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Abstract

Defined by their genetic profile, individuals may exhibit differential clinical outcomes due to an 

environmental exposure. Identifying subgroups based on specific exposure-modifying genes can 

lead to targeted interventions and focused studies. Genome-wide interaction scans (GWIS) can 

be performed to identify such genes, but these scans typically suffer from low power due to the 

large multiple testing burden. We provide a novel framework for powerful two-step hypothesis 

tests for GWIS with a time-to-event endpoint under the Cox proportional hazards model. In the 

Cox regression setting, we develop an approach that prioritizes genes for Step-2 G × E testing 

based on a carefully constructed Step-1 screening procedure. Simulation results demonstrate this 

two-step approach can lead to substantially higher power for identifying gene-environment ( G × 

E ) interactions compared to the standard GWIS while preserving the family-wise error rate over 

a range of scenarios. In a taxane-anthracycline chemotherapy study for breast cancer patients, the 

two-step approach identifies several gene expression by treatment interactions that would not be 

detected using the standard GWIS.
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1 | INTRODUCTION

The study of gene-environment (G × E) interactions is critical for understanding how 

individuals with diverse genetic backgrounds (G) can be differentially affected by exposure 

to an environmental factor (E). In an epidemiological study, interest may lie in studying 

how genetic susceptibility might predispose subgroups of the population to enhanced 

effects of an environmental exposure. Alternatively, one may be interested in studying how 
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exposure to an environmental factor may regulate the expression of a gene which will, 

in turn, lead to disease. Randomized trials with large-scale omic- biomarkers can be also 

thought of as gene-environment studies where the treatment is considered an environmental 

exposure. Identifying such interactions can lead to more focused studies with the goal of 

improving targeted therapeutics and personalized medicine. For example, Fu et al. (2017)1 

demonstrated an antagonistic effect between chemotherapy and erlotinib and Epidermal 

Growth Factor Receptor (EGFR) mutation on overall survival. Recently, a comprehensive 

study by Nguyen et al. (2019)2 found that human genetic associations of potential drug 

target proteins can both predict the therapeutic efficacy of a drug and the likelihood of side 

effects.

In general, possible exposures of interest in a gene-environment study include exogenous 

environmental factors (e.g., air pollution), personal exposures (e.g., smoking, drinking, 

treatment), or personal characteristics (e.g., sex, age, race). In this paper, we use the term 

“gene” to broadly encapsulate any of a variety of genomic measurements (e.g., SNPs, 

gene expression levels, methylation levels). While G × E studies concerning a disease 

(e.g., cancer, cancer-free mortality, etc.) often treat the endpoint as binary, investigators 

are becoming increasingly interested in studying the length of time it takes to observe a 

disease (e.g., age at onset, progression-free survival). In doing so, a binary phenotype can be 

reformulated to a time-to-event outcome and can increase power.3

As an example, Figure 1 provides Kaplan-Meier4 curves for a simulated right-censored data 

set of 10,000 individuals to demonstrate hypothetical subgroup (exposure)-specific effects 

on survival. For simplicity and visualization purposes, we assume that G is binary (e.g., 

carrier vs. non-carrier of a variant allele or high vs. low for gene expression level) in this 

example; although G can, in general, also be categorical or continuously measured. In both 

panels (1(a) and 1(b)), we simulate the data so that no main exposure effect E is present 

(hazard ratio (HRE) = 1) and that survival is only influenced through both the genetic 

component (G) and its interaction with the exposure (G × E). The exposure has no effect 

on survival for individuals where G = 0 (overlapping solid line curves). However, we see 

that individuals with G = 1 levels (dotted lines) experience a survival benefit when compared 

to individuals where G = 0. We also observe differences in survival within the subgroup of 

individuals with G = 1. More specifically, in Figure 1a, individuals that are exposed (E = 

1) have a better prognosis than those who are unexposed (E = 0). The converse is true in 

Figure 1b where exposed individuals have an elevated risk of death compared those who are 

unexposed.

For the purpose of identifying G × E interactions, a computationally appealing approach is 

a genome-wide interaction scan (GWIS) which estimates G × E interactions one-at-a-time 

by modeling the individual gene, environmental exposure, and the corresponding interaction 

term. The G × E association can be based on testing the significance of the interaction term 

based on, for example, the Wald statistic. To control the family-wise error rate (FWER) 

at a significance level α, a standard GWIS will typically test each G × E interaction to 

an adjusted significance level α*. The basic standard for genome-wide association studies 

(GWAS) or GWIS studies is to set α* = 5 × 10−8. Alternatively, one can adopt the standard 
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Bonferroni correction5 of α* = α∕M, where M is the number of genes to be tested. Either 

approach will most likely be underpowered in detecting significant interactions.

