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State‑of‑the‑art retinal vessel 
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models
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Ismail Ben Ayed 3

The segmentation of retinal vasculature from eye fundus images is a fundamental task in retinal image 
analysis. Over recent years, increasingly complex approaches based on sophisticated Convolutional 
Neural Network architectures have been pushing performance on well‑established benchmark 
datasets. In this paper, we take a step back and analyze the real need of such complexity. We first 
compile and review the performance of 20 different techniques on some popular databases, and 
we demonstrate that a minimalistic version of a standard U‑Net with several orders of magnitude 
less parameters, carefully trained and rigorously evaluated, closely approximates the performance 
of current best techniques. We then show that a cascaded extension (W‑Net) reaches outstanding 
performance on several popular datasets, still using orders of magnitude less learnable weights than 
any previously published work. Furthermore, we provide the most comprehensive cross‑dataset 
performance analysis to date, involving up to 10 different databases. Our analysis demonstrates 
that the retinal vessel segmentation is far from solved when considering test images that differ 
substantially from the training data, and that this task represents an ideal scenario for the exploration 
of domain adaptation techniques. In this context, we experiment with a simple self‑labeling strategy 
that enables moderate enhancement of cross‑dataset performance, indicating that there is still 
much room for improvement in this area. Finally, we test our approach on Artery/Vein and vessel 
segmentation from OCTA imaging problems, where we again achieve results well‑aligned with the 
state‑of‑the‑art, at a fraction of the model complexity available in recent literature. Code to reproduce 
the results in this paper is released.

Retinal vessel segmentation is one of the first and most important tasks for the computational analysis of eye fun-
dus images. It represents a stepping stone for more advanced applications such as artery/vein ratio  evaluation11, 
blood flow  analysis5, image quality  assessment12, retinal image  registration13 and  synthesis14.

Initial approaches to retinal vessel segmentation were fully unsupervised and relied on conventional image 
processing operations like mathematical  morphology15,16 or adapted edge detection  operations17. The idea behind 
these methods was to preprocess retinal images to emphasize vessel intensities. Preprocessed images were then 
thresholded to achieve segmentation. While research on advanced filtering techniques for retinal vessel segmen-
tation continued over more recent  years6,18, such techniques consistently fail to reach competitive performance 
levels on established benchmarks, likely due to their inability to handle images with pathological structures and 
generalize to different appearances and resolutions.

In contrast, early learning-based approaches quickly showed more promising results and better performance 
than conventional  counterparts1,19–22. The common strategy of these techniques consists on the extraction of 
specifically designed local descriptors that are followed by a relatively simple vessel classifier. Contributions 
found in literature mostly focus on the development of new discriminative visual features rather than on the 
classification sub-task.

The predominance of Machine Learning (ML) techniques was reinforced with the emergence of deep neu-
ral networks. After initial realization that Convolutional Neural Networks (CNN) could outperform previous 
methods, bypassing any manual feature engineering, and directly learning from raw  data23,24, a constant stream 
of publications has emerged on this topic, up to the point that almost any new competitive vessel segmentation 
technique is now based on this approach.
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Standard CNN approaches to retinal vessel segmentation are based on the sequential application of a stack of 
convolutional layers that subsequently downsample and upsample input images to reach a probabilistic predic-
tion of vessel locations. During training, weights of the network are iteratively updated to improve predictions 
by means of the minimization of a miss-classification loss (e.g. Cross-Entropy). Either processing small image 
 patches23 or the entire  image24, these approaches can succeed in segmenting the retinal vasculature only relying 
on a relatively small set of annotated samples.

Extensions to the CNN paradigm tend to involve complex operations, such as specifically designed network 
layers. Fu et al.25 introduced a Conditional Random Field recurrent layer to model global relationships between 
pixels. Shi et al.26 combined convolutional and graph-convolutional layers to better capture global vessel con-
nectivity. Guo et al.27 introduced dense dilated layers that adjust the dilation rate based on vessel thickness, and 
Fan et al.28 proposed a multi-frequency convolutional layer (OctConv). Other custom convolutional blocks and 
layers based on domain knowledge were explored in recent  works29,30.

Specialized losses were also proposed in recent years. Yan et al.31 trained a U-Net  architecture32 by minimiz-
ing a joint-loss that receives output predictions from two separate network branches, one with a pixel-level and 
one with a segment-wise loss. The same authors introduced a similar segment-level approach  in33, whereas 
Mou et al.34 employed a multi-scale Dice loss. Zhao et al.35 proposed a combination of global pixel-level loss and 
local matting loss. Zhang and  Chung36 introduced a deeply supervised approach in which various loss values 
extracted at different stages of a CNN are combined and backpropagated, with artificial labels in vessel borders 
turning the problem into a muti-class segmentation task. Generative Adversarial Networks (GAN) have also 
been proposed for retinal vessel  segmentation37–40, although without achieving widespread popularity due to 
inherent difficulties in training these architectures.

It is also worth reviewing efficient approaches to retinal vessel segmentation, as our contribution intro-
duces high-performance lightweight models. These methods typically appear in works focused on retinal ves-
sel segmentations for embedded/mobile devices. In this context, conventional unsupervised approaches are 
still predominant. Arguello et al.41 employ image filtering coupled with contour tracing. Bibiloni et al.42 apply 
simple hysteresis thresholding, whereas Xu et al.43 adapt Gabor filters and morphological operations for vessel 
segmentation in mobile  devices43. Only recently, Laibacher et al.44 explored efficient CNN architectures specifi-
cally designed for vessel segmentation on eye fundus images. Their proposed M2U-Net architecture leverages 
an ImageNet-pretrained MobileNet  model45 and achieves results only slightly inferior to the state-of-the-art.

