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Differentiating amnestic 
from non‑amnestic mild cognitive 
impairment subtypes using 
graph theoretical measures 
of electroencephalography
Jae‑Gyum Kim1,4, Hayom Kim1,4, Jihyeon Hwang1, Sung Hoon Kang2, Chan‑Nyoung Lee1, 
JunHyuk Woo3, Chanjin Kim3, Kyungreem Han3, Jung Bin Kim1* & Kun‑Woo Park1

The purpose of this study was to explore different patterns of functional networks between amnestic 
mild cognitive impairment (aMCI) and non-aMCI (naMCI) using electroencephalography (EEG) graph 
theoretical analysis. The data of 197 drug-naïve individuals who complained cognitive impairment 
were reviewed. Resting-state EEG data was acquired. Graph analyses were performed and compared 
between aMCI and naMCI, as well as between early and late aMCI. Correlation analyses were 
conducted between the graph measures and neuropsychological test results. Machine learning 
algorithms were applied to determine whether the EEG graph measures could be used to distinguish 
aMCI from naMCI. Compared to naMCI, aMCI showed higher modularity in the beta band and lower 
radius in the gamma band. Modularity was negatively correlated with scores on the semantic fluency 
test, and the radius in the gamma band was positively correlated with visual memory, phonemic, 
and semantic fluency tests. The naïve Bayes algorithm classified aMCI and naMCI with 89% accuracy. 
Late aMCI showed inefficient and segregated network properties compared to early aMCI. Graph 
measures could differentiate aMCI from naMCI, suggesting that these measures might be considered 
as predictive markers for progression to Alzheimer’s dementia in patients with MCI.

Mild cognitive impairment (MCI) has been considered as a transitional cognitive state between normal aging and 
dementia1. There is growing interest in MCI as the drugs currently available to treat Alzheimer’s disease (AD) can 
only suppress symptoms of dementia for a limited period, they cannot stop or reverse disease progression2. MCI 
is a heterogeneous group with diverse prognosis, where some progress to dementia, remain as MCI, or recover 
to normal cognition; therefore, classification of MCI is important for predicting outcomes and establishing 
treatment strategies3. MCI can be categorized into several subtypes based on the number of impaired domains 
(single- vs. multi-domain) and impairment of the memory domain (amnestic vs. non-amnestic)1,4.

Among the subtypes of MCI, the amnestic form of MCI (aMCI) is more likely to convert to AD dementia 
than other subtypes of MCI and healthy elders3,5; thus, aMCI has been regarded as a precursor of AD dementia. 
Several lines of evidence suggest that treatment with acetylcholine esterase inhibitors may delay progression 
to AD in patients with aMCI6,7. Given the possibility of attempting therapeutic interventions, early detection 
of aMCI before conversion to AD is critical in the management of patients with cognitive decline. Moreover, 
classification of aMCI into early and late stages may provide insight into underlying etiology, pathophysiology, 
and prognosis, which could ultimately provide important information for establishing a treatment strategy8,9.

It is widely accepted that cognitive dysfunction in AD could be attributed to a functional disconnection 
between distant brain areas10,11. Integration of neural activities between different brain regions is required for 
physiological brain functioning; therefore, analyzing the disruption of functional connectivity (FC) between 
brain regions may provide more information regarding pathophysiological mechanisms than investigating the 
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activities of individual brain regions in AD. Various neuropathological, electrophysiological, and neuroimag-
ing studies have provided evidence that AD disrupts the integration of FCs between brain regions, leading to 
cognitive decline10,12–15. Furthermore, a FC analysis using resting-state electroencephalography (EEG) showed 
an altered neural coupling in MCI as well as AD, and the degree of alteration was greater in AD than MCI15. 
These findings suggest that FC indices could be a useful biomarker to quantitatively evaluate abnormalities in 
the MCI-AD continuum15. Although identifying distinct patterns of FC in each subtype of MCI might provide 
important information for differentiating etiologies and predicting prognosis16, there is a paucity of studies 
comparing FC properties between subtypes of MCI17.

