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A B S T R A C T   

A recently identified SARS-CoV-2 variant, Lambda, has spread to many countries around the world. Here, we 
measured and evaluated the reduced sensitivity of Lambda variant to the neutralization by plasma polyclonal 
antibodies elicited by the natural SARS-CoV-2 infection and inactivated vaccine. The combination of two sub-
stitutions appearing in the RBD of spike protein (L452Q and F490S) resulted in noticeably reduced neutralization 
against Lambda variant. F490S contributed more than L452Q in affecting the neutralization. In addition, the 
neutralization test with 12 published nAbs binding to RBD of SARS-CoV-2 with defined structures suggested that 
Lambda variant resisted the neutralization by some antibodies from Class 2 and Class 3. Overall, these results 
suggest that pre-existing antibody neutralization established by natural infection from non-Lambda variants or 
immunization could be significantly decreased, re-emphasizing the importance of ongoing viral mutation 
monitoring.   

1. Introduction 

Coronavirus disease 2019 (COVID-19) caused by severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2) is still spreading across 
the world [1]. As a result, evolution of SARS-CoV-2 is facilitated, leading 
to the emergence of diverse variants. SARS-CoV-2 variants have been 
classified by the World Health Organization (WHO) into three main 
types: variants of concern (VOCs) including Alpha, Beta, Gamma, Delta, 
and Omicron, variants of interest (VOIs) including Lambda and Mu, and 
variants under monitoring (VUMs) including B.1.1.318, C.1.2, and 
B.1.640 [2]. The receptor binding domain (RBD) of the spike protein is 
responsible for binding to the cell receptor (angiotensin-converting 
enzyme 2, ACE2). Therefore, the mutations located in the RBD may 
affect the binding of virus to ACE2 and cause immune escape of 
SARS-CoV-2 from neutralizing antibodies (nAbs). 

SARS-CoV-2 Lambda variant was first identified in Peru and has 
rapidly spread to other countries [3]. In the light of the high trans-
missibility it may has, Lambda variant was designated as a kind of VOI 
[2]. Meanwhile, Lambda variant carrying various mutations in the spike 

might lead to immune escape from nAbs [4]. Several preprint studies 
had shown that Lambda variant was resistant to the neutralization by 
mRNA vaccine-elicited antibodies [4, 5]. However, the neutralization of 
Lambda variant by antibodies elicited by the inactivated vaccine has yet 
to be reported, and little is known about the impact of spike mutations 
on monoclonal neutralizing antibodies (nAbs) targeting diverse 
epitopes. 

In this study, we prepared SARS-CoV-2 pseudoviruses carrying 
distinct spike proteins of the Wuhan reference strain with D614G mu-
tation (wild-type, D614G-WT) and Lambda variant, as well as L452Q/ 
F490S, L452Q, or F490S mutations. We measured the susceptibility of 
these mutant viruses to the neutralization by plasma from convalescent 
patients and inactivated vaccine recipients and by nAbs from Class 1, 2, 
3, and 4. These results showed that plasma neutralization against 
Lambda variant is compromised by L452Q and F490S mutations, which 
destroyed or weakened the binding and neutralizing activities of some 
antibodies from Class 2 and 3. 
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2. Results 

SARS-CoV-2 Lambda variant harbored G75V, T76I, R246N, and 
Δ246–252 mutations in the N terminal domain, L452Q and F490S in the 

RBD, D614G and T859N in other regions of spike (Fig. 1a). The L452Q 
and F490S substitutions appeared in or near the binding interface be-
tween RBD and ACE2, indicating that Lambda variant may escape 
neutralization by nAbs in some degrees (Fig. 1b). We first established the 

