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Abstract

Background: Thalamocortical white matter connectivity is disrupted in psychosis and is 

hypothesized to play a role in its etiology and associated cognitive impairment. Attenuated 

cognitive symptoms often begin in adolescence, during a critical phase of white matter and 

cognitive development. However, little is known about the development of thalamocortical white 

matter connectivity and its association with cognition.

Methods: The present study characterized effects of age, sex, psychosis symptomatology, and 

cognition in thalamocortical networks in a large sample of youth (n = 1144, aged 8-22 years, 46% 

male) from the Philadelphia Neurodevelopmental Cohort (PNC), which included 316 typically-

developing youth, 330 psychosis-spectrum youth, and 498 youth with other psychopathology. 

Probabilistic tractography was used to quantify percent total connectivity between the thalamus 

and six cortical regions, and assess microstructural properties (i.e. fractional anisotropy-FA) of 

thalamocortical white matter tracts.

Results: Overall, percent total connectivity of the thalamus was weakly associated with age and 

was not associated with psychopathology or cognition. In contrast, FA of all thalamocortical tracts 

increased significantly with age, was generally higher in males than females, and was lowest in 

psychosis-spectrum youth. FA of tracts linking the thalamus to prefrontal and posterior parietal 

cortex was related to better cognitive function across subjects.

Conclusions: By characterizing the pattern of typical development and alterations in those 

at risk for psychotic disorders, this study provides a foundation for further conceptualization 

Corresponding Author: Suzanne N. Avery, PhD, Vanderbilt Psychiatric Hospital, 1601 23rd Ave. S., Nashville, TN 37212, 
Suzanne.avery@vumc.org. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

DISCLOSURES
All authors report no biomedical financial interests or potential conflicts of interest.

HHS Public Access
Author manuscript
Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2023 
August 01.

Published in final edited form as:
Biol Psychiatry Cogn Neurosci Neuroimaging. 2022 August ; 7(8): 782–792. doi:10.1016/
j.bpsc.2021.09.009.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of thalamocortical white matter microstructure as a marker of neurodevelopment supporting 

cognition and an important risk marker for psychosis.
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INTRODUCTION

The thalamus is involved in the pathophysiology of psychosis. The most consistent findings 

include smaller thalamic volume (1–3), abnormal function during cognitive tasks (4–6), and 

lower neuronal markers of integrity (7) in patients with psychotic disorders. Deficits in 

thalamic function are positioned to cause far-reaching impacts on brain network function. 

The thalamus is involved in multiple brain networks, acting as a hub for cognitive processes 

and interface between sensory and motor systems. As a result, the thalamus has been 

proposed as part of a fundamental neural circuit contributing to the etiology of psychosis and 

cognitive impairment (8–11).

Thalamocortical dysconnectivity models are supported by functional and structural 

neuroimaging findings in psychosis patients. Abnormal functional connectivity between 

thalamus and cortex is among the most consistent findings in schizophrenia (12–14), with 

similar abnormalities observed in psychotic bipolar disorder (15). Diffusion imaging studies 

have begun to reveal accompanying deficits in white matter connections (16–20). Deficits 

in overall white matter structure are strongly linked to cognitive impairment in both healthy 

and neuropsychiatric samples (21–27), and thalamocortical white matter structure has been 

linked to cognitive impairment in psychosis (19; 20; 28), although less consistently (18). 

Intriguingly, recent findings indicate thalamocortical white matter structural connectivity 

deficits are similar across early and chronic stages of psychosis (18), suggesting white 

matter deficits may be a relatively stable neuropathological feature that precedes illness 

onset.

Evidence of abnormal thalamocortical structural connectivity early in the course of 

psychotic illness is consistent with the neurodevelopmental hypothesis of psychosis, 

which posits that psychosis originates from early-life brain abnormalities that influence 

normal maturation patterns (29; 30). Neuronal migration is a critical part of brain 

development, allowing neurons to make terminal connections and successfully interact 

(31). Because thalamic structural connections are central to multiple brain networks, 

disruptions during these early developmental processes have been hypothesized to contribute 

to the widespread dysconnectivity and cognitive deficits observed in psychosis (32–34). 