A variety of statistical methods have been developed that aim to improve power for GWIS, 

mostly in the epidemiological setting. We refer readers to Gauderman et. al. (2017)6 and 

references therein for a comprehensive review on the subject. Two-step GWIS methods have 

been proposed to improve the power of a G × E analysis while controlling the FWER 

and have been well studied for disease7,8,9,10,11 and quantitative traits.12,13 These methods 

use independent information from the data to perform an initial screening (the first step) 

to prioritize genes that are more likely to be involved in an interaction. In a second step, 

only the genes that pass the screening step are formally tested for an interaction, thus 

reducing the multiple testing burden.7,8 Two commonly-used Step 1 screening tests for 

case-control studies are 1) the marginal disease-gene association which can be obtained 

by modeling the outcome on each gene on the disease individually7 and 2) the marginal 

exposure-gene association which models each gene on the exposure.8 While the former can 

also be adopted for quantitative traits,13 the latter is only valid in a case-control study since 

cases have been over sampled. Additional two-step methods that use both aforementioned 

tests in combination to further improve efficiency have also been explored.9,10,11 Another, 

oftentimes more powerful, approach uses the quantitative screening information rather 

than a pass/no pass screen via a weighted multiple hypothesis testing correction.14 A key 

requirement for validity of any two-step procedure is that the statistics used in both Step 

1 and Step 2 are independent.15 Two-step approaches for G × E interaction scans have not 

been well studied for right-censored time-to-event data.

In this paper, we investigate two-step hypothesis testing for right-censored time-to-event 

data under the Cox proportional hazards model.16 We introduce the concept of two-

step hypothesis testing under the Cox model (Section 2), provide extensive numerical 

experiments to validate the method (Section 3) and apply it to discover interactions in a 

taxane-anthracycline chemotherapy study on breast cancer patients (Section 4). Concluding 

remarks, limitations and potential avenues for future work are provided in Section 5.

2 | METHODOLOGY

Consider a study with a time-to-event endpoint where M genes (e.g., genotypes, expression, 

methylation, etc.) are measured for each of the N subjects such that Gi = Gi1, Gi2, …, GiM
for i = 1, …, N Define Ei to be an environmental factor of interest, measured on each 

of the N subjects. Lastly let Ti be the true survival time and Ci be the right-censoring 

time that is assumed to be conditionally independent of Ti given Ei and Gi. With the 

presence of right censoring, we observe T i = min Ti, Ci  and Di = I Ti ≤ Ci , where I(⋅) is the 

indicator function. The data therefore consists of the quadruple T i, Di, Gi, Ei i = 1
n  which 

we assume are independent and identically distributed across the N subjects. Furthermore, 

one may augment our collection to include Vi, a set of subject-level adjustment covariates if 

necessary.
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2.1 | Genome-wide Interaction Scans (GWIS) for Right-Censored Data Using the Cox 
Proportional Hazards Model

With right-censored time-to-event data, a pivotal quantity to estimate is the hazard function 

ℎ(t) = limΔt 0Pr(t ≤ T ≤ t + Δt ∣ T ≥ t)/Δt which describes the instantaneous risk of the 

event of interest for an individual, given that the individual has not yet experienced the 

event. When interest is in quantifying the associations between covariates (e.g., genes) and 

the time-to-event, one can model the conditional hazard using the Cox proportional hazards 

model. In the context of a GWIS, this model has the form:

ℎ t ∣ Gj, E = ℎ0j(t)exp γGjGj + γEE + γGj × EGj × E , (1)

where ℎ t ∣ Gj, E  is the hazard at time t conditional on Gj and environmental factor E, ℎ0j(t)

is an unspecified baseline hazard, and γ = γG, γE, γG × E
T  corresponds to a vector of log-

hazard ratios. Extensions to include subject-level covariates are straightforward; however, 

for ease of exposition, we do not include them in this manuscript. The gene-by-environment 

(G × E) association between each gene and the time-to-event can be based on testing the null 

hypothesis H0: γGj × E = 0 for j = 1, …, M. We denote this type of analysis as the standard 

GWIS as we are interested in applying model (1) genome wide. The primary advantage 

of the standard GWIS is its computationally efficiency. The test statistic Sj provided by, 

for example, the Wald test will be used to identify interactions that are associated with 

the outcome. An adjustment for multiple comparisons can be applied to preserve the family-

wise Type I error rate (FWER) at a prespecified significance level α (e.g., α∗ = 5 × 10−8 or 

α* = α∕M). Either correction will lead to low power in detecting a G × E interaction.

To improve power, two-step methods for hypothesis testing have been proposed to conduct 

a GWIS while simultaneously preserving the FWER.7,8,14 Hypothesis testing for the 

interaction effects will still be based on Sj (Step 2 testing); however, the significance level 

assigned to each of the M tests will be based on an initial screening step (Step 1 screening) 

via a screening statistic. Two popular approaches to two-step hypothesis testing have been 

widely adopted: subset testing7 and weighted hypothesis testing.14 In the former, each of 

the M screening statistics are compared to a prespecified significance threshold α1.The test 

statistics Sj for the m genes that pass the Step 1 screen are then compared against the 

Bonferroni-corrected significance level α∕m to preserve the FWER. Note here that m < < M, 

and therefore the Sj that pass Step 1 are compared against a less stringent significance value 

than in the standard approach.