Recent advances in graph theoretical network analysis enable the assessment of the topological architecture 
of complex human brain networks18,19. Therefore, graph theoretical analysis could be an optimal framework for 
quantitatively characterizing network properties in each subtype of MCI. A recent study showed disintegrated 
resting-state network properties in patients with aMCI relative to controls by applying graph theoretical network 
analysis20. In addition, another EEG graph analysis revealed that aMCI small-world architecture presents midway 
topological properties between healthy controls and AD, supporting the hypothesis that aMCI is a precursor 
of AD dementia21,22. To the best of our knowledge, there is no EEG study applying graph theoretical analysis to 
explore distinct patterns of FC in each subtype of MCI. Herein, we aimed to compare the FC properties between 
aMCI and non-aMCI (naMCI) to explore the distinct patterns of aMCI networks and evaluate the usefulness 
of EEG graph measures for differentiating aMCI from naMCI using machine learning algorithms without com-
prehensive neuropsychological tests. We hypothesized that aMCI might have less integrated FC than naMCI 
and that late aMCI might have much less integrated FC than early aMCI. We also hypothesized that using graph 
measures reflecting network integration and segregation may enable discrimination between aMCI and naMCI 
with high accuracy.

Methods and materials
Participants.  A dataset of neuropsychological tests from 1598 drug-naïve individuals who complained of 
cognitive impairment was reviewed. Among the individuals, 197 patients with MCI who completed the EEG 
recordings were included in this study. MCI was operationally defined as follows: (1) subjective memory com-
plaints by the patient and/or caregiver; (2) objective cognitive impairment below − 1.0 SD in one or more cogni-
tive domains assessed using comprehensive neuropsychological test; (3) no significant impairment in activities 
of daily living; and (4) no dementia23,24. Compared to the age and education norms, MCI patients with below 
− 1.0 SD in-memory domain scores were classified as aMCI, and otherwise were classified as naMCI. Within the 
aMCI, patients with memory domain scores in the range of − 1.5 SD to − 1.0 SD below norms were classified as 
early aMCI, and those with < − 1.5 SD below norms were classified as late aMCI4,9. A flow chart of the participant 
classification is shown in Fig. 1. The study followed the ethical guidelines of the Declaration of Helsinki and was 
approved by the local ethics committee of the Korea University Anam Hospital (No. 2021AN0021). Informed 
consent was obtained from all individual participants included in the study.

Neuropsychological tests.  The Mini-Mental State Examination (MMSE) was used to assess global neuro-
cognitive function. All participants underwent neuropsychological testing using the Seoul Neuropsychological 
Screening Battery second edition (SNSB-II)25. We chose to use eight cognitive measures, which were representa-
tive and important neuropsychological tests to evaluate five cognitive domains as follows: (1) Memory: the Seoul 

Figure 1.   A flow chart of participant classification.
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Verbal Learning Test (SVLT) delayed recall (verbal memory) and Rey-Osterrieth Complex Figure Test (RCFT) 
delayed recall (visual memory); (2) Language: Korean version of the Boston Naming Test (K-BNT); (3) Visu-
ospatial function: RCFT copying Test; (4) Frontal executive function: tasks for animal names and supermarket 
items and a phonemic portion of the Controlled Oral Word Association Test (COWAT) and the Stroop Test 
(color reading); and (5) Attention: Digit Span Test forward and backward. Results with numeric and continuous 
values were used in the analysis.

EEG recording.  The EEG examination was performed for 30  min using a 32-channel recording system 
(COMET plus, Grass Technologies Inc., West Warwick, RI, USA) with 19 scalp electrodes (Fp1, Fp2, F7, F8, F3, 
F4, T3, T4, C3, C4, T5, T6, P3, P4, O1, O2, Fz, Cz, and Pz) placed according to the international 10–20 system. 
EEG data were sampled at 200 Hz, and the bandpass filter was set between 0.1 and 70 Hz. Ten non-consecutive 
resting-state 2-s epochs for each participant were carefully reviewed and selected by two board-certified neu-
rologists according to the following protocol: (1) presence of continuous physiological alpha activity with voltage 
maximum in posterior regions; (2) absence of artifacts, epileptiform discharges, and other nonstationary ele-
ments; and (3) absence of patterns indicating drowsiness or arousal. Resting-state EEG data were used for the 
analysis of the functional networks in this study.