Moreover, the emergence of cognitive deficits precedes the onset of psychosis and can 

often be detected from early childhood. However, it remains unclear whether structural 

connectivity deficits in psychosis stem from early-life developmental abnormalities or are 

stable throughout adolescence. The onset of psychotic disorders typically begins in late 

adolescence, coinciding with a period of dynamic change in white matter maturation 

and brain connectivity (35–38), along with considerable cognitive development (39). 

Adolescence is characterized by important pubertal changes that are associated with overall 
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faster white matter maturation and cognitive development (40) in females compared to 

males. Females also have lower risk for psychosis and later typical age of onset than males 

(41). Importantly, pubertal changes may exert spatially-localized effects on white matter 

maturation (38) that influence risk. Preclinical data support the hypothesis that thalamic 

dysfunction, in concert with the hippocampus, contributes to dopamine dysregulation and 

the emergence of positive symptoms (42), suggesting the period surrounding illness onset 

may mark a shift in thalamocortical function, precipitating the abnormalities observed later 

in illness.

Mapping thalamocortical structural connectivity across development will provide important 

insights into the timing and nature of white matter deficits and impacts on cognitive 

function in psychosis (43; 44). Early detection of brain network abnormalities has the 

potential to allow for both early identification of illness and better targeted treatments. 

Diffusion imaging has been shown to be sensitive to the detection of regional differences in 

thalamocortical pathways that begin during early development and persist postnatally (45). 

However, the delineation of a useful structural connectivity-based marker is significantly 

hampered by key remaining questions: what is the normal development of thalamocortical 

structural connections, when do deficits emerge in those at risk for psychosis, and is 

thalamocortical structural connectivity associated with variation in cognitive function during 

development?

To address these questions, we examined a large developmental sample consisting of 

1144 participants (aged 8-22 years) from the Philadelphia Neurodevelopmental Cohort 

(PNC) (46). The PNC is a community-based sample that includes youth experiencing 

subclinical psychosis-spectrum symptoms, consistent with the notion that transitory 

psychotic-like experiences are reported with relative frequency in the population (47; 

48). Subclinical psychosis-spectrum symptoms share etiological risk, cognitive correlates, 

and symptom profiles with psychotic illness (49), and are associated with increased risk 

for conversion to a psychotic disorder (50–52). The present study sought to: 1) chart 

age effects of thalamocortical structural connectivity across development; 2) characterize 

sex differences and sex by age interactions(53) in thalamocortical structural connectivity 

during development; 3) test whether youth displaying psychosis-spectrum symptoms show 

abnormalities in thalamocortical structural connectivity compared to typically-developing 

youth and youth with other psychopathologies; and 4) determine if thalamocortical structural 

connectivity is associated with cognitive function.

METHODS AND MATERIALS

Participants

The PNC dataset contains approximately 9500 individuals (aged 8-22 years), including 1396 

participants with a diffusion-weighted imaging series. Of these, 53 were excluded for serious 

medical conditions, 63 for insufficient clinical data to reach a diagnosis, and 136 for data 

quality (see supplement for details). This yielded a final sample of 1144 participants. Using 

similar procedures as those described by Calkins et al. (46), participants were classified as 

typically-developing youth (n=316), psychosis-spectrum youth (n=330), or youth with other 

psychopathology (n=498). Demographic information are reported in Table 1.
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Clinical assessment.—Psychosis symptomatology was assessed using the PRIME 

Screen-Revised (PS-R), Schedule for Affective Disorders and Schizophrenia for School-Age 

Children (K-SADS) psychosis screen, and selected items from the Scale for Prodromal 

Syndromes (SOPS) assessing negative and disorganized symptoms. Psychosis-spectrum 

youth were identified based on: 1) having an age-deviant total PRIME score ≥ 2 SD above 

age-matched peers, or rating one item at > 6, or three items > 5; 2) endorsing definite 

or possible hallucinations or delusions on the K-SADS; and 3) having an age-deviant 

total SOPS score ≥ 2 SD above age-matched peers. Youth with other psychopathology 

were identified by endorsement of suprathreshold psychopathology symptoms and duration, 

consistent with SCID-IV diagnosis on the K-SADS, and endorsement of significant distress, 

but not meeting psychosis-spectrum criteria.