Instead of filtering out genes in Step 1, one can test all M test statistics in Step 2 using a 

weighted hypothesis test. Ionita-Laza et. al. (2007)14 proposed modifying the significance 

level assigned to each test statistic based on the ordered p-values (or ordered screening 

statistics) from Step 1. Let B be a prespecified initial bin size. Based on the results from 

Step 1, the B most significant genes are evaluated in Step 2 at significance level (α∕2)∕B, the 

next 2B genes are evaluated at (α∕22)∕(2B), the next 4B at (α∕23)∕(4B), etc. Using this scheme 

ensures that the overall significance level for the entire procedure does not exceed α while 

also allowing the top genes from Step 1 to be tested at a more liberal significance threshold 
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than α∕M and, in most cases, α∕m. Oftentimes, using this weighted testing approach in Step 

2 has been shown to be more powerful than using the subset approach. The choice of α1 and 

B can be thought of as auxiliary tuning parameters that, while not affecting the FWER, can 

affect the power.17 For demonstrative purposes we selected values α1 = 0.05 (recommended 

by Kooperberg and Leblanc, 20087 and Murcray et al., 20098) and B = 5 (recommended 

by Ionita-Laza et. al., 200714) respectively. We leave a discussion on the selection of these 

auxiliary tuning parameters in our concluding remarks.

2.2 | Two-step hypothesis testing for the Cox model

We investigate the performance of two-step hypothesis testing for the Cox model. First, we 

must derive a statistic to be used for the screening step. A common screening statistic used 

for continuous and binary outcomes is obtained from the marginal association between the 

gene and the outcome.7,8,13 When dealing with right-censored survival data, an analogous 

quantity would be the test statistic (Sj
∗) corresponding to the univariate Cox model

ℎ t ∣ Gj = ℎ0j
∗ (t)exp βGjGj . (2)

Thus one may conduct a two-step GWIS by testing the statistical significance of Sj 

at an adjusted significance threshold determined by the size of Sj
∗, which follows a 

N(0,1) distribution under the null hypothesis H0:βGj = 0. We will refer to this approach 

as mG|G × E, where mG denotes the use of the marginal association with G in the 

first step. A necessary requirement for the validity of the two-step testing procedure is 

(asymptotic) independence between the Step 1 and Step 2 statistics. Dai et. al. (2012)15 

established asymptotic independence between the marginal association and interaction test 

for generalized linear models under a canonical link. Furthermore, they proved that the 

estimator for the marginal association in a Cox model is asymptotically independent of the 

case-only estimator18 of the interaction in the event that the endpoint is rare (see Proposition 

2 in Dai et. al., 201215). However, a general result for the asymptotic independence between 

the marginal effect association and interaction for the Cox model has not been shown. As we 

will show in Section 3, βG and γG×E are in fact asymptotically correlated when a marginal E 
effect is present. This may be explained by the joint effect both G and E have on the time to 

event that is ignored in modeling their effects univariately.

It is well known that the regression parameter estimates for the Cox model are not robust 

to omitted covariates.19,20 If important covariates are omitted from the model, the estimated 

effects of the retained covariates are biased towards zero.19 This phenomenon was further 

corroborated by Haller and Ulm (2018)21 who conducted a simulation study for identifying 

biomarker-treatment interactions in randomized trials. Although βGj and its test statistic Sj
∗

are not of primary interest, they play a crucial role in the filtering and ordering of genes 

for the second-step hypothesis test. Furthermore, as we will show in our simulation studies, 

using Sj
∗ in Step 1 of a two-step procedure can lead to inflated Type I error rates for the 

overall GWIS across several scenarios.
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2.3 | A new Step 1 screening statistic for the two-step time-to-event GWIS

To preserve Type I error and increase power, we propose using a conditional model to assess 

the effect of G on survival while conditioning on the environmental factor

ℎ t ∣ Gj, E = ℎ0j(t)exp ωGjGj + ωEE . (3)

where ωG and ωE correspond to the main effects associated with G and E, respectively. 

We now use Sj, the test statistic for the conditional parameter ωG, to screen genes in 

Step 1 rather than Sj
∗. We denote this screening and testing procedure as cG ∣ G × E

to emphasize its conditional dependence on E. We provide formal justification of the 

asymptotic independence between ωGj and γGj × E under the null hypothesis provided that 

(1) is correctly specified.

Theorem 1.—Consider a study with a right-censored time-to-event endpoint where 

the data are composed of N subjects, each with (T , δ, G, E) as defined in Section 2. 

Consider the two Cox proportional hazards models (1) and (3) and suppose that (1) is 

correctly specified. Then under the null hypothesis H0: γGj × E = 0, the maximum log-partial 

likelihood estimators for ωGj and γGj × E are asymptotically independent.

The proof of our theorem is provided in the appendix and holds under the regularity 

conditions proposed by Andersen and Gill (1982).22 While Theorem 1 assumes that model 

(1) must be correctly specified, which will not be true in most cases, our empirical results 

in Section 3 provide evidence of asymptotic independence between the Step 1 and Step 2 

statistic under mild model misspecification.

3 | SIMULATION STUDIES

3.1 | Independence of Step 1 and Step 2 statistics

The validity of the two-step testing procedures relies on the asymptotic independence 

between the filtering statistic in Step 1 (βG or ωG) and the testing statistic in Step 2 (γG×E). 

As in Dai et al. (2012),15 we examine the empirical correlation coefficients between βG 

and γG×E and ωG and γG×E for increasing values of N = 1,000, 2,000, 5,000, and 8,000. 