Goals and contributions. The goal of this paper is to show that (1) there is no need of designing complex 
CNN architectures to outperform most current techniques on the task of retinal vessel segmentation, and (2) 
when a state-of-the-art model is trained on a particular dataset and tested on images from different data sources, 
it can result in poor performance. On our way to establish these two facts, we make several contributions: 

1. We collate the performance of 20 recent techniques published on relevant venues for vessel segmentation on 
three show well-established datasets, and then show that a simple cascaded extension of the U-Net architec-
ture, referred to here as W-Net, results in outstanding performance when compared to baselines.

2. We establish a rigorous evaluation protocol, aiming to correct previous pitfalls in the area.
3. We test our approach in a large collection of retinal datasets, consisting of 10 different databases showing a 

wide range of characteristics, as illustrated in Fig. 1.
4. Our cross-dataset experiments reveal that domain shift can induce performance degradation in this problem. 

We propose a simple strategy to address this challenge, which is shown to recover part of the lost perfor-
mance.

5. Finally, we also apply our technique to the related problems of Artery/Vein segmentation from retinal fundus 
images and vessel segmentation from OCTA imaging, matching the performance of previous approaches 
with models that contain much fewer parameters.

We believe that our results open the door to more systematic studies of new domain adaptation techniques in the 
area of retinal image analysis: because training one of our models to reach superior performance takes approxi-
mately 20 min in a single consumer GPU, our work can serve as a first step for quick design and experimentation 
with improved approaches that can eventually bridge the generalization gap across different data sources revealed 
by our experiments. To seed research in this direction, we release the code and data to reproduce our results at 
https:// github. com/ agald ran/ lwnet.

Methodology
Baseline U‑Net: structure and complexity. One of the main goals of this work is to explore the lower 
limits of model complexity for the task of retinal vessel segmentation. Accordingly, we consider one of the sim-
plest and most popular architectures in the field of medical image segmentation, namely the U-Net32. A standard 
U-Net is a convolutional autoencoder built of a downsampling CNN that progressively applies a set of filters to 
the input data while reducing its spatial resolution, followed by an upsampling path that recovers the original 
size. U-Nets typically contain skip connections that link activation volumes from the downsampling path to the 
upsampling path via concatenation or addition to recover higher resolution information and facilitate gradient 
flow during training.

Let us parametrize a U-Net architecture φ by the number of times the resolution is downscaled/upscaled k, 
and the number of filters applied in each of these depth levels, fk . To simplify analysis, we only consider filters 
of size 3× 3 , and we double the amount of filters each time we increase k—a common pattern in U-Net designs. 
Therefore, in this work a U-Net is fully specified by a pair of numbers (k, f0 ), and we denote it by φk,f0 . In addition, 
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we assume that Batch-Norm layers are inserted after each convolutional operation and that extra skip connec-
tions are added within each block. An example of such design pattern is shown in the left hand side of Fig. 2. In 
this work, we consider the φ3,8 architecture, which contains approximately 34,000 parameters. It is important to 
stress that this represents 1–3 orders of magnitude less parameters than previously proposed CNNs for the task 
of retinal vessel segmentation.

The W‑Net architecture. To reach higher levels of accuracy without sacrificing simplicity, we make use 
of a straightforward modification of the U-Net architecture, that we refer to as W-Net. W-Net-like cascaded 
architectures are simple stacked U-Nets that have been widely explored in the  past46, the motivation being that 
the final prediction of a model might benefit from knowing model beliefs on the value of nearby labels. The 
W-Net architecture is a particular case of stacked U-Nets with only two sub-networks. In this situation, the idea 
behind a W-Net, denoted by � , becomes straightforward: for an input image x, the result of forward-passing it 
through a standard U-Net φ1(x) is concatenated to x, and passed again through a second U-Net, which would 
be represented as:

In practice, φ1 generates a first prediction of vessels localization that can then be used by φ2 as a sort of atten-
tion map to focus more on interesting areas of the image, as shown in Fig. 2. Of course a W-Net � contains twice 

(1)�(x) = φ2(x,φ1(x))

Figure 1.  This work provides a comprehensive cross-dataset performance study on vessel segmentation. 
This figure shows a representative image from each of the 10 databases used in this paper: (a)  DRIVE1, (b) 
CHASE-DB  12, (c)  HRF3, (d)  STARE4, (e) LES-AV5, (f) IOSTAR 6, (g) DR  HAGIS7, (h) AV-WIDE8, (i)  DRIDB9, 
(j) UoA-DR10. A detailed description of each database is given in Table 2.

Figure 2.  Representation of the WNet architecture. The left-hand-side part of the architecture corresponds to 
a standard minimal U-Net φ3,8 with ∼ 34 K parameters, which achieves performance on-par with the state-of-
the-art. The full W-Net, defined by Eq. (1), is composed of two consecutive U-Nets; it outperforms all previous 
approaches with just around 70 k parameters: 1–3 orders of magnitude less than previously proposed CNNs.
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the amount of learnable parameters as a standard U-Net. However, since the base U-Nets φ1
3,8,φ

2
3,8 involved in 

its definition contain only 34,000 each, the W-Net considered in this paper will have around 68,000 weights, 
which is still one order of magnitude below the simplest architecture proposed to date for vessel segmentation, 
and three orders of magnitude smaller than state-of-the-art architectures.