Neurocognitive Testing

Participants completed the Penn Computerized Neurocognitive Battery (CNB) (54). The 

CNB consists of 14 tests to evaluate multiple cognitive domains, including complex 

cognition (language reasoning, nonverbal reasoning, spatial ability), executive control 

(attention, working memory, mental flexibility), episodic memory (verbal, face, spatial), 

social cognition (emotion identification, emotion differentiation, age differentiation), and 

sensorimotor speed (finger tapping, sensorimotor processing speed). Domain-specific and 

overall composite CNB performance scores were transformed to standard equivalents (z-

scores) as previously described (55).

Neuroimaging Data

Acquisition, preprocessing, and data quality.—High resolution T1-weighted 

structural (.93x.93x1mm voxels) and 64-direction diffusion-weighted data 

(1.875x1.875x2mm voxels) were acquired on a Siemens Tim Trio 3T scanner. Diffusion-

weighted images were corrected for eddy current distortions and motion, coregistered to 

the mean b=0 image, and skull-stripped using the FMRIB Software Library (FSL, version 

5.0.11) (56). Fractional anisotropy (FA) and mean diffusivity (MD) images were calculated 

using DTIFIT. Data quality metrics of mean relative displacement (motion) and contrast-to-

noise ratio (CNR) were calculated and participants that did not meet quality thresholds 

were excluded. Full details of the acquisition, preprocessing, and data quality procedures are 

presented in the supplement.

Regions of interest.—Thalamus (seed) and cortical (target) regions of interest (ROIs) 

were defined in T1-weighted data using FreeSurfer developmental version 6 (57). The 

6 bilateral cortical ROIs, created by combining selected cortical structures, included the: 

prefrontal (PFC); premotor/motor/supplementary motor; somatosensory; posterior parietal; 

temporal; and occipital cortex (see Supplementary Figure 1 for an example segmentation).

Thalamocortical connectivity analysis.—To quantify structural connectivity between 

the thalamus seed and each of the 6 cortical targets, seed-to-target probabilistic tractography 

analyses were run using probtrackx2 (see supplement for details). Connectivity values, 

expressed as “percent total connectivity”, were calculated as the total number of thalamus 

seed streamlines reaching the cortical target, divided by the total number of thalamus 
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streamlines reaching any cortical target. In a planned secondary analysis, raw streamline 

counts were examined without converting to percent total connectivity.

Thalamocortical white matter microstructure analysis.—In addition to examining 

total white matter connections between cortex and thalamus, we also quantified 

microstructural properties of the white matter tracts linking cortex to thalamus. Cohort-

specific tract overlap masks (>75% overlap) were used to extract individual mean FA 

and MD values for the 6 thalamocortical tracts. Group-level tract masks are presented in 

Supplementary Figure 2.

Statistical analysis

All statistical analyses were conducted in Statistical Analysis System (SAS Studio version 

3.8). Percent total connectivity, white matter microstructure (FA), and cognition (CNB 

composite score) served as dependent variables in the primary analyses described below. 

Left and right hemisphere values were averaged as we did not have any a priori hypotheses 

regarding laterality, and to minimize the number of dependent variables. This resulted in 

six dependent variables per participant for each analysis, one for each cortical ROI. Results 

of age, sex, group, and cognition analyses were considered significant at a Bonferroni-

corrected p-value for multiple comparisons (.05/6=.0083). All participants were included in 

analyses unless otherwise noted. Linear effects of age were modeled using linear regression, 

with age as the independent variable; sex and motion were included as covariates of no 

interest. Quadratic effects of age were modeled by including quadratic age as an independent 

variable in the regression model. Sex effects were investigated using one-way univariate 