Survival times were drawn from an exponential model with baseline hazard h0(t) = 0.01 and 

γ = (0,γE,0), where γE ∈ {0,log(0.8),log(0.6)} corresponds to no, a mild, and a modest 

exposure effect, respectively. A binary environmental exposure was randomly generated 

from a Bernoulli(πE) distribution, where πE = 0.5 corresponds to equal allocation to the 

exposed (E = 1) and unexposed (E = 0) groups. We simulate G to either be binary(G ~ 

Bernoulli(0.4))or measured continuously (G ~ N(0,1)).Independent censoring times were 

generated from an exponential distribution with rate parameter 0.005, corresponding to a 

censoring percentage of 33 − 40% across the various simulation scenarios we considered. 

Results are average over 10,000 replicate datasets.

When no exposure effect is present, we observe that both sets of empirical correlations, 

the correlation between βG and γG×E and ωG and γG×E, are nearly zero (Table 1 ). As 

Kawaguchi et al. Page 6

Stat Med. Author manuscript; available in PMC 2023 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the exposure effect becomes stronger, the correlation between βG and γG×E increases. 

Additionally, this correlation does not diminish as N increases. In all scenarios the 

correlation between ωG and γG×E remains close to zero.

3.2 | Family-wise error rate and power

We first compare the family-wise error rates (FWER) for the proposed two-step approaches, 

mG|G × E and cG|G × E, to the standard GWIS approach for continuously (e.g., gene 

expression levels) measured genes. In all simulations, we generated 10,000 replicate 

data sets, each consisting of N = 1,000 subjects and M = 10,000 genes. The M genes 

were simulated using a multivariate normal density Np(0,Σx), where Σx = Ip assumes 

independence across all the genes. Similar to Section 3.1, survival times were drawn from 

an exponential model with baseline hazard h0(t) = 0.01 and γ = (0,log(0.6),0), the binary 

exposure variable was randomly generated from a Bernoulli(0.5), and independent censoring 

times were generated from an exponential distribution with rate parameter 0.005. We refer to 

the model corresponding to these particular set of parameters as our “base model”.

For each replicate data set, we performed genome-wide analyses of the G × E interaction 

using the following methods: 1) the standard GWIS approach where we test Sj at a 

Bonferroni-adjusted significance level of α∕10,000, and 2) two-step GWIS approach mG|G × 

E, and 3) two-step GWIS approach cG|G × E. Both subset testing and weighted hypothesis 

testing were considered for the two-step GWIS methods. Subset testing was performed using 

a screening threshold α1 = 0.05 and the initial bin size of weighted hypothesis testing used 

an initial bin size B = 5.

As expected, the standard GWIS approach has close to nominal Type I error (α = 0.05) 

across all scenarios (Table 2 Row 1). Likewise, the cG|G × E approach has comparable Type 

I error rate to the standard GWIS approach. On the other hand, the Type I error rate for the 

mG|G × E test is inflated. We also considered several alternative models where we vary the 

simulation parameters and notice similar trends in the FWER. While the cG|G × E approach 

appears to retain the FWER, inflation is still present for the mG|G×E approach. Additionally, 

the degree of inflation for the cG|G×E approach is influenced by the values of γE, with 

increasing FWER as the exposure effect becomes stronger.

Our simulation results show that the cG|G × E two-step approach retains the FWER when 

the model is correctly specified. However, it is often the case that model will be misspecified 

(e.g., when an interaction effect is present, the exposure effect is modeled incorrectly, or 

if important confounding covariates are omitted from the model). To compare the FWER 

under model misspecification, we generate survival times using the parameters from the 

“base model” except that survival times are drawn from the following exponential model: 

h(t) = 0.01exp{E × log(0.6) + V × log(HRv )}, where V is an omitted covariate from the 

model with HRv ∈ {0.4,0.6,0.8,1.2,1.4}. Our results (in Supplemental Table S1) show that 

both the GWIS and cG|G×E approach retain the FWER at the nominal level for various 

effect sizes and values of V.

To compare power, we designate one gene as the risk-associated factor (RAF), assumed 

to have a G × E interaction effect on survival. The remaining 9,999 genes are assumed to 
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have no association with the outcome. Power was estimated as the proportion of replicates 

in which the RAF was identified as statistically significant. In addition, we estimated the 

FWER which was defined as the proportion of replicates in which at least one of the M−1 

non-RAF genes was declared statistically significant at a FWER of α = 0.05. We adopted 

the same simulation parameters as the base model while varying γG×E. Since the cG|G×E 
two-step GWIS preserves the FWER under the Base Model, we compare its power to the 

standard GWIS approach. The inflation in Type I error prohibits a fair power comparison 

using the mG|G × E approach and is thus not considered. Across a range of interaction 

effect sizes (γG×E), the two-step GWIS (cG|G × E) provides greater power than the standard 

GWIS (Figure 2 Panel A). Moreover, weighted hypothesis testing provides greater power 

than subset hypothesis testing. Under these parameters, the cG|G × E two-step GWIS can 

detect a minimum interaction hazards ratio of γG×E ≈ 0.73 with 80% power. For the same 

interaction effect size, the power using the standard GWIS is only 38%. To achieve 80% 

power using the standard GWIS, the minimum detectable interaction hazards ratio in this 

scenario would have to be stronger, at γG×E ≈ 0.66.