Training protocol. In all the experiments reported in this paper, the training strategy remains the same. 
Specifically, we minimize a standard cross-entropy loss between the predictions of the model on an image x and 
the actual vessel annotations y (label). It is worth mentioning that in the W-Net case, an auxiliary loss is com-
puted for the output of the first network and linearly combined with the loss computed for the second network:

The loss is back-propagated and minimized by means of the Adam optimization technique. The learning rate 
is initially set to � = 10−2 , and cyclically annealed following a cosine law until it reaches � = 10−8 . Each cycle 
runs for 50 epochs, and we adjust the amount of cycles (based on the size of each training set) so that we reach 
4000 iterations in every experiment.

Images are all resized to a common resolution and processed with standard data augmentation techniques, 
and the batch size is set to 4 in all experiments. During training, at the end of each cycle, the Area Under the ROC 
curve is computed on a separate validation set, and the best performing model is kept. Test-Time-Augmentations 
(horizontal and vertical image flips) are applied during inference in all our experiments.

A simple baseline for domain adaptation. One of the main goals in this paper is to show that, even if 
simple approaches can outperform much more complex current techniques, the problem of retinal vessel seg-
mentation is not as trivial as we may extrapolate from this. The reason is that models trained on a given dataset 
do not reach the same level of performance when tested on retinal images sampled from markedly different 
distributions, as we quantitatively show later in our experiments. A relevant drop of performance appears when 
a model trained on a given source dataset S is used to generate segmentations on a substantially different target 
dataset T .

Attempting to close such performance gap is a task falling within the area of Domain Adaptation, which has 
been subject of intensive research in the computer vision community for the last  years47. Here we explore a simple 
solution to address this challenge in the context of retinal vessel segmentation. Namely, given a model US trained 
on S we proceed by first generating probabilistic segmentations for each image x ∈ T  . We then merge the source 
dataset labels yS with the target dataset segmentations {US (x) | x ∈ T } , which we treat as Pseudo-Labels. Lastly, 
we fine-tune US in this new dataset, starting from the weights of the model trained on S , with a learning rate 
reduced by a factor of 100, for 10 extra epochs. During training, we monitor the AUC computed in the train-
ing set (including both source labels and target Pseudo-Labels) as a criterion for selecting the best model. It is 
worth stressing that Pseudo-Labels US(x) are not thresholded, with the goal of informing the model about the 
uncertainty present on them. The rationale behind this is to force the new model to learn from segmentations in 
S with confident annotations, while at the same time exposing it to images from T  before testing. A graphical 
overview of this strategy is shown in Fig. 3.

Evaluation protocol. Unfortunately, a rigorous evaluation protocol for retinal vessel segmentation is miss-
ing in the literature due to several issues: differences in train/test splits in common benchmarks, or wrongly 
computed performance metrics. Below we outline what we understand as a strict evaluation protocol: 

(2)L(�(x), y) = L(φ1(x), y)+ L(φ2(x), y)

Figure 3.  Domain Adaptation strategy employed in this work: a model trained on source data is used to 
generate Pseudo-Labels on a target dataset. The original source data and the target data with Pseudo-Labels are 
used to fine-tune the model and produce better predictions.
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1. All performance metrics are computed at native image resolution and excluding pixels outside the Field of 
View, which can be trivially predicted as having zero probability of being part of a vessel.

2. Whenever an official train/test split exists, we follow it. When there is none, we follow the least “favorable” 
split we could find in literature: the one assigning less images for training. We make this decision based on 
the low difficulty of the vessel segmentation task; this is in contrast with other works that employ leave-one-
out cross-validation, which can use up to 95% of the data for  training31,48.

3. We first accumulate all probabilities and labels across the training set, then perform AUC analysis and derive 
an optimal threshold (maximizing the Dice score) to binarize predictions. We then apply the same procedure 
on the test set, now using the pre-computed threshold to binarize test segmentations. This stands opposed 
to computing metrics per-image and reporting the mean  performance49, or using a different threshold on 
each test image for binarizing probabilistic  predictions50.

4. Cross-dataset experiments are reported in a variety of different datasets. No pre-processing or hyper-param-
eters are re-adjusted when changing datasets, since this heavily undermines the utility of a method. This is 
a typical shortcoming of unsupervised approaches, which tend to modify certain parameters to account for 
different vessel  calibers6. Also, the threshold to binarize predictions on different datasets is the one derived 
from the original training set, without using test data to readjust it.

5. We do not report accuracy, since this is a highly imbalanced problem; the Dice score is a more suitable fig-
ure of merit. We also report Matthews Correlation Coefficient (MCC), as it is better suited for imbalanced 
 problems51. Sensitivity and specificity computed at a particular cut-off value are avoided, as they are less 
useful when comparing the performance of different models.

Experimental results
In this section, we provide a comprehensive performance analysis of the methodology introduced above.

Datasets. A key aspect of this work is our performance analysis on a wide range of data sources. For intra-
database tests, we compare existing results in literature with each proposed model in this work, using three dif-
ferent public datasets:  DRIVE1, CHASE-DB2 and  HRF3. The train/validation/test splits for DRIVE are provided 
by the authors. We adopt the most restrictive splits we could find in the literature for the other two  datasets44: 
only 8 of the 22 images in CHASE-DB, and 15 of the 45 images in HRF are used for training and validation. After 
training, we test our models on the corresponding (intra-database) test sets.

In our domain adaptation experiments, we also consider seven different datasets to evaluate cross-database 
and the proposed technique. These include a variety of different image qualities, resolutions, pathologies, and 
image modalities. Further details of each of these databases are given in Table 1.