Graph theoretical and statistical analyses.  Resting-state FC was evaluated by coherence, which 
reflects the level of functional signal communication between different regions of the brain26. Coherence was 
defined as COHxy = k2xy
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y, and Sxx(f) and Syy(f) are the auto-spectral densities of x and y, respectively. where K represents the coherency 
function. |S| denotes the modulus of S. The coherence value ranged between 0 and 1, with 0 denoting no statisti-
cal relationship and 1 being full coherence26. The epochs were then bandpass filtered into the following fre-
quency bands: delta (0.1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–50 Hz). The 
subsequent analyses were performed separately for each band. Network properties were characterized using a 
weighted undirected network model of graph-theoretic analysis to avoid the arbitrariness of threshold selection 
and preserve the continuous nature of the correlated information27. Graph measures (average degree, average 
strength, radius, diameter, characteristic path length, global efficiency, local efficiency, clustering coefficient, 
transitivity, modularity, assortativity, and small-worldness) were computed using the Brain Connectivity Tool-
box (http://​www.​brain-​conne​ctivi​ty-​toolb​ox.​net) and BRAPH toolbox (http://​braph.​org) working on MATLAB 
R2019b (MathWorks, Natick, MA, USA)27,28. Graph measures were compared between aMCI and naMCI, as 
well as between early aMCI and late aMCI groups using non-parametric tests with 5000 permutations. Statistical 
significance was set at P < 0.05 and corrected for multiple comparisons using the false discovery rate (FDR). Dif-
ferences in the neuropsychological test results between the groups were compared using an independent t-test. 
Correlation between the neuropsychological test results and graph measures found to be discriminant between 
aMCI and naMCI was evaluated using Pearson’s correlation analysis (P < 0.05).

Machine learning applications.  Two EEG graph measures (i.e., modularity in beta band and radius 
in gamma band) which manifested significant differences between aMCI and naMCI groups were chosen for 
the input features for machine learning algorithms. In addition, two essential clinical information (i.e., sex 
and MMSE total score) were also used as input features. Since we aimed to determine whether aMCI could 
be screened based on resting-state EEG-based parameters that can be obtained without comprehensive neu-
ropsychological tests reproducibly, the features related to SNSB-II were not considered in the machine learning 
tasks. Approaches of feature selection for applying machine learning algorithms are described in our previous 
studies29,30. To evaluate the utility of the selected input features to discriminate the two groups (i.e., aMCI and 
naMCI), six different traditional machine learning methods were implemented using Python’s Orange toolbox 
(v.3.29.3)31: logistic regression, support vector machine (SVM)32, random forest classifiers33, gradient boosting, 
neural network, and naïve Bayes34. Six EEG graph measures (i.e., degree, strength, global efficiency, local effi-
ciency, clustering coefficient, and transitivity in gamma band) which manifested significant differences between 
early aMCI and late aMCI groups were chosen for the input features for machine learning algorithms. The 
above-mentioned machine learning algorithms were applied to distinguish between early aMCI and late aMCI. 
The classification of machine learning methods was validated using a random sampling algorithm with 70% 
of the data used for training and balance for testing. A stratified random sampling strategy was used, and the 
procedure was repeated 10 times. The performance of each classifier was evaluated using a confusion matrix that 
contains the parameters of precision, recall, accuracy, and F1 score, as follows:

Precision =
TP

(TP + FP)

Recall =
TP

(TP + FN)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)

http://www.brain-connectivity-toolbox.net
http://braph.org
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where TP, FP, TN, and FN refer to the number of true positives, false positives, true negatives, and false negatives, 
respectively. Recall and specificity were computed to generate receiver operating characteristics. The area under 
the curve for receiver operating characteristics was also computed.