ANCOVA, with sex as the independent variable; age, age2, and motion were included as 

covariates of no interest. Interactions of age by sex were investigated using the models 

described above. Group effects were investigated using one-way univariate ANCOVA, with 

group as the independent variable; sex, age, age2, and motion were included as covariates 

of no interest. Significant effects of group were further explored for interactions. In planned 

secondary analyses of connectivity, streamline counts served as the dependent variable, and 

the age, sex, and group models described above were repeated with an additional covariate 

of total streamline count to control for overall thalamic connectivity. Secondary analyses 

of age, sex, and group by hemisphere were investigated using the previously described 

models. Associations with cognition were examined using linear models, with percent 

total connectivity or FA for the six predefined thalamocortical connections serving as the 

predictor; sex, group, and motion were entered as covariates of no interest. Interactions 

between tract measures and group were investigated, with sex and motion entered as 

covariates of no interest. For significant associations, follow-up analyses were conducted 

to examine associations between five CNB cognitive domains and percent total connectivity 

or white matter microstructure, and were considered significant at p=.05. Mean MD was 

examined in follow-up analyses for any models that showed significant FA effects.
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RESULTS

Thalamocortical Percent Total Connectivity

Age effects.—Percent total connectivity increased linearly with age for two regions, 

the motor and somatosensory cortex (Figure 1). Percent total connectivity also decreased 

linearly with age for two regions, the temporal and occipital cortex. All linear age effects 

were small and there were no quadratic effects of percent total connectivity (ps≥.32). 

Complete statistical results and secondary analyses by hemisphere and streamline counts 

are presented in the supplement.

Sex effects.—Females showed a small effect of greater thalamic-occipital cortex percent 

total connectivity compared to males (Figure 1). No other connections showed significant 

sex effects.

Group differences.—There were no between-group differences in percent total 

connectivity with any region (ps≥.20; Figure 1). Secondary analysis of streamline counts 

by group also showed no between-group differences (Supplementary Table 9).

Interactions.—There was a small interaction between linear age and sex in the occipital 

cortex. Older females had greater thalamic-occipital percent total connectivity than older 

males (Supplementary Figure 6). No other region showed an interaction between linear age 

and sex (ps≥.02).

Cognitive correlates.—Cognitive function, measured by CNB composite score, was not 

associated with percent total connectivity for any cortical ROI (ps≥.60; Supplementary Table 

11).

Thalamocortical White Matter Microstructure

Age effects.—White matter microstructure, measured as mean FA within thalamocortical 

tracts, increased linearly with age for all tracts, with effect sizes ranging from small to large 

(Figure 2). The largest effects were observed in PFC and posterior parietal tracts. White 

matter microstructure in tracts linking the thalamus with the posterior parietal and occipital 

cortex also showed quadratic associations with age, although effects were small. These 

tracts demonstrated an inverted U-shaped association, with higher FA values observed in late 

adolescence and lower FA values observed in early childhood/early adulthood. Follow-up 

analysis showed that MD values decreased linearly with age across regions. For each region, 

older participants had lower MD values than younger participants. Follow-up analyses 

also showed quadratic associations between MD and age across regions (trend effect in 

thalamic-somatosensory tract). Each tract showed a U-shaped association, with lower MD 

values observed in late adolescence and higher MD values observed in early childhood/

early adulthood. Specificity analyses confirmed that age effects were not associated with 

generalized, whole-brain differences in FA. Full statistical results and secondary analyses by 

hemisphere are presented in the supplement.
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Sex effects.—Males had higher FA values than females in tracts linking the thalamus with 

the prefrontal, motor, somatosensory, posterior parietal, and occipital cortex (Figure 2). All 

sex effects were small. Follow-up analysis showed that males also had lower MD values 

compared to females in most thalamic-cortical tracts. Specificity analyses confirmed that sex 

differences were not associated with generalized, whole-brain differences in FA.

Group differences.—Typically-developing youth had higher FA values than psychosis-

spectrum youth in all white matter tracts linking the thalamus and cortex (Figure 2). 