In addition to the base model, we explore the power to detect an interaction under several 

combinations of γG and γE. We see similar trends in power when no main exposure effect 

is present (Panel B) and when both the main genetic effect and interaction are protective 

(Panel D). When the sign of the gene effect differs in different exposure groups (Panel C), 

we observe that the standard GWIS has better power than the cG|G × E GWIS. This is to be 

expected, since the ‘crossing-style’ interaction (e.g., the main and interaction effects are in 

opposite directions) in Panel C makes the test based on Model 3 an ineffective screening tool 

as previously reported by Wason and Dudbridge (2012).23 We show, in the supplemental 

material (Figure S1), that power improves for both cG|G×E approaches as the interaction 

effect size increases in this scenario. By allowing for one true G×E interaction, the model 

is misspecified for the other 9,999 genes. We also calculate the FWER, identifying at least 

one statistically significant result among the 9,999 non-risk associated genes, across all four 

settings. The FWER was retained at the nominal level for the standard GWIS and cG|G × E 
approach (Table 3 ) across all settings, providing further empirical evidence that the cG|G × 

E approach works well under mild model misspecification.

4 | APPLICATION

We compare the cG|G × E approach to the standard GWIS in a concerted 

taxane-anthracycline chemotherapy study for breast cancer patients.24,25 Taxane-based 

chemotherapy has been shown to significantly improve progression-free and overall survival 

of patients.26 The data are publicly available from the Gene Expression Omnibus database 

(http://www.ncbi.nlm.nih.gov/geo; GSE 16446 and 25066 ). The data consists of 22,277 

gene expression levels ( Affymetrix array ) measured on N = 614 breast cancer patients 

receiving anthracycline-based adjuvant chemotherapy with (GSE25066; n = 507) or without 

(GSE16446; n = 107) taxane. In this example, genes refer to gene expression levels 

while the treatment (anthracycline with or without taxane) is considered the environmental 

exposure. Overlapping descriptive characteristics of the patients in both studies can be found 

in Table S3 of the Online Supplemental Material. Since the data come from two gene 

expression studies, cross-platform normalization was performed using Frozen RMA27 and 
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XPN.28 Lastly, the number of candidate genes was reduced by filtering out those with an 

interquartile range less than or equal to one.29 We refer readers to Ternes et al. (2017)30 

for more information on the preprocessing, filtering, and normalization procedures. Of the 

22,277 probes that were initially available, M = 1,689 were retained after preprocessing. The 

outcome of interest was distant-relapse free survival (DRFS), experienced by approximately 

22% (134/614). A standard GWIS was performed for which each of the G×E p-values was 

compared to a Bonferroni-corrected significance threshold of 0.05∕1,689 ≈ 3×10−5. We also 

applied our proposed two-step cG|G ×E approach using a screening threshold α1 = 0.05 for 

subset testing and B = 5 for weighted hypothesis testing.

Based on the standard GWIS, significant interactions were identified for expression at three 

probes (Table 4 ). In addition to identifying the same three loci – all three via subset testing 

and two of three by weighted hypothesis testing – the two-step approaches also identified 

four additional probes that were not identified via standard GWIS. Thus, our two-step 

approach was able to identify novel G × E effects that were missed by a standard GWIS.

Of the 1,689 probes, 707 passed the screening threshold of α1 = 0.05. The interaction effect 

of the 707 probes, estimated from Model 1, are tested at a significance level of 0.05∕707 ≈ 
7×10−5 (Figure 3). It is clear from Figure 3 that each interaction effect is tested at a less 

stringent threshold using the two-step subset test (red dotted line) when compared to the 

standard GWIS (blue dotted line). For each of the identified interactions, the corresponding 

exposure effects were all modest (HRE ∈ (0.80,0.96)). As shown in the Manhattan plot 

of Figure 4, ordered left to right in ascending order by their conditional p-values, the 

four probes identified by weighted hypothesis testing are located in the first four bins, 

whose respective bin-specific significance thresholds (red-dotted line) are larger than the 

standard Bonferroni correction. The one probe (204533_at) identified by the standard GWIS 

but missed in the weighted Bonferroni was placed in Bin 5 (not shown in Figure 4) and 

was tested against a more conservative significance threshold than the standard Bonferroni 

correction. The weighted hypothesis testing approach selected four probes; however, two of 

the probes (202088_at and 202089_s_at) are from the same locus (SLC39A6).