Fig. 1. Neutralization of SARS-CoV-2 Lambda variant by convalescent and inactivated vaccine-elicited plasma. (a) Mutations located in the spike protein were 
identified in Lambda variant compared with the wild-type (WT). (b) The location of L452 and F490 residuals (red) in the ACE2 (yellow) and SARS-CoV-2 RBD (black) 
complex (PDB: 7DMU). (c, d) Changes in neutralizing titers of convalescent (c) and inactivated vaccine-elicited plasma (d) against Lambda variant, L452Q/F490S, 
L452Q, and F490S mutated viruses compared with those against the D614G-WT. The data shown here are means of two independent experiments. Geometric mean 
titers (GMTs) in ID50 values and fold-change were calculated and shown above each variant in the left panel. The fold change in ID50 of each plasma against mutated 
viruses were represented in the right panel. Statistical analysis was performed with two-side Friedman test with Dunn’s multiple comparison using GraphPad Prism 9 
software. ns: P > 0.05; ***: P < 0.001, ****: P < 0.0001. The changes between 3-fold and 5-fold are marked in blue. The changes between 5-fold and 10-fold are 
marked in orange, and those above 10-fold are marked in red. The symbol ‘+’ indicates increased neutralization, and ‘-’ indicates decreased neutralization. 
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pseudovirus-based neutralization assay. The ID50 of plasma from all 10 
non-vaccinated healthy donors with no prior SARS-CoV-2 infection were 
< 1:20 against the D614G-WT and each variant virus (Figure S1). We 
measured the neutralization titers of plasma collected from 20 conva-
lescent individuals (Figure S2a, Table S1). Compared with the WT strain 
(D614G-WT), both Lambda variant and L452Q/F490S mutated virus 
reduced the susceptibility by approximately 50% (Fig. 1c). The F490S 
played a more important role in reducing the neutralization than L452Q, 
with geometric mean titers (GMTs) being 936 and 1402, respectively. In 
addition, the neutralization of mutated virus strongly correlated to that 
of the WT strain by the same sample (Figure S2b). 

We next evaluated the neutralizing activity induced by SARS-CoV-2 
inactivated vaccine against Lambda variant. Twenty plasma were 
collected after second immunization with BBIBP-CorV (Table S2). The 
levels of nAbs against Lambda variant, L452Q/F490S, and F490S 
mutated viruses were significantly lower than those against the WT 
virus, displaying a 3.07-fold, 3.42-fold, and 3.20-fold reduction, 
respectively (Fig. 1d, Figure S3a). The mutation L452Q contributed a 
1.86-fold decline in neutralizing activity, which was weaker than the 
impact of F490S. There were strong correlations between the neutrali-
zation of the mutated and WT viruses (Figure S3b). 

It is widely known that naturally occurring plasma antibodies 
induced by infection or vaccines are a group of polyclonal antibodies 
consisting of numerous monoclonal antibodies (mAbs), each recog-
nizing a single epitope [6]. To explore what kind of mAbs lose their 
neutralizing activities, we summarized 12 published mAbs with defined 

structural information and divided them into 4 classes according to their 
competition with ACE2 and binding models to the RBD (Fig. 2a) [7–9]. 
The mutations at L452 and F490 were both located in the RBD-binding 
sites of Class 2 antibodies and C110, a Class 3 antibody (Fig. 2b), sug-
gesting that Lambda variant might escape from the recognition and 
neutralization by these nAbs in different degrees. All tested nAbs from 
Class 1 and Class 4 maintained their neutralizing activities against 
Lambda variant and site-mutated pseudoviruses (Fig. 2c, Figure S4). In 
contrast, Lambda variant was fully resistant to the neutralization by 
BD-368-2, P2B-2F6, and C110. The results of binding affinity showed 
that BD-368-2, P2B-2F6, and C110 hardly bound to the L452Q/F490S 
mutated RBD, revealing the escape mechanism of Lambda variant from 
the neutralization by nAbs (Fig. 2d, Table S3). Although L452Q and 
F490S mutations were both located in the binding epitope of C144 (a 
Class 2 antibody), F490S contributed more than L452Q to the reduction 
of neutralization and affinity. Analysis of two other Class 3 antibodies, 
REGN10987 and S309, showed that neither recognized the L452 and 
F490 residuals directly but each still neutralized the Lambda variant 
with similar potencies as those against D614G-WT. Overall, some nAbs 
from Class 2 and Class 3 lost or had decreased their binding and 
neutralizing activities against Lambda variant, resulting in a significant 
decline in the plasma neutralization in convalescent individuals and 
vaccine recipients. 