Youth with other psychopathologies also had larger FA values than psychosis-spectrum 

youth and were similar to typically-developing youth for all tracts except for the thalamic-

posterior parietal tract, which showed lower FA values than typically-developing youth. All 

effect sizes were small. Follow-up analysis showed that MD values were lower in typically-

developing youth compared to psychosis-spectrum youth in the thalamic-somatosensory and 

thalamic-posterior parietal tracts. In both of these tracts, youth with other psychopathologies 

had lower MD values than typically-developing youth, but higher MD values than 

psychosis-spectrum youth. Sensitivity analyses confirmed that between-group differences 

in white matter microstructure were not associated with whole-brain FA, race, parental 

education, or CNR differences by group.

Interactions.—There was an interaction between linear age and sex in tracts connecting 

the thalamus with the prefrontal, motor, somatosensory, and posterior parietal cortex. Older 

males had higher FA values than older females (Supplementary Figure 11). All effects were 

small. There were no significant interactions between age and group, or sex and group 

(ps≥.10).

Cognitive correlates.—Associations between cognitive function and thalamocortical 

white matter microstructure are presented in Table 2. Better cognitive function, as measured 

by composite CNB score, was associated with higher FA values in thalamic-prefrontal and 

thalamic-posterior parietal cortex tracts. Both effects were small. There were no interactions 

between FA and group (ps≥.17). Follow-up analyses of cognitive domains showed that 

higher FA values in thalamic-prefrontal and thalamic-posterior parietal tracts were correlated 

with higher complex cognition, higher executive function, higher social cognition, and lower 

sensorimotor scores. Higher FA values in thalamic-posterior parietal cortex tracts were also 

associated with better episodic memory.

DISCUSSION

Abnormal thalamocortical structural connectivity is associated with neurodevelopmental 

disorders such as psychosis. Typical development of thalamocortical circuits, and whether 

structural connectivity deficits emerge during development and contribute to cognitive 

disruption prior to the onset of illness, remains unclear. Here, we characterized the effects 

of age, sex, and clinical symptomatology on thalamocortical structural connectivity in 

a large youth sample (aged 8-22 years). We found that percent total connectivity was 

weakly associated with age and showed a mixed pattern of increases and decreases across 

thalamocortical tracts, was generally similar in males and females, and was associated with 

neither clinical symptomatology nor cognition. In contrast, thalamocortical white matter 
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microstructure showed robust age, sex, and group effects, characterized by moderate to 

large increases with age, generally higher values in males than females, and lower values 

in psychosis-spectrum youth. Furthermore, white matter microstructure in tracts linking the 

thalamus to the PFC and the posterior parietal cortex was associated with better cognitive 

function across participants. Together, these findings suggest that abnormal development of 

thalamocortical white matter microstructure may contribute to cognitive impairment and risk 

for psychosis.

A key motivation of our investigation was to chart the typical developmental trajectory 

of thalamocortical connections by age and sex. Our results showed that white matter 

microstructure increased linearly with age, was generally higher in males, and increased 

more rapidly with age in males. Quadratic age effects were smaller than linear effects 

across all tracts but suggested that, in tracts linking the thalamus with posterior parietal 

and occipital cortex, FA values may be higher during adolescence and decline slightly in 

early adulthood (although sampling of the early adulthood age range in the PNC is sparse). 

These findings are consistent with the linear increases in FA and white matter volume 

typically observed from childhood through adolescence (36; 37; 58), thought to reflect 

increases in axon organization and myelination (35). Similarly, sex effects were consistent 

with developmental findings of overall larger white matter volumes and more rapid white 

matter volume increases in males (37), which is predicted by larger brain volume (59). The 

majority of evidence suggests broad sex differences in white matter microstructure persist 

into adulthood and may be related to hormonal expression (60). Whether males continue 

to show higher thalamocortical white matter microstructure into adulthood requires further 

study.