We focus our attention on AKAP9, a locus that was identified using the subset-based 

approach. This loci is on a particular region of chromosome 7q that has been suggested 

as a fundamental mechanism of acquired resistance to taxane-based therapy.31,32 To further 

investigate this interaction effect, we divide the gene expression levels into tertiles and 

compute the Kaplan-Meier estimates for both treatment groups at each tertile (Figure 5). The 

post-hoc analysis suggests that the combination of chemotherapy and taxane has a negative 

effect on survival for those with suppressed levels of AKAP9 (Panel 5A). However, the 

combination therapy performs better for those at the highest tertile (Panel 5C). We see a 

similar relationship between Chemotherapy + Taxane and RNASE4 (Supplemental Figure 

S2), a gene that is located in the same region and share the same promoters as ANG, 

which has been associated with the transition of normal breast tissue into invasive breast 

carcinoma.33 To the best of our knowledge, no previous study to elucidate the relationship 

between RNASE4 and taxane-based therapies has been conducted. Further studies are 

warranted to understand the biological interaction between the the loci and taxane-based 

therapy.
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5 | DISCUSSION

We provide a framework for two-step hypothesis testing that aims to improve power for 

identifying G×E interactions compared to standard genome-wide scans under the Cox 

proportional hazards model. As a consequence, we highlight the necessity of including 

the exposure in the screening step in order to preserve the FWER, a result that has not 

been observed for other types of outcome data. We demonstrate that a two-step approach to 

GWIS can provide substantially greater power to detect G × E interactions. Additionally, we 

observe that rather than using the unadjusted marginal association between genes and the 

time-to-event as a screening statistic, one should use the gene association conditional on the 

exposure via a conditional main effects model.

Our simulation results illustrate that accounting for the exposure in Step 1 is crucial 

in preserving the FWER under several different scenarios. In general, screening via the 

marginal genetic association tends to inflate the FWER especially when a strong exposure 

effect is present. This inflation may lead to false conclusions in studies where we expect 

the exposure to have some a priori effect on the time to event (e.g., a treatment in a RCT). 

Using the two-step approach, we were able to identify four G×E interactions that were 

missed by the standard GWIS in a taxane-anthracycline chemotherapy study. Although our 

simulations suggests that weighted hypothesis testing can, on average, typically provide 

greater power than subset-based hypothesis testing, our application illustrates that while 

some genes are identified by all three approaches, others are only identified by one or two. 

Further exploration of the specific type of Step 2 testing and the setting of corresponding 

tuning parameters (α1 and B) is warranted. The results provide genes that have been 

previously associated with resistance to taxane-based therapy (AKAP9) or have potential 

to be investigated further (RNASE4/ANG). We note that substantial blocks of correlated 

genes exist within our study (Figure S3 in the Online Supplemental Material). As is the case 

for all discovery-based methods (one step or two step), identification of the true causal gene 

among a set of correlated genes is always challenging. Validation of the discovered G × E 
interactions in future targeted studies is necessary to understand the biological mechanism 

behind taxane-based resistance.

The Step 1 screening statistic proposed for the cG|G × E GWIS approach requires the 

calculation of the Wald statistic, which requires fitting a separate alternative models for 

each gene and can be computationally expensive for large N and M. Additionally, for 

genotype data with low-frequency variants, the Wald test may not control the Type I error 

rate when testing low-frequency variants and/or when the event rate is low due to the 

skewness of the underlying normal distribution.34,35 Refinements to develop a scalable and 

accurate approach for genome-wide scale single-variant Cox’s regression have recently been 

proposed.36 We are currently exploring coupling the two-step Cox GWIS with algorithms 

that scale to the size of electronic health records databases and biobanks.37

Our findings are based on estimated G×E interactions one-at-a-time, that, for example, 

ignores potential joint G×E effects. While the final estimates in our approach will be biased 

(due to misspecification, the winner’s curse, etc.), the goal of the two-step hypothesis test 

is to discover genes that interact with an exposure for future studies. In our formulation, 
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several assumptions are made about the underlying environmental exposure. First, we 

assume that the exposure has a proportional effect on the event of interest. This can 

be relaxed if one considers a stratified Cox model where the stratification is performed 

on a categorical factor. Stratified Cox’s regression is also a popular approach to remedy 

non-proportional hazards, which may occur when we omit the environmental factor from 

the screening step. Additionally, our current work falls under the stratified Cox regression 

framework where the nonparametric baseline hazards are proportional to each other (i.e., 

h01(t) = exp(βE)h00(t)). Second, Theorem 1 is valid provided that the model is correctly 

specified. It remains to be shown that ωG and γG×E are asymptotically independent under 

model misspecification. A possible solution is to perform testing and screening using a 

robust standard error as opposed to a model-based standard error.38,39,40 To show asymptotic 

independence between the screening and testing statistics under a misspecificed model, one 

must take into account the sandwich estimator.15 Doing so is not trivial for the Cox model 

and we leave this for future research. Our primary focus for this paper was on a binary 

exposure variable. While our proposed two-step approach approach for Cox regression 

should also be applicable to a continuous E, specific assessment of this scenario in terms of 

Type I error and power compared to standard GWIS is left for future research.

Lastly, as noticed in our real data application, gene expression levels are typically highly 

correlated, which can impact both the screening and testing steps. The screening statistics 

are estimated one-at-a-time and can reduce power of the overall procedure if there 

exists substantial correlation among genes.41 Wang et. al. (2021)42 proposed a two-step 

approach to identify biomarker-treatment interactions using a multivariate screening strategy 

via penalized regression for continuous outcomes and demonstrate a substantial gain in 

power when compared to the one-at-a-time screening procedure in highly correlated data. 