It is worth mentioning that, for training, all images from DRIVE, CHASEDB, and HRF are downsampled 
to a 512× 512 , 512× 512 , and 1024× 1024 resolution respectively, whereas evaluation is carried out at native 
resolution for all datasets. No pre-processing (nor post-processing) was applied.

Performance evaluation. For evaluating our approach, we follow the procedure outlined in the previous 
section, and report AUC, Dice, and MCC values in Table 2. For comparison purposes, we select a large set of 20 
vessel segmentation techniques published in the last years in relevant venues. We also report the performance of 
a standard U-Net φ3,8 , which contains around 34,000 parameters, and the proposed W-Net (with twice as many 
parameters), referred to as Little U-Net/W-Net respectively. In addition, for the Little W-Net case, we run the 

Table 1.  Description of each of the ten datasets considered in this paper in terms of image and population 
characteristics.

Year # ims. Resolution FOV Challenges & Comments

STARE4 2000 20 605 × 700 35◦ Poor quality: scanned and digitized photographs
Healthy and pathological images (10/10)

DRIVE1 2004 40 565 × 584 45◦ Consistent good quality and contrast, low resolution
Mostly healthy patients, some with mild DR (33/40)

CHASE-DB  12 2012 28 999 × 960 30◦ OD-centered images from 10-year old children
Uneven background illumination and poor contrast

HRF3 2013 45 3504 × 2336 60◦ High visual quality, images taken with mydriatic dilation
Healthy, diabetic, and glaucomatous patients (15/15/15)

DRiDB9 2013 50 720 × 576 45◦ Highly varying quality, illumination, and image noise
Mostly diabetic patients of varying grades (36/50)

AV-WIDE8 2015 30 2816 × 1880
1500 × 900 200◦ Uneven illumination, varying resolution due to cropping

Healthy and age-related macular degeneration patients.

IOSTAR 6 2016 30 1024 × 1024 45◦ Scanning Laser Ophthalmoscope images
Macula-centered, high contrast and visual quality

DR  HAGIS7 2017 40 2816 × 1880
4752 × 3168 45◦ Multi-center, multi-device macula-centered images

All diabetic patients with different co-morbities

UoA-DR10 2017 200 2124 × 2056 45◦ Both macula and OD-centered images
Healthy, NP-DR and P-DR patients (56/114/30)

LES-AV5 2018 22 1144 × 1620
1958 × 2196

30◦
45◦

OD-centered images, highly varying illumination
11 healthy and 11 glaucomatous patients
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experiments five times with a different random seed, collect the results, and report the average performance. We 
also show a 95% confidence interval for those performances in Table 3, which contains the true average with a 
probability of p = 0.95 , under the assumption of normally distributed scores. In Table  2, underlined perfor-
mances lie within the confidence intervals of the Little W-Net corresponding performance.

As discussed above, not all techniques were trained on the same data splits for CHASE-DB and HRF datasets. 
Our splits correspond to those used  in44, which is a model specifically designed to be efficient, and therefore 
contains a minimal amount of learnable parameters. Surprisingly, we see that the Little U-Net model surpasses 
the performance  of44 in all datasets, even if it has ∼ 16 times less weights. We note results for Little U-Net are 
already remarkable at this stage, achieving a performance on-par or superior to most of the compared techniques.

When we analyze the performance of the Little W-Net model, we observe that it surpasses, by a wide margin, 
both in terms of AUC and Dice score, the numbers obtained by all the other techniques. This is specially remark-
able when considering that the Little W-Net is a far less complex model than any other approach (excluding Little 
U-Net). The only dataset where Little W-Net fails to reach the highest performance is HRF, which we attribute to 
the mismatch in training and test resolutions. The work  in26, which achieves the state-of-the-art in this dataset, 
was trained on image patches, and it is therefore less susceptible to such mismatch. Nevertheless, the Little W-Net 
achieves the second best ranking in this dataset, within a short distance  from26.

Cross‑dataset experiments and domain adapation. From the above analysis, one could be tempted 
to conclude that the task of segmenting the vasculature on retinal images is practically solved. Nevertheless, the 
usefulness of these models remains questionable if they are not tested for their generalization capabilities beyond 
intra-dataset benchmarks. To exhaustively explore this aspect, we select the W-net model trained on DRIVE 
images, and generate predictions on up to ten different datasets (including the DRIVE test set). We then carry 

Table 2.  Performance comparison of methods trained/tested on DRIVE, CHASE-DB, and HRF. Best results 
are marked bold. A result is underlined whenever it lies within the confidence interval of the Little W-Net 
model (specified in Table 3 below).

# Pub/Year # Params

DRIVE CHASE-DB HRF

AUC Dice MCC AUC Dice MCC AUC DICE MCC

Maninis et al.24 ECCV/2016 – – 82.20 – – – – – – –

Zhang et al.6 TMI/2016 – 96.36 – – 96.06 – – 96.08 – 74.10

Fu et al.25 MICCAI/2016 – 94.04 78.75 – 94.82 75.49 – – – –

Liskowski et al.23 TMI/2016 48,000,000 97.90 – – 98.45 – – – – –

Orlando et al.22 TBME/2017 – 95.07 78.57 75.56 95.24 73.32 70.46 95.24 71.58 68.97