Results
Demographic characteristics and neuropsychological tests.  The differences in demographic char-
acteristics and neuropsychological tests between the groups are shown in Table 1. The proportion of women 
was lower in the aMCI group than in the naMCI group. The performance in neuropsychological tests, which 
included MMSE total score, SVLT delayed recall, RCFT delayed recall, K-BNT, RCFT copy, COWAT animal, and 
supermarket, and Stroop test was poorer in the aMCI group than in the naMCI group (all P < 0.05). The dura-
tion of education was shorter in the early aMCI group than in the late aMCI group. There was no difference in 
the performance of neuropsychological tests, except SVLT delayed recall and RCFT delayed recall, between the 
early and late aMCI groups.

Graph theoretical analyses.  FC in terms of coherence is represented by the adjacent matrices in Fig. 2. 
Comparisons of global graph measures between the aMCI and naMCI groups are shown in Table 2. Compared 
to naMCI, higher modularity in the beta band and lower radius in the gamma band were found in aMCI (FDR-
corrected P < 0.05). Comparisons of global graph measures between early and late aMCI are presented in Table 3. 
Compared to early aMCI, late aMCI showed lower degree, strength, global efficiency, local efficiency, clustering 
coefficient, and transitivity in the gamma band (FDR-corrected P < 0.05).

Correlation analyses.  The radius in the gamma band was positively correlated with RCFT delayed recall 
(r = 0.208, P = 0.003), COWAT phonemic fluency (r = 0.236, P = 0.001), and COWAT semantic fluency (r = 0.164, 
P = 0.021; Fig. 3A–C). Modularity in the beta band was negatively correlated with COWAT semantic (super-
market items) fluency (r = − 0.155, P = 0.030; Fig. 3D). There was no relationship between the results of other 
neuropsychological tests and the graph measures found to be discriminant between aMCI and naMCI (radius in 
gamma band and modularity in beta band).

Machine learning applications.  The four variables (sex, MMSE total score, modularity in the beta band, 
and radius in gamma band) found to be possible predictors of aMCI in group comparisons were selected for 
use as input features in machine learning algorithms. The performances of the machine learning algorithms 
are presented in Fig. 4. The F1 scores for classification between aMCI and naMCI were 0.890 for naïve Bayes, 
0.875 for the random forest, 0.875 for neural network, 0.853 for SVM, 0.848 for logistic regression, and 0.832 
for gradient boosting. The six variables (degree, strength, global efficiency, local efficiency, clustering coefficient, 
and transitivity in gamma band) found to be different measures in group comparisons between early aMCI and 
late aMCI were selected for use as input features in machine learning algorithms. The F1 scores for classification 

F1 score =
2× precision× recall

precision+ recall

Table 1.   Demographic characteristics and results of neuropsychological tests. aMCI amnestic mild cognitive 
impairment, naMCI non-amnestic mild cognitive impairment, MMSE Mini-Mental State Examination, SVLT 
Seoul Verbal Learning Test, RCFT Rey-Osterrieth Complex Figure Test, DST Digit Span Test, K-BNT the 
Korean version of the Boston Naming Test, COWAT​ controlled oral word association test. Significant values are 
in [bold].

aMCI (n = 139) naMCI (n = 58) P Early aMCI (n = 35) Late aMCI (n = 104) P

Age (years) 73.83 ± 9.10 74.03 ± 7.05 0.877 74.40 ± 7.61 73.63 ± 9.57 0.668

Female sex (n, %) 65 (46.76) 41 (70.69) 0.002 16 (45.71) 49 (47.11) 0.886

Education years 9.03 ± 5.16 7.52 ± 4.56 0.054 7.31 ± 5.60 9.61 ± 4.90 0.023

MMSE total score 23.95 ± 3.83 26.03 ± 3.01  < 0.001 23.69 ± 4.13 24.04 ± 3.75 0.639

SVLT delayed recall − 1.63 ± 0.92 0.00 ± 0.77  < 0.001 − 0.76 ± 0.76 − 1.93 ± 0.77  < 0.001

RCFT delayed recall − 1.27 ± 0.94 0.01 ± 0.68  < 0.001 − 0.77 ± 0.93 − 1.44 ± 0.88  < 0.001