We expect that multivariate screening strategies will lead to similar improvements in 

performance for time-to-event data. While it has been shown that accounting for correlation 

can improve power by modifying the screening step, the impact of correlation on the testing 

step is relatively unknown. A Bonferroni-type correction is still applied in Step 2 for both 

the subset or weighted hypothesis tests. When substantial correlation exists (within the 

subset of genes that pass Step 1 for subset testing or within bins for weighted hypothesis 

testing), the Bonferroni correction is likely to be too conservative. Methods to improve 

power in the presence of correlation include techniques to adjust the p-value for each 

test,43,44 permutation-based testing,45,46 and replacing the denominator in the Bonferroni 

correction by the effective number of tests rather than the actual number of tests.47,48 

Refinements to both steps for right-censored data, and in general, all data types, to account 

for genetic correlation is a novel avenue of research in the field of G × E discovery.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Kaplan-Meier curves for G × E combinations on a simulated data set of N = 10,000. 

Data were generated using an exponential model with binary G and E values under the 

model: ℎ(t ∣ G, E) = 0.01 ∗ exp γGG + γEE + γG × E(G × E). Independent censoring times were 

generated using an exponential model with rate 0.005. The exposure (E) is assumed to have 

a null main effect (HRE = 1) but affects survival through its interaction (G×E) with G. Panel 

1a: Synergistic interaction effect (HRG×E = 0.5). Panel 1b: Antagonistic interaction effect 

(HRG×E = 1.5).
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FIGURE 2. 
Power comparison between the standard GWIS approach and the cG|G×E two-step GWIS 

across different values of HRG×E = exp(γG×E). Panel A) γ = (0,0,γG×E); Panel B) γ = 

(0,log(0.6), γG×E); Panel C) γ = (log(1.2),log(0.6), γG×E); Panel D) γ = (log(0.8),log(0.6), 
γG×E). See Section 3.2 for details of the simulation setup (Standard GWIS - Solid Red Line; 

cG|G × E with weighted screening - Dashed Green Line; mG|G × E with weighted screening 

- Dashed Blue Line).
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FIGURE 3. 
Manhattan Plot of G × E p-values (on the -log10 scale) from the taxane-anthracycline 

chemotherapy study in Section 4 using subset testing. Loci marked by a black dot or triangle 

represent G × E p-values that passed the subset-adjusted significance threshold (red dotted 

line). As a comparison, the standard GWIS significance threshold is also included (blue 

dotted line) with the black dot indicating a significant finding.
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FIGURE 4. 
Manhattan Plot of G × E p-values (on the -log10 scale) from the taxane-anthracycline 

chemotherapy study in Section 4 using weighted Bonferroni testing. G × E p-values for 

each loci are arranged left to right in ascending order of their respective conditional 

p-values. Loci marked by a black dot or triangle represent G×E p-values that passed the 

subset-adjusted significance threshold (red dotted line). As a comparison, the standard 

GWIS significance threshold is also included (blue dotted line) with the black dot indicating 

a significant finding.
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FIGURE 5. 
Kaplan-Meier curves comparing AKAP9-treatment effects on distant relapse-free 

survival.AKAP9 gene expression levels were divided into tertiles; A) Low AKAP9 levels 

≤ −0.516); B) Medium AKAP9 levels (−0.516,0.268); C) High AKAP9 levels ≥ 0.268. 

P-values are calculated using an unweighted log-rank test.
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TABLE 1

Empirical correlations of the G×E interaction parameter γG × E with the marginal βG  and conditional ωG
genetic effect parameters averaged over 10,000 Monte Carlo simulations with varying sample size n. The 

censoring rate was roughly between 34 − 50%. G and E were simulated as independent Bernoulli random 

variables where Pr(G = 1) = 0.30 and Pr(E = 1) = 0.5. Parameter estimates are from the following models: 

ℎ(t ∣ G) = ℎ0
∗(t)exp βGG ; ℎ(t ∣ G, E) = ℎ0(t)exp ωGG + ωEE ; ℎ(t ∣ G, E) = ℎ0(t)exp γGG + γEE + γG × EG × E .

N = 1,000 2, 000 5,000 8, 000

γG × E γG × E γG × E γG × E

G ∼ Bern(0.4) γE = 0 βG −0.001 −0.029 0.014 0.004

ωG −0.001 −0.030 0.014 0.004

log(0.8) βG 0.060 0.083 0.065 0.086

ωG −0.010 0.014 −0.005 0.016

log(0.6) βG 0.141 0.14G 0.134 0.145

ωG 0.000 0.004 −0.010 0.004

G ∼ N(0, 1) γE = 0 βG −0.000 0.001 0.004 0.008

ωG −0.000 0.001 0.004 0.008

log(0.8) βG 0.068 0.055 0.072 0.072

ωG 0.000 −0.013 0.000 0.002

log(0.6) βG 0.143 0.139 0.14G 0.154

ωG 0.004 −0.005 0.001 0.013
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TABLE 2

Estimated Type I error rates for tests of G × E interaction across several parameter settings for a continuously-

measured genes (Section 3.2). Each estimate of Type I error is based on the proportion of 10,000 replicate 

datasets for which the indicated procedure identified at least one statistically significant result (at the 0.05 

level) among the M = 10,000 genes. For the subset screening step, a filtering statistic of α1 = 0.05 was used. 