Gu et al.52 TMI/2017 – – 78.86 75.89 – 72.02 69.08 – 77.49 75.41

Wu et al.53 MICCAI/2018 – 98.07 – – 98.25 – – – – –

Yan et al.31 TBME/2018 – 97.52 81.83 – 97.81 – – – 78.14 –

Wang et al.54 BSPC/2019 – – 81.44 78.95 – 78.63 76.55 – – –

Wang et al.55 MICCAI/2019 – 97.72 82.70 – 98.12 80.37 – – – –

Araujo et al.56 MICCAI/2019 – 97.90 – – 98.20 – – – – –

Fu et al.57 MICCAI/2019 – 97.19 80.48 – – – – – – –

Wang et al.58 PatRec/2019 – – 80.93 78.51 – 78.09 75.91 – 77.31 –

Wu et al.59 TMI/2019 – 97.79 – – – – – – – –

Zhao et al.39 TMI/2019 – – 78.82 – – – – – 76.59 –

Laibacher et al.44 CVPR-W/2019 549,748 97.14 80.91 – 97.03 80.06 – – 78.14 –

Shin et al.26 MedIA/2019 7,910,000 98.01 82.63 – 98.30 80.34 – 98.38 81.51 –

Zhao et al.35 PatRec/2020 – – 82.29 – – – – – 77.31 –

Zhuo et al.50 CMPB/2020 – 97.54 81.63 – – – – – – –

Mou et al.34 TMI/2020 56,030,000 97.96 – – 98.12 – – – – –

Little U-Net 34,201 97.98 82.41 79.81 98.22 80.29 78.23 98.11 80.59 78.60

Little W-Net 68,482 98.10 82.79 80.24 98.47 81.69 79.74 98.25 81.03 79.09

Table 3.  Average performance of the Little W-Net model for each of the datasets in Table 2 over 5 training 
runs, with a confidence interval containing the true mean with probability p = 95% , under a normality 
assumption of the performances.

DRIVE CHASE-DB HRF

AUC DICE MCC AUC DICE MCC AUC DICE MCC

98.10± 0.04 82.79± 0.11 80.24± 0.12 98.47± 0.02 81.69± 0.22 79.74± 0.23 98.25± 0.05 81.03± 0.08 79.09± 0.09
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out a performance analysis on each external test set similar to the one described above, and report the results in 
the first row of Table 4. One can observe how the apparently remarkable performance of this model on the intra-
DRIVE test is only maintained on the STARE dataset, which is quite similar in terms of resolution and quality. 
As a general rule, the performance degrades in a cross-database generalization test. In terms of AUC, the four 
worst results correspond to: (1) HRF, which has images of a much greater resolution than DRIVE, (2) LES-AV, 
where images are centered in the optic disc instead of in the macula, (3) AV-WIDE, which contains ultra-wield 
field images of markedly different aspect, and 4) UoA-DR, which has mostly pathological images of different 
resolutions.

We then apply the strategy described in the previous Section: for each dataset we use the model trained on 
DRIVE to generate segmentations that we use as Pseudo-Labels to retrain the same model in an attempt to close 
the performance gap. Results of this series of experiments are displayed in the second row of Table 4, where it can 
be seen that in almost all cases this results in an increased performance in terms of AUC, Dice score, and MCC, 
albeit relatively modest in some datasets. In any case, this implies that the retrained models have a better ability 
to predict vessel locations on new data. Figure 4 illustrates this for two images sampled from the CHASE-DB 
and the LES-AV datasets. Note that DRIVE does not contain optic-disc centered images. For the CHASE-DB 
example, we see that some broken vessels, probably due to the strong central reflex in this image, are recovered 
with the adapted model. In the LES-AV case, we see how an image with an uneven illumination field results in 
the DRIVE model missing much of the vessel pixels in the bottom area. Again, part of this vessels are success-
fully recovered by the adapted model.

Artery/vein segmentation. We also provide results for the related problem of Artery/Vein segmentation. 
It should be stressed that this is a different task than A/V classification, where the the vessel tree is assumed to 
be available, and the goal is to classify each vessel pixel among the two classes. In this case, we aim to classify 
each pixel in the entire image as artery, vein, or background. In order to account for the increased complexity, 
we consider a bigger W-Net composed of two U-Nets φ4,8 , which still contains far less weights than current A/V 
segmentation  models60,61. In addition, we double the number of training cycles, and train with 4 classes having 
into account uncertain pixels, as it has been proven beneficial for this  task60.

Table 5 shows the results of the proposed W-Net, compared with two recent A/V segmentation techniques. In 
this section, we train our model on DRIVE and HRF, following the data splits provided  in61. We also show results 
of a cross-dataset experiment in which a model trained on DRIVE is tested on the LES-AV dataset.

A similar trend as in the previous section can be observed also here: other models designed for the same task 
contain orders of magnitude more parameters than the proposed approach, but we observe an excellent perfor-
mance of the W-Net architecture: it seems competitive with the compared methods, ranking even higher  than61 
in terms of Dice score, and higher  than60 in terms of MCC, at a fraction of computational cost. Some qualitative 
results of the W-Net trained on DRIVE and tested on LES-AV are shown in Fig. 5.

Table 4.  Our domain adaptation strategy improves results in a wide range of external test sets. First row: 
W-Net trained on DRIVE, second row (Pseudo-Labels): same model fine-tuned using the strategy illustrated in 
Fig. 3. Best metric marked in bold. Please note that Dice/MCC are computed in all cases from segmentations 
binarized using a threshold that is optimal for maximizing the Dice score in the training dataset (DRIVE).

