods 

(see supplemental files).

Time-fitted random treatment

Root σ2* τ2* γ2*

1 σt2 τt2 +
∑m = 1

M Tm2 − ∑m = 1
M Tm

J2 − J M
ηt2

J ∑m = 1
M Tm − ∑m = 1

M Tm2

J2 − J M
ηt2

2 σt2 0 τt2 + 1
JM (∑m = 1

M Tm)ηt2

3 σt2 + K
J JK − 1 M × (J ∑m = 1

M Tm − ∑m = 1
M Tm

2 )ηt2 τt2 + 1
J JK − 1 M × (−∑m = 1

M Tm + K∑m = 1
M Tm

2 )ηt2
0

4 σt2 + τt2 + 1
JM (∑m = 1

M Tm)ηt2
0 0

Treatment-fitted random time

Root σ2* τ2* η2*

1 No closed form No closed form No closed form

2 No closed form 0 No closed form

3 σt2 + K J − 1
JK − 1 γt2 τt2 + K − 1

JK − 1γt2
0

4 σt2 + τt2 + γt2 0 0
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	Appendix B:Non-classic designsFor simplicity, we have focused primarily on classic designs. However, there are a wide variety of SWT designs that do not follow the standard crossover schedule that typifies a ‘classic’ SWT. For example, some SWTs may observe all sequences in the control condition for multiple time periods before beginning crossover. Figure A3 compares the validity and efficiency for some non-classic designs that have differing numbers of all-control periods as an example of how relatively simple design changes can impact inference. Because the design elements of a SWT are inexorably linked, it is difficult to isolate the effects of design choices. For example, in Figure A3, adding extra all-control periods also increases the total number of time points, increases the total number of observations, and changes how much of the total variation is attributed to the random treatment effect (by changing the proportion of cluster-periods that are assigned to treatment ). One plausible explanation for the association between worsening validity and adding extra control periods in Figure A3 is that when  is close to zero, most cluster-periods have no additional variation beyond a random intercept, which causes the variance of a fitted random time effect to be close to zero. In contrast, in a classic design where , half of the cluster-periods have no additional variation and half have some additional variation from the random treatment effect, so we might expect a fitted random time effect to be a more balanced average between those states that has more flexibility to account for variation coming from the random treatment effect. Although it is difficult to identify universal trends in non-classic designs because of their complexity, the supplemental materials provide code that allows researchers to explore many non-classic designs. One important type of non-classic design which is not covered in the supplemental materials is a design in which the number of observations per cluster-period (K) varies. Simulations suggest that having a sample size that differs by sequence and/or time period can affect validity and efficiency, possibly by affecting the relative weights of cluster-periods on treatment and control.Figure A1: Frequency at which each root is observed in simulations using lme4’s default settings. Throughout, . For the ‘large’ values of , , and , we used 0.125. For the ‘small’ values, we used 0.001. Note that these correspond to ACCs ranging between 0.001 and 0.16 for the time-fitted random treatment case, and ranging between 0.002 and 0.20 for the treatment-fitted random time case.Figure A2: Efficiency of Root 1 for both cases, for a variety of classic designs. For each case,  and . To keep the ACC consistent, we chose  and  for the time-fitted random treatment and treatment-fitted random time cases, respectively.Figure A3: Validity and efficiency of Root 1 for the time-fitted random treatment case, for four different SWT designs and a variety of true ACC’s. The designs each have two sequences and K=5 observations per cluster per time period. Throughout,  and the balance of  and  is fixed at .
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