DST forward 0.85 ± 1.02 0.99 ± 0.98 0.372 0.88 ± 0.92 0.84 ± 1.04 0.856

DST backward − 0.36 ± 1.28 − 0.12 ± 1.16 0.224 − 0.62 ± 1.21 − 0.27 ± 1.30 0.168

K-BNT − 0.59 ± 1.87 0.22 ± 1.33 0.001 − 0.35 ± 1.54 − 0.67 ± 1.97 0.373

RCFT copy − 0.85 ± 1.81 − 0.05 ± 0.94  < 0.001 − 0.61 ± 1.11 − 0.94 ± 1.99 0.356

COWAT animal − 0.76 ± 1.09 − 0.08 ± 1.19  < 0.001 − 0.54 ± 0.94 − 0.84 ± 1.13 0.160

COWAT supermarket − 0.67 ± 0.84 0.14 ± 1.08  < 0.001 − 0.50 ± 0.75 − 0.73 ± 0.87 0.175

COWAT phonemic − 0.83 ± 1.04 − 0.58 ± 0.91 0.108 − 0.71 ± 0.88 − 0.86 ± 1.09 0.475

Stroop test − 0.92 ± 1.53 − 0.19 ± 1.09 0.001 − 1.11 ± 1.79 − 0.86 ± 1.44 0.417
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between early aMCI and late aMCI were 0.872 for SVM and logistic regression, 0.865 for neural network, 0.788 
for random forest, 0.776 for gradient boosting, and 0.661 for naïve Bayes.

Discussion
We investigated differences in resting-state EEG FC between aMCI and naMCI patients using graph theoretical 
analysis. We found that patients with aMCI showed higher modularity in the beta band and lower radius in the 
gamma band relative to those with naMCI. Modularity in the beta band was associated with lower COWAT 

Figure 2.   Adjacency matrices of coherence. The plots show the coherence between 19 pairs of scalp 
electroencephalography electrodes in each frequency band in non-amnestic mild cognitive impairment 
(naMCI), overall amnestic mild cognitive impairment (aMCI), early aMCI, and late aMCI.

Table 2.   Comparisons of graph measures between aMCI and naMCI. aMCI amnestic mild cognitive 
impairment, naMCI non-amnestic mild cognitive impairment. Bold font with an asterisk (*) represents 
statistical significance (false discovery rate-corrected P < 0.05).

Graph measures

Delta Theta Alpha Beta Gamma

aMCI naMCI aMCI naMCI aMCI naMCI aMCI naMCI aMCI naMCI

Degree 12.402 12.278 10.414 10.307 9.956 10.285 10.219 10.664 12.448 12.465

Strength 6.599 6.500 4.849 4.877 4.429 4.634 4.527 4.837 6.153 6.414

Radius 12.674 8.417 18.963 10.654 5.711 6.253 7.116 7.228 9.186* 16.029*

Diameter 17.759 13.517 23.131 14.770 9.772 10.504 12.068 12.408 16.620 23.787

Characteristic path length 4.193 3.846 5.104 4.225 3.838 3.898 4.221 4.082 4.415 5.588

Global efficiency 0.443 0.444 0.383 0.384 0.365 0.375 0.361 0.372 0.417 0.428

Local efficiency 1.088 1.081 0.793 0.809 0.718 0.747 0.714 0.760 0.970 1.047

Clustering coefficient 0.408 0.404 0.323 0.328 0.301 0.305 0.297 0.312 0.366 0.380

Transitivity 0.666 0.648 0.511 0.515 0.463 0.475 0.480 0.506 0.588 0.618

Modularity 0.140 0.154 0.241 0.257 0.277 0.260 0.242* 0.219* 0.156 0.141

Assortativity 0.145 0.153 0.218 0.209 0.212 0.203 0.286 0.275 0.136 0.125

Small-worldness 0.865 0.883 1.022 0.868 0.894 0.908 0.875 0.892 0.890 0.839
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Table 3.   Comparisons of graph measures between early aMCI and late aMCI. aMCI amnestic mild cognitive 
impairment. Bold font with an asterisk (*) represents statistical significance (false discovery rate-corrected 
P < 0.05).