Training set

DRIVE CHASE-DB HRF STARE IOSTAR 

AUC DICE MCC AUC DICE MCC AUC DICE MCC AUC DICE MCC AUC DICE MCC

DRIVE 98.09 82.82 80.27 97.22 75.13 72.44 95.90 70.39 68.05 98.11 79.48 77.30 97.97 78.77 76.47

PSEUDO-L 98.09 82.82 80.27 97.56 76.49 74.02 96.12 71.12 68.86 98.28 79.76 77.65 98.06 78.95 76.73

Training Set

DRiDB LES-AV DR HAGIS AV-WIDE UoA-DR

AUC DICE MCC AUC DICE MCC AUC DICE MCC AUC DICE MCC AUC DICE MCC

DRIVE 96.17 68.45 66.62 95.45 76.60 74.32 97.17 67.92 66.79 86.54 61.51 59.02 82.32 38.29 35.51

PSEUDO-L 96.52 68.25 66.59 97.34 77.93 75.92 97.34 68.67 67.49 87.64 62.46 59.97 82.71 37.68 34.97

Figure 4.  The proposed Domain Adaptation strategy recovers some missing vessels. Segmentations produced 
by a model trained on DRIVE (which contains macula-centered images) when using data from CHASE-DB and 
LES-AV (which contain OD-centered images). In (a,b), the retinal image (left), the segmentation by the model 
trained on DRIVE (center) and the one produced by the model trained on pseudo-labels (right).
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OCTA segmentation. While color fundus images represent the most common retinal imaging modality, 
there are better alternatives when the goal is to capture thin vasculature from the foveal area. Increasingly, Opti-
cal Coherence Tomography Angiography (OCTA) has been emerging as an ideal imaging technique that can 
generate high-resolution visualizations of the retinal vasculature. OCTA images are natively 3D, but 2D en face 
images are typically obtained from the acquired volumes by vertically projecting different OCTA flow signals 
within specific slices, which allows to visualize Superficial Vascular Complexes (SVC), Deep Vascular Com-
plexes (DVC), or the inner retinal vascular plexus, which comprises both SVC and DVC (SVC+DVC). However, 
OCTA images (and their 2D projections) are often noisy and hard to process, as can be appreciated in the top 

Table 5.  Performance comparison for the artery/vein segmentation task. For DRIVE, performance is reported 
on the entire image domain | on a ring-shaped region around the Optic  Disc61. Performance is computed 
using the predictions and code provided  by61. ∗Predictions on LES-AV are generated from models trained on 
DRIVE.

# Params

DRIVE HRF LES-AV∗

DICE MCC DICE MCC DICE MCC

Galdran et al.60 ∼29M 96.31 | 96.25 74.79 | 25.07 – – 96.59 70.58

Hhemelings et al.61 ∼5M 96.71 | 95.81 77.57 | 24.67 96.88 76.89 – –

W-Net ∼279K 96.69 | 95.55 77.73 | 25.23 96.89 76.19 96.46 70.30

Figure 5.  Generalization ability of a W-Net trained for A/V segmentation. Results of our model trained on 
DRIVE and tested on (a) DRIVE, (b) LES-AV.

Figure 6.  OCTA vessel segmentation. (a,b): SVC images, (c,d): DVC images, (e,f): SVC+DVC images, (h,i): 
Rose-2 images. The second row shows predicted probabilities and the third rows corresponding manual ground-
truths. Each pair shows representative best and worst case segmentations in the corresponding test set.
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row of Fig. 6. Therefore, they represent an ideal test scenario to measure the efficacy of the proposed minimalistic 
network for segmenting vessel-like structures.

In this case, we rely on a recently released database of OCTA images, the ROSE  dataset62. ROSE is composed of 
two sub-datasets: ROSE-1 contains 117 OCTA images from 39 subjects, acquired with an RTVue XR Avanti SD-
OCT system (Optovue, USA), at an image resolution of 304× 304 , with SVC, DVC and SVC+DVC angiograms. 
ROSE-2 contains 112 OCTA en face angiograms of the SVC, reconstructed from 512× 512 scans, acquired with 
a Heidelberg OCT2 system (Heidelberg Engineering, Heidelberg, Germany). Visual characteristics of both data 
sources are noticeably different, as shown in Fig. 6.

For a fair comparison, in both cases we follow the same train/test splits and report the same evaluation metrics 
as  in62. Performance of some competing methods are also extracted  from62, where the interested reader can find 
more details about the different techniques. Performance comparison with respect to a Little W-Net model is 
shown in Table 6 for the SVC and SVC+DVC sections of ROSE-1, and in Table 7 for the DVC section of ROSE-1 
and for ROSE-2. Note that our architecture was trained in exactly the same fashion as in the fundus images case.

A detailed analysis of the numerical results displayed in Tables 6 and 7 shows a similar trend as in previous 
sections, namely, a minimalistic but properly trained simple architecture such as Little W-Net is enough to 
match and often surpass the state-of-the-art also in this problem. Specifically, results from Table 6 demonstrate 
that Little W-Net can outperform all other competing approaches, including OCTA-Net—a recently introduced 
architecture that is purposefully designed to handle OCTA imaging—in all considered metrics unless in False 
Discovery Rate (FDR), where the most performing method is a simple unsupervised filtering approach (COS-
FIRE), which may actually indicate that FDR is not a suitable metric for this task. Results on Table 7 are slightly 
weaker for Little W-Net, although they tend to confirm its competitive performance. It is worth noting that 
performance in ROSE-2 seems to degrade to a small extent, probably related to the lower visual quality of these 
images, as shown in Fig. 6g,h.

The remainder of this section offers an ablation study with a statistical analysis on the advantages of the W-Net 
architecture with respect to its single U-Net counterpart for the vessel segmentation task, and also a more detailed 
analysis on the computational and memory requirements of our technique.