For the weighted Bonferroni test, an initial bin size of B = 5 was used. See Section 3.2 for details on the 

simulation settings. The Base Model corresponds to the following simulation parameters: γ = (0,log(0.6),0), 

πE = 0.5, event rate ≈ 40−44%, ΣX = IP, N = 1,000. AR(ᵨ) corresponds to an autoregressive correlation 

structure with correlation parameter ᵨ.

Standard Two-Step Methods

mG|G × E cG|G × E

GWIS Subset Weighted Subset Weighted

Base Model 0.048 0.084 0.107 0.050 0.047

γE = log(1) 0.051 0.048 0.048 0.049 0.048

γE = log(0.8) 0.046 0.059 0.062 0.051 0.047

γE = log(0.4) 0.051 0.130 0.175 0.052 0.053

γG = log(0.8); γE = log(0.8) 0.048 0.057 0.064 0.051 0.054

γG = log(0.8); γE = log(0.6) 0.046 0.080 0.097 0.051 0.052

γG = log(0.6); γE = log(0.8) 0.051 0.056 0.056 0.052 0.052

γG = log(0.6); γE = log(0.6) 0.047 0.070 0.074 0.054 0.049

γG = log(1.2); γE = log(0.6) 0.047 0.083 0.100 0.051 0.051

ΣX = log (0.3) 0.050 0.085 0.108 0.052 0.051

ΣX = log (0.6) 0.054 0.083 0.098 0.054 0.049

πE = 0.4 0.055 0.088 0.102 0.050 0.048

πE = 0.2 0.056 0.074 0.088 0.054 0.052

Event rate ≈ 0.79 0.051 0.108 0.140 0.051 0.052

Event rate ≈ 0.24 0.051 0.059 0.061 0.053 0.050

N = 2,000 0.052 0.084 0.105 0.049 0.049
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TABLE 3

Estimated Type I error rates for tests of G × E interaction across several parameter settings for a continuousl-

ymeasured genes (Section 3.2). Each estimate of Type I error is based on the proportion of 10,000 replicate 

datasets for which the indicated procedure identified at least one statistically significant result (at the 0.05 

level) among the M = 9,999 non-risk associated genes. For the subset screening step, a filtering statistic of α1 

= 0.05 was used. For the weighted Bonferroni test, an initial bin size of B = 5 was used. See Section 3.2 for 

details on the simulation settings. The Base Model corresponds to the following simulation parameters: γ = 

(0,log(0.6),0), πE = 0.5, event rate ≈ 40 − 44%, ΣX = IP, N = 1,000. AR(ᵨ) corresponds to an autoregressive 

correlation structure with correlation parameter ᵨ. Asterisk denotes FWER that are not within the 95% 

confidence interval for 0.05.

Standard Two-Step Methods

mG|G × E cG|G × E

Panel γ G γ E γ G×E GWIS Subset Weighted Subset Weighted

A 0 0 log(0.80) 0.055 0.054 0.046 0.054 0.045

log(0.75) 0.056 0.057 0.048 0.055 0.048

log(0.70) 0.056 0.059 0.052 0.059 0.051

log(0.65) 0.058 0.061 0.056 0.059 0.054

B 0 log(0.60) log(0.80) 0.050 0.090 0.110 0.054 0.050

log(0.75) 0.052 0.092 0.110 0.057 0.048

log(0.70) 0.053 0.102 0.116 0.058 0.046

log(0.65) 0.053 0.106 0.119 0.057 0.046

C log(1.2) log(0.60) log(0.80) 0.049 0.076 0.090 0.056 0.051

log(0.75) 0.053 0.082 0.094 0.055 0.051

log(0.70) 0.053 0.086 0.099 0.055 0.052

log(0.65) 0.052 0.087 0.103 0.054 0.053

D log(0.80) log(0.60) log(0.80) 0.055 0.095 0.108 0.054 0.049

log(0.75) 0.055 0.096 0.115 0.054 0.050

log(0.70) 0.054 0.108 0.125 0.057 0.053

log(0.65) 0.055 0.115 0.135 0.058 0.059
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TABLE 4

Significant G × E (gene-environment) interactions identified for the taxane-anthracycline chemotherapy study 

in Section 4. GWIS - Standard GWIS approach; Weighted - cG|G ×E approach using weighted hypothesis 

testing with initial bin size B = 5; Subset - cG|G×E approach using subset hypothesis testing with initial bin 

size α1 = 0.05 Y indicates that the G×E interaction was statistically significant at a FWER of α = 0.05 by the 

corresponding approach. Sites unique to either two-stage approaches are bolded. Parameter (log-hazard ratio) 

estimates γG, γE, γG × E  were estimated for each probe using model 1.

Probe ID Gene GWIS Weighted Subset γG γE γG × E

204533_at CXCL10 Y - Y −0.46 −0.01 0.76

202089_s_at SLC39A6 Y Y Y 0.52 −0.17 −1.20

208682_s_at MAGED2 Y Y Y 0.27 −0.18 −1.03

2OO810_s_at CIRBP - Y - 0.16 −0.13 −0.75

2O2O88_at SLC39A6 - Y - 0.34 −0.13 −0.92

205158_at RNASE4 - - Y 0.50 −0.18 −1.02

210962_s_at AKAP9 - - Y 0.44 −0.05 −0.94
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