Our second goal was to determine whether thalamocortical connections differ in 

youth experiencing subclinical psychosis symptoms. Our findings provide compelling 

evidence that thalamocortical white matter microstructure is compromised in psychosis-

spectrum youth. White matter microstructure in psychosis-spectrum youth was consistently 

lower across tracts than in typically-developing youth. In contrast, youth with other 

psychopathologies were largely similar to typically-developing youth, suggesting white 

matter pathology may be a specific marker of psychosis risk. Thalamocortical deficits were 

not explained by whole brain microstructural deficits, suggesting the key importance of 

thalamocortical connections. Schizophrenia has long been considered a disorder of brain 

dysconnectivity (30; 61). Recent work has highlighted a role for brain dysconnectivity in 

the pathophysiology of psychotic bipolar disorder (62; 63), suggesting dysconnectivity may 

be a transdiagnostic psychosis marker. The establishment of structural markers reflecting 

aberrant brain development has significant potential to improve detection of those at risk for 

developing psychosis (64). White matter microstructure deficits are widespread in psychosis 

(65; 66), associated with genetic alterations that increase risk for psychotic disorders (67), 

and can be detected in early psychosis (34) and clinical-high risk individuals (68). However, 

the contribution of thalamocortical white matter microstructure to the onset of a frank 

psychotic disorder remains unclear. Studies in early psychosis and clinical-high risk cohorts 

show a mixed spatial pattern of white matter microstructural changes (34; 65), which may 

reflect interactions between normal development and illness (69–72). Myelination begins 

postnatally but completes in young adulthood near the typical onset of psychotic illness. 
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During the period surrounding illness onset, reduced expression of genes associated with 

oligodendrocyte function are thought to contribute to psychosis through hypomyelination 

and loss of axonal metabolic support (73–76). However, longitudinal studies are essential 

to understand how thalamocortical white matter microstructure is affected in the period 

surrounding illness onset.

Higher white matter microstructure in two tracts—the thalamic-PFC and thalamic-posterior 

parietal cortex tracts—was selectively associated with better cognitive function across a 

number of domains, including complex cognition, executive function, social cognition, 

and sensorimotor speed. Cognitive deficits in these domains have been noted in psychotic 

disorders (77) and associated with white matter deficits in tracts that overlap those 

investigated in our study (78–81). White matter microstructure, particularly in PFC tracts, is 

well-established as a neural correlate of cognitive function in healthy populations (82–84) 

and patients with neurocognitive deficits (85), is linked to cognitive development during 

adolescence (86; 87), and has been proposed as a marker for cognitive deficits in psychosis 

(88). Our findings provide further support that the development of thalamocortical white 

matter microstructure in PFC and posterior parietal tracts is critical for normal cognitive 

function across a range of cognitive domains.

In contrast to our white matter microstructure findings, thalamocortical percent total 

connectivity showed only small associations with age, including subtle increases 

in thalamic-somatosensory and motor structural connectivity and subtle decreases in 

thalamic-temporal and occipital connections. These results are broadly consistent with 

thalamocortical functional connectivity findings over a similar developmental age range 

(89). However, the deficits in thalamic-PFC connectivity and increases in thalamic-

somatosensory and thalamic-motor connectivity consistently found in psychotic disorders 

(18; 19), and to a lesser extent in clinical-high risk (16), were not evident in psychosis-

spectrum youth. Psychosis-spectrum youth in PNC were younger than other clinical-high-

risk samples (90) and may not show age-related changes observed in older groups. 

It’s also possible that psychosis-related alterations stem from abnormal refinement of 

connections surrounding illness onset. While substantial axon elimination and synaptic 

pruning occurs during the first postnatal year, a protracted period of selective refinement 

continues through the second decade of life (91–94). Disruptions to these processes 

are known to result in long-lasting effects on neural communication and cognition, and 

disruptions occurring in late adolescence, in the period surrounding typical illness onset, 

have been long-hypothesized to play a role in psychosis (32; 95). Specifically, evidence that 

genetic variants associated with illness (96; 97) and hormonal shifts during adolescence 

(98) result in excess synaptic pruning have led some researchers to hypothesize that 

dysregulations in synaptic remodeling during adolescence could trigger the onset of disease 