Ablation study: W‑Net vs U‑Net. As shown above, the iterative structure of the W-Net architecture 
helps in achieving a better performance when compared to the standard U-Net. However, it should be noted 
that W-Net contains twice as many weights as the considered Little U-Net. Since these are two relatively small 
models, it might be that U-Net is simply underfitting, and all the benefits observed in Table 2 just come from 
doubling the parameters and not from any algorithmic improvement.

In view of this, it is worth investigating the question of whether W-Net brings a significant improvement over 
a standard U-Net architecture. For this, we consider a larger U-Net φ3,12 , which actually contains more param-
eters than the above W-Net (76 K vs  68 K). To determine statistically significant differences in AUC and Dice 
between these two models, we train them under the exact same conditions as previously, and after generating 

Table 6.  Performance comparison for OCTA vessel segmentation on ROSE-1 (SVC and SVC+DVC). Best 
results are marked in bold.

# Pub/Year

ROSE-1 (SVC) ROSE-1 (SVC+DVC)

AUC DICE ACC G-mean Kappa FDR AUC DICE ACC G-mean Kappa FDR

IPAC63 TMI/2015 84.20 57.51 82.45 75.17 46.64 48.16 79.41 52.23 80.07 70.54 39.82 52.11

COSFIRE18 MedIA/2015 92.86 75.17 92.27 78.83 70.89 4.71 88.00 66.71 89.81 72.56 61.25 9.88

CE-Net59 TMI/2019 92.92 75.11 91.21 82.56 69.78 19.95 91.55 73.00 89.90 82.03 66.78 24.79

CS-Net64 MICCAI/2019 93.92 76.08 91.52 83.04 70.93 18.83 93.11 74.88 90.73 82.63 69.19 21.37

COOF65 TMI/2020 86.89 66.06 85.30 81.61 56.84 41.21 82.17 56.85 77.62 77.42 43.06 54.65

OCTA-Net62 TMI/2020 94.53 76.97 91.82 83.61 72.01 17.75 93.75 75.76 90.99 83.38 70.22 20.49

Little W-Net 94.95 79.03 92.28 85.78 74.30 18.20 94.05 78.47 92.03 85.20 73.59 18.25

Table 7.  Performance comparison for OCTA vessel segmentation on ROSE-1 (DVC) and ROSE-2. Best results 
are marked in bold.

# Pub/Year

ROSE-1 (DVC) ROSE-2

AUC DICE ACC G-mean Kappa FDR AUC DICE ACC G-mean Kappa FDR

IPAC63 TMI/2015 75.63 9.11 75.22 76.84 6.36 95.10 73.70 55.15 85.92 82.07 47.58 55.90

COSFIRE18 MedIA/2015 85.20 24.05 91.30 85.23 21.99 85.16 77.87 61.42 92.12 77.42 56.99 38.91

CE-Net59 TMI/2019 95.05 57.83 98.43 85.03 57.07 51.47 84.67 70.66 93.77 82.48 67.08 29.30

CS-Net64 MICCAI/2019 96.71 58,84 98.82 81.55 58.25 47.10 85.42 70.10 93.85 82.35 66.58 30.25

COOF65 TMI/2020 81.62 10.03 66.78 78.47 6.49 94.65 74.42 61.12 89.45 81.17 54.98 46.20

OCTA-Net62 TMI/2020 96.73 70.74 99.09 88.11 70.28 34.92 86.03 70.77 93.86 83.15 67.24 30.19

Little W-Net 97.71 70.82 99.27 83.87 70.47 26.14 86.25 69.70 94.23 80.78 66.46 27.23
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the corresponding predicted segmentations on each of the three test sets, we apply the bootstrap procedure as 
 in66,67. This is, each test set is randomly sampled with replacement 100 times so that each new set of sampled data 
contains the same number of examples as the original set, in the same proportion of vessel/background pixels. For 
both models, we calculate the differences in AUCs and Dice scores. Resampling 100 times results in 100 values for 
performance differences. P-values are defined as the fraction of values that are negative or zero, corresponding to 
cases in which the better model in each dataset performed worse or equally than the other model. The statistical 
significance level is set to 5 % and, thus, performance differences are considered statistically significant if p < 0.05 . 
The resulting performance differences are reported in Table 8, were we refer to the U-Net φ3,12 as “Big U-Net”. 
We see that, in all cases, the larger U-Net’s results are slightly better than the smaller U-Net in Table 2, but the 
performance of the W-Net is still significantly higher, even if it has approximately 10% less weights.

Computational and memory requirements. The reduced complexity of the models proposed in this 
paper enhance their suitability for resource-constrained scenarios, both in terms of training them and of deploy-
ing them in, e.g., portable devices. Training a little U-Net and a little W-Net to reach the performance shown in 
Table 2 is feasible even without a GPU. When training on a single GPU (GeForce RTX 2080 Ti), the training time 
of a little U-Net on the datasets shown in Table 2 was 24 mins (DRIVE), 22 mins (CHASE-DB) and 102 mins 
(HRF), whereas the little W-Net took 32 mins (DRIVE), 30 mins (CHASE-DB) and 140 mins (HRF). Regarding 
disk memory requirements, Table 9 shows a comparison of both architectures with another two popular models 
in terms of performance vs. number of parameters/disk size. We see that a little U-Net, which already attains 
a great performance, has the lowest disk storage space (161Kb), and the top-performant W-Net takes approxi-
mately twice this space, which is still well within limits for its deployment in embedded/portable devices. It must 
be noted, however, that in both cases the inference time was slightly slower when compare to other efficient 
approaches, partly due to implementation of Test-Time Augmentation.