Graph measures

Delta Theta Alpha Beta Gamma

Early aMCI Late aMCI Early aMCI Late aMCI Early aMCI Late aMCI Early aMCI Late aMCI Early aMCI Late aMCI

Degree 12.126 12.320 10.129 10.298 10.229 10.008 10.854 10.199 13.296* 12.093*

Strength 6.335 6.475 4.723 4.830 4.634 4.434 4.815 4.535 7.263* 5.846*

Radius 6.306 14.743 12.471 6.276 6.867 5.719 7.433 7.302 12.196 12.503

Diameter 11.293 20.038 16.588 10.444 11.078 9.843 12.191 12.576 20.690 20.466

Characteristic path length 3.481 4.570 4.419 3.800 4.020 3.868 4.007 4.321 4.787 5.153

Global efficiency 0.435 0.440 0.379 0.382 0.376 0.364 0.373 0.358 0.470* 0.401*

Local efficiency 1.042 1.068 0.777 0.800 0.753 0.715 0.746 0.714 1.215* 0.918*

Clustering coefficient 0.397 0.401 0.321 0.327 0.307 0.299 0.302 0.300 0.423* 0.351*

Transitivity 0.643 0.647 0.501 0.512 0.471 0.462 0.481 0.488 0.669* 0.572*

Modularity 0.153 0.153 0.268 0.250 0.271 0.274 0.242 0.234 0.135 0.158

Assortativity 0.162 0.143 0.219 0.209 0.183 0.210 0.259 0.284 0.101 0.142

Small-worldness 0.978 0.841 0.855 0.868 0.875 0.894 0.887 0.900 0.832 1.088

Figure 3.   Results of correlation analyses.
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semantic fluency test, and radius in the gamma band was correlated with higher RCFT delayed recall, COWAT 
phonemic fluency, and COWAT semantic fluency tests. The naïve Bayes algorithm with modularity in the beta 
band, radius in the gamma band, sex, and MMSE total score as input features could classify aMCI and naMCI 
with 89% accuracy. In subgroup analysis, patients with late aMCI showed lower average degree, average strength, 
global efficiency, local efficiency, clustering coefficient, and transitivity in the gamma band than those with early 
aMCI. The SVM and logistic regression with the six graph measures could classify early aMCI and late aMCI 
with 87% accuracy.

Modularity is a global graph measure of network segregation35,36, calculated by partitioning a network into 
groups of modules with high connectivity within modules relative to the connectivity between regions in distinct 
modules37,38. Thus, our finding of higher modularity in aMCI relative to naMCI suggests that the network prop-
erty of aMCI may be more segregated than that of naMCI. Eccentricity refers to the maximal distance between a 
certain node and any other node, and radius represents the minimum eccentricity of all nodes in the network27,28. 
Since dense networks have many connections between the nodes in the network, the eccentricity would be higher 
than that of disconnected or sparse networks. Therefore, we speculate that our finding of a lower radius in aMCI 
might be attributed to sparse long-distance FC. Collectively, our findings of graph measures suggest that patients 
with aMCI have segregated networks.

It is generally accepted that flexible reconfiguration across brain regions and networks is required for complex 
cognitive processing18,39. Converging findings from multimodal neuroimaging studies suggested that disrupted 
integration in large-scale brain networks may be critical pathophysiological mechanisms underlying AD and 
that these segregations might be responsible for the cognitive deficits40–42. In an EEG graph theoretical analysis, 
characteristic path length was found to be longer in beta band in patients with AD relative to healthy controls, 
and the longer path length was associated with the lower MMSE scores for all participants13. Our findings of 
inefficient and less integrated network property found in aMCI relative to naMCI are similar to those of AD in 
the aforementioned studies. Additionally, our findings of late aMCI with much less integrated networks than early 

Figure 4.   Performance of machine learning algorithms for classification between aMCI and naMCI. The 
receiver operating characteristic (ROC) curve of the naïve Bayes classifier is plotted (left panel). F1 scores in 
each machine learning algorithm are presented in the right panel. Abbreviations: AUC, the area under the curve; 
SVM, support vector machine.
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aMCI suggest that the degree of network segregation may be associated with the severity of cognitive deficits, 
which could support the notion that early aMCI, late aMCI, and AD are on the spectrum of cognitive decline.