(43; 99). Neuropathological studies in cortex have broadly supported this hypothesis, 

showing reductions in neuropil (100), expression of synaptic markers (101), and dendritic 

spine density (102) in schizophrenia. Likewise, gray matter volume declines in many 

cortical regions during adolescence (103), and this decline appears more pronounced 

in schizophrenia (104), particularly in those with childhood onset (105). Further, recent 

imaging findings in the thalamus suggest neuropil reductions are present in the early 

stage of schizophrenia (106). Reduced synaptic neuropil in the thalamus and cortex 
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may contribute to abnormalities in neuronal synchronization, and ultimately, changes in 

structural connectivity. Alternatively, psychosis-related alterations may result from prenatal 

disruptions. Thalamocortical axons migrate during the second and third trimester of human 

gestation (107), laying the fundamental structure for efficient communication across the 

brain. Defective migration and altered programmed cell death during this window of 

vulnerability, perhaps from second-trimester maternal infection (108), have also been 

theorized to underlie risk for schizophrenia (32). As most at-risk individuals do not 

ultimately transition to psychosis (109), structural alterations in the current sample may 

be obscured. Ultimately, prospective longitudinal studies in clinical-high risk individuals are 

necessary to determine the timing of occurrence of structural connectivity changes.

It is important to consider the limitations of the study when interpreting the findings. The 

PNC dataset is comprised of cross-sectional data spanning a developmental window. Our 

findings expand the small existing literature of how structural connectivity deficits during 

development may contribute to cognitive deficits in psychosis, although longitudinal studies 

will be essential to determine white matter biomarkers that predict subsequent clinical or 

cognitive outcomes.

While diffusion-based methods can detect differences in structural connectivity, the nature 

of identified differences should be interpreted with caution. Microstructural differences may 

result from differences in myelination, fiber bundle cohesion, or water content. Probabilistic 

tracking can be influenced by crossing fibers and regions where anatomical boundaries 

between tracts are close. Advancements in acquisition of higher-resolution diffusion images 

and comparisons with other measures of tissue microstructure, such as myelin-based (110) 

or free-water imaging (111), may further refine our understanding of structural connectivity 

across development. CNR was lower in the psychosis-spectrum group despite similar motion 

measures across groups. Although motion was included as a covariate, accounting for 

non-linear motion effects may improve tractography accuracy (112).

In conclusion, we find thalamocortical white matter microstructure increases with age, 

is higher in males, is lower in psychosis-spectrum youth across development, and is 

correlated with cognitive function. These findings suggest disturbances in maturation of 

thalamocortical white matter microstructure may be an early marker for psychosis and 

contribute to cognitive deficits. The characterization of thalamocortical network structural 

connectivity by age, sex, and clinical symptomatology in a population-based, developmental 

sample provides a foundation for further neurodevelopmental studies of thalamocortical 

network dysconnectivity in psychotic disorders. Future studies should use longitudinal 

samples to determine the predictive validity of thalamocortical white matter microstructure 

in conversion to a psychotic disorder and clinical interventions that strengthen structural 

connectivity and may ameliorate risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Thalamocortical percent total connectivity effects of age, sex, and group. Error bars for 

sex and group effects are 95% confidence intervals. Asterisks denote significant effects 

(p ≤ .008). (A) Percent total thalamic connectivity with the motor and somatosensory 

cortex was positively associated with age, while percent total connectivity with the 

temporal and occipital cortex was negatively associated with age. (B) Females had higher 

total thalamic connectivity with the occipital cortex than males. (C) Typically-developing 

youth, psychosis-spectrum youth, and youth with other psychopathologies had similar total 

thalamic connectivity across cortical regions.
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Figure 2. 
White matter microstructure (FA) effects of age, sex, and group for thalamocortical 

tracts. Error bars for sex and group effects are 95% confidence intervals. Asterisks 

denote significant effects (p ≤ .008). (A) FA was positively associated with age across 

thalamocortical tracts, with the largest effects in prefrontal and posterior parietal cortex 

tracts. (B) Males had higher FA values than females in tracts linking the thalamus with 

the prefrontal, motor, somatosensory, posterior parietal, and occipital cortex. (C) Psychosis-

spectrum youth had the lowest FA values of all three groups across all thalamocortical tracts. 