Discussion
The results presented in this paper might seem surprising to the reader, and are worth further discussion. With 
the steady apparent improvements in the literature CNN architectures for vessel segmentation, how might it be 
possible that a simpler approach outperforms most recently introduced methods? For example, the technique 
 in31 employs a similar architecture, but at a larger scale, and with an improved loss function that handles thin 
vessels in a dedicated manner, yet it appears to deliver inferior performance than the Little W-Net. We believe 
the reason behind the success of our approach lies on the training process, that leverages modern practices like 
cyclical learning rates, adequate early-stopping in terms of AUC on a separate validation set, and Test-Time Aug-
mentation which, in our opinion should be always included. It is important to stress that this paper does not claim 
any superiority of the Little W-Net architecture with respect to other methods. Rather, our main message is that 
vessel segmentation problem from retinal fundus images can be successfully solved on standard datasets without 
complex artefacts, but such approach will unlikely generalize well. New contributions should be examined criti-
cally in the future. Connected to this, we recommend the application of meticulous evaluation protocols like the 
one detailed previously. In particular, some of the metrics commonly reported in previous works are of uncertain 
interest, and should be avoided. For example, accuracy is not a good measure in such an imbalanced problem. 
Reporting specificity and sensitivity conveys little information for deciding when one method is superior or not 
to another. We believe the combination of AUC, Dice score and Matthews Correlation Coefficient represents a 

Table 8.  Performance comparison between a W-Net and a U-Net configured to have a comparable amount of 
weights. W-Net achieves higher performance, despite having slightly less parameters. Statistically significant 
results marked bold.

# Params

DRIVE CHASE-DB HRF

AUC DICE AUC DICE AUC DICE

“Big” U-Net 76,213 98.00 82.53 98.29 81.09 98.15 80.73

Little W-Net 68,482 98.09 82.78 98.44 81.52 98.24 81.05

W-Net vs U-Net −  7731 +0.09
p<0.05

+0.25
p<0.05

+0.15
p<0.05

+0.43
p<0.05

+0.09
p<0.05

+0.32
p<0.05

Table 9.  Parameters and memory requirements vs performance for several retinal vessel segmentation 
models.

# Params Size

DRIVE CHASEDB HRF

AUC DICE AUC DICE AUC DICE

DRIU24  15M 57MB n/a 82.20 n/a n/a n/a n/a

M2U-Net44 0.5 M 550 kb 97.14 80.91 97.03 80.06 n/a 78.14

Little U-Net 34 K 161 kb 97.98 82.41 98.22 80.68 98.11 80.59

Little W-Net 68 K 325 kb 98.09 82.82 98.44 81.55 98.24 81.04
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better approach to performance measurement in this problem. We hope that the release of all our code will favor 
reproducibility and rigorous benchmarking of vessel segmentation techniques in the future.

Another point worth stressing is the role that image resolution plays in vessel segmentation. The DRIVE 
database, the most common benchmark, has a resolution of 584× 565 , which is considerably far from that of 
state-of-the-art fundus cameras, or useful to practical applications. As argued  in68, developing new methods 
guided by the performance in this database diminishes the technical advantages brought to the field by more 
advanced imaging instruments. We believe relatively old datasets like DRIVE or STARE have been sufficiently 
studied, and reporting should switch to modern high-resolution databases as soon as possible. Lack of data is 
not a challenge anymore, as recent but less known databases (see Table 1) are largely ignored in publications in 
an effort to to compare with previous approaches. Our results on a large number of data sources may encourage 
research in this direction. In this sense, note that for the CHASE-DB and HRF databases, our architecture was 
trained on downsampled images, which were approximately half the native resolution of the original samples 
(although all tests were carried out at native resolution by a posteriori upsampling of the predictions), which is 
a relevant limitation. Results in this paper provide an adequate baseline from which to improve performance 
based, e.g., on the design of smart patch-based methods that can handle varying resolutions seamlessly, or more 
exotic super-resolution approaches.

The minimal size of the models introduced in this paper enables relevant applications. A Little W-Net takes 
up a disk space of 161Kb, which turns it into an ideal candidate for its deployment on portable devices. The the 
reduced number of parameters allowed us to duplicate the size of a standard U-Net, which brought noticeable 
performance improvements at an acceptable computational cost.

Conclusions
This paper reflects on the need of constructing algorithmically complex methodologies for the task of retinal 
vessel segmentation. In a quest for squeezing an extra drop of performance on public benchmark datasets and 
adding certain novelty, recent approaches for this topic show a trend on developping overcomplicated pipelines 
that may not be necessary for this task. The first conclusion to be drawn from our work is that sometimes Occam’s 
razor works best: minimalistic models, properly trained, can attain results that do not significantly differ from 
what one can achieve with more complex approaches.

Another point worth stressing is the need of rigor in evaluating retinal vessel segmentation techniques. 
Employing overly favorable train/test splits or incorrectly computing performance leads to reporting inflated 
metrics, which in turn saturate public benchmarks and provides a false confidence that the retinal vessel seg-
mentation is unchallenging. Our experiments on a wide range of datasets reveal that this is not the case, and 
that retinal vessel segmentation is indeed an ideal area for experimenting with domain adaptation techniques. 
This is so because a) performance of models trained on a source dataset rapidly degrades when testing on a 
different kind of data, and b) training models to achieve high performance is cheap and fast, which enables fast 
experimentation of new ideas.
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