The relationships between the graph measures and cognitive function tests reflecting domains other than 
memory, particularly frontal executive function, imply that resting-state EEG-based graph measures could sen-
sitively detect the predisposition of cognitive decline and predict the possibility of transition to dementia with 
impairments of two or more cognitive domains. A recent longitudinal study showed that aMCI patients with 
frontal executive dysfunction had a higher risk of dementia conversion than those with visuospatial or language 
dysfunction, supporting our speculation43. Several lines of evidence suggest that indices from FC analysis of EEG 
could be considered as a marker for the diagnosis of AD or cognitive decline13,44,45. A significant decrease in EEG 
synchrony in alpha and beta bands was observed in patients with AD compared with healthy controls and MCI, 
and the loss of synchronization in the beta band was found to be associated with lower cognitive scores44,45. An 
EEG graph theoretical analysis found that the characteristic path length in the beta band was significantly longer 
in patients with AD than in controls13. Although each study used different indices to evaluate FC, these findings 
commonly suggest that altered FC in the high-frequency band might be implicated in the pathophysiology of AD 
and cognitive decline AD pathophysiology and cognitive decline. Our finding of segregated network property 
in late aMCI was found mainly in the gamma band, which may be in line with previous studies suggesting the 
important role of high-frequency synchronization in cognitive processing46,47.

We observed that machine learning algorithms using the four parameters (modularity in beta band, radius 
in gamma band, sex, and MMSE total score) as input features were highly accurate in differentiating aMCI from 
naMCI. Considering that neuropsychological tests require a relatively long time to perform, machine learning 
algorithms using features based on short-term resting-state EEG might be considered as convenient screening 
tools for differentiating aMCI from naMCI. Future prospective studies with large populations are required to 
verify the reliability of the application of machine learning algorithms for detecting aMCI.

Our study has several limitations. First, this was a cross-sectional study; therefore, the value of graph theoreti-
cal measures for predicting prognosis is speculative. Second, our study was based on the population of patients 
who were referred to the single university-affiliated hospital; therefore, it may be difficult to apply our findings 
to the general population. Third, although evaluation of the AD-specific biomarker has become important in 
classifying MCI and diagnosing AD spectrum disease, we could not evaluate the amyloid status in the present 
study. Finally, since the normal aging population was not included in this study, we could not understand the 
network changes in the spectrum from normal aging through aMCI to AD. Nevertheless, this is the first study 
to apply resting-state EEG network analysis to differentiate aMCI from naMCI in a relatively large population. 
Notably, it is the strength of our study that all patients were included in the drug-naïve state, which allowed us to 
exclude drug effects on the EEG results. Moreover, the results of a machine learning classifier that discriminated 
aMCI and naMCI with relatively high accuracy using EEG graph measures without the results of comprehensive 
neuropsychological tests may provide insight into the application of machine learning methods using EEG indices 
in the diagnosis of aMCI to establish a treatment strategy to prevent conversion to AD.

Conclusion
We found that the functional network of aMCI is segregated relative to that of naMCI by applying resting-state 
EEG FC analysis for the first time, and the properties of aMCI are similar to those of the previously reported AD 
network. Based on our findings, graph theoretical measures, particularly modularity and radius in high-frequency 
bands, could differentiate aMCI from naMCI, might be considered as predictive markers for progression to AD 
in patients with MCI. Since the findings were derived from EEG data of a short period, our results should be 
interpreted with caution. Further longitudinal studies with large populations and using data of more prolonged 
period are required to validate the accuracy of predicting AD conversion in MCI using graph theoretical meas-
ures. Moreover, further studies with large populations are needed to determine whether the machine learning 
algorithms could discriminate early aMCI from late aMCI, which may provide additional insights into the use-
fulness of machine learning applications for classifying the spectrum of cognitive decline in AD.
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