Typically-developing youth had FA values similar to youth with other psychopathologies for 

most tracts, although FA values were lower in youth with other psychopathologies for the 

thalamic-occipital tract.
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Table 1.

Sample Characteristics

Demographics

Typically 
Developing

N = 316

Psychosis 
Spectrum
N = 330

Other 
Psychopathology

N = 498 Statistic df p Post-Hoc

Age, years ± SD 14.5 ± 3.7 16.1 ± 3.0 15.2 ± 3.4 F = 16.96 2,1143 <.001 PS>OP>TD

Sex, % male 50 45 44 χ2 = 2.65 2 .27 --

Race, % W:AA:O 58:32:10 32:56:12 50:41:9 χ2 = 47.47 4
a

<.001 --

Education, years ± SD 7.4 ± 3.6 8.4 ± 2.7 8.2 ± 3.3 F = 7.59 2,1143 <.001 PS,OP>TD

Parental education, 
years ± SD 14.5 ± 2.5 13.5 ± 2.2 14.2 ± 2.3 F = 16.33 2,1136

b
<.001 TD,OP>PS

Cognition 

CNB composite 
cognition, z-score 0.10 ±.6 0.06 ± .5 0.12 ±.5 F = 1.50 2,1144 .23 –

WRAT, standard score 105.8 ± 15.9 99.1 ± 16.9 103.1 ± 16.1 F = 14.13 2,1143d <.001 TD,O>PS

Abbreviations: W=White, AA=African American, O=Other; WRAT=Wide Range Assessment Test; TD = Typically Developing; PS = Psychosis 
Spectrum; OP = Other Psychopathology.

a
Race was not collected for 2 Typically Developing participant, 1 Psychosis Spectrum participants, and 4 Other Psychopathology participants.

b
Parental education was not collected for 1 Typically Developing participant, 2 Psychosis Spectrum participants, and 4 Other Psychopathology 

participants.

C
WRAT was not collected for 1 Other Psychopathology participant.
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Table 2.

Associations between cognition and thalamocortical white matter microstructure

Composite Score

Brain Region F^ β p Partial η2

 Prefrontal 13.91 3.53 <.001* .012

 Motor 6.54 −2.37 .01 .006

 Somatosensory 1.35 1.07 .25 .001

 Temporal 0.23 0.48 .63 .000

 Posterior parietal 11.43 3.46 .001* .010

 Occipital 5.92 −2.36 .02 .005

Complex Cognition

Brain Region F^^ β p Partial η2

 Prefrontal 61.12 6.59 <.001
◊

.051

 Posterior Parietal 63.84 5.47 <.001
◊

.053

Executive Function

Brain Region F^^ β p Partial η2

 Prefrontal 35.88 4.45 <.001
◊

.031

 Posterior Parietal 33.17 3.45 <.001
◊

.028

Episodic Memory

Brain Region F^^ β p Partial η2

 Prefrontal 1.31 0.74 .25 .001

 Posterior Parietal 1.84 0.72 .018
◊

.002

Social Cognition

Brain Region F^^ β p Partial η2

 Prefrontal 20.53 3.57 <.001
◊

.018

 Posterior Parietal 14.89 2.46 <.001
◊

.013

Sensorimotor Speed

Brain Region F^^ β p Partial η2

 Prefrontal 9.37 −1.75 .002
◊

.008

 Posterior Parietal 6.02 −1.13 .01
◊

.005

^
Composite Score Degrees of freedom = 10,1133. For each region tested, all other regions, along with age, sex, group and motion are included as 

effects of no interest.
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^^
Domain Score Degrees of freedom = 5,1135. Age, sex, group, and motion are included as effects of no interest.

*
Composite Score effects are considered significant at Bonferroni-corrected p = .008.

◊
Follow-up analyses of domain scores are considered significant at p = .05.
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