Fig. 2. Neutralization of SARS-CoV-2 Lambda variant by monoclonal nAbs. (a) Structural depiction of ACE2 and representative nAbs from each class binding to the 
RBD. Class 1: P2C-1F11 (PDB: 7CDI), REGN10933 (PDB: 6XDG), CB6 (PDB: 7C01); Class 2: BD-368–2 (PDB: 7CHH), C144 (PDB: 7K90), P2B-2F6 (PDB: 7BWJ); Class 
3: REGN10987 (PDB: 6XDG), C110 (PDB: 7K8V), S309 (PDB: 6WPS); Class 4: EY6A (PDB: 6ZCZ), H014 (PDB: 7CAI), S304 (PDB: 7JW0)[7–9]. (b) Footprints of four 
classes of representative nAbs on the RBD. L452 and F490 residuals are shown in red. (c) The IC50 values of nAbs against SARS-CoV-2 pseudoviruses. The data shown 
here are means of two independent experiments. The IC50 values below 0.05 μg/mL are marked in red. The IC50 values between 0.05 and 1 μg/mL are marked in 
orange. The IC50 values between 1 and 50 μg/mL are marked in blue. The IC50 values above 50 μg/mL are highlighted in gray. (d) The affinity values in binding 
activities of nAbs to mutated and WT RBD. The data shown here are means of two independent experiments. The binding affinities of nAbs below 0.5 nM are marked 
in red. The binding affinities of nAbs between 0.5 and 5 nM are marked in orange. The binding affinities of nAbs between 5 and 50 nM are marked in blue. The 
binding affinity above 50 nM, or not available (NA), in gray, indicates that the affinity of nAbs to the mutated RBD was very weak. 
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3. Discussion 

Currently, a series of significant achievements have been made in the 
development of vaccines and nAbs for preventing and treating COVID- 
19 [10]. However, with the rapid emergence of SARS-CoV-2 variants, 
concerns have arisen about antibody escape capabilities of the variants. 
Current vaccines or nAbs were designed or isolated based on the original 
strain in the early phase of the COVID-19 pandemic [11]. Although, 
according to the latest report from the WHO, Lambda is not a dominant 
VOI anymore, some of its feature mutations are possible to appear in 
future variants. Thus, evaluating the antibody escape of Lambda is still 
formative for designing next-generation vaccines and screening broadly 
therapeutic nAbs. 

Although the number of samples was limited and all donors were 
Chinese in this study, we found that the neutralizing activities of 
convalescent and inactivated vaccine-elicited plasma against SARS-CoV- 
2 Lambda variant were significantly decreased compared with those 
against D614G-WT. The results of site-mutated neutralization assay 
showed that the mutations in RBD, especially F490S, played an impor-
tant role in the reduced sensitivity of Lambda variant. Previous studies 
have also shown that both the L452 and F490 residuals are the key 
recognition sites of multiple nAbs. The more common mutation at L452 
in the RBD was the L452R substitution, which has been found in Epsilon, 
Kappa, and Delta variants [12–14]. Thus, we performed a head-to-head 
comparison of the binding affinity of nAbs to the RBD-L452R and 
RBD-L452Q. BD-368-2 and C110 totally lost their binding activities to 
the RBD-L452R, but still maintained some degree of affinity to the 
RBD-L452Q, suggesting that an arginine at L452 residual might have a 
greater impact on antibody recognition than the glutamine. The F490S 
substitution introducing a potential O-linked glycosylation site once 
appeared in some variants sporadically before it became the character-
istic mutation of Lambda [15–17]. The protective efficacies of different 
types of vaccines against Lambda variant need to be further studied in 
the real world. 

Finally, it is worth noticing that a monoclonal nAb we previously 
identified, P2C-1F11 [18–20], could potently neutralize Lambda 
variant. As a combination therapy, the Fc-modified version (Brii-196) 
has been submitted to the Food and Drug Administration for the emer-
gency use authorization. These results further confirmed the broadly 
neutralizing activity of Brii-196 and showed its effectiveness in fighting 
against SARS-CoV-2 variants [20–22]. 
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