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Human Gut Antibiotic Resistome and Progression of
Diabetes

Menglei Shuai, Guoqing Zhang, Fang-fang Zeng, Yuanqing Fu, Xinxiu Liang, Ling Yuan,
Fengzhe Xu, Wanglong Gou, Zelei Miao, Zengliang Jiang, Jia-ting Wang, Lai-bao Zhuo,
Yu-ming Chen,* Feng Ju,* and Ju-Sheng Zheng*

The antibiotic resistance crisis underlies globally increasing failures in treating
deadly bacterial infections, largely due to the selection of antibiotic resistance
genes (ARG) collection, known as the resistome, in human gut microbiota. So
far, little is known about the relationship between gut antibiotic resistome and
host metabolic disorders such as type 2 diabetes (T2D). Here, metagenomic
landscape of gut antibiotic resistome is profiled in a large multiomics human
cohort (n = 1210). There is a significant overall shift in gut antibiotic
resistome structure among healthy, prediabetes, and T2D groups. It is found
that larger ARG diversity is associated with a higher risk of T2D. The novel
diabetes ARG score is positively associated with glycemic traits. Longitudinal
validation analysis confirms that the ARG score is associated with T2D
progression, characterized by the change of insulin resistance. Collectively,
the data describe the profiles of gut antibiotic resistome and support its close
relationship with T2D progression.
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1. Introduction

The global rise of antibiotic resistance jeop-
ardizes the success and sustainability of
modern medication to fight against deadly
multidrug resistant infections.[1] Human
gut is the key reservoir of microbiota har-
boring both commensal and pathogenic
bacteria.[2] It, however, also represents a
hotspot for the frequent selection of di-
verse antibiotic resistance genes (ARGs)
and their bacterial hosts due to the regular
exposure of gut microbiota to foreign an-
tibiotics directly from human medications
and indirectly from food chain.[3] While cur-
rent cohort studies have largely focused on
the microbiome diversity and its associa-
tion with human disease and health, the re-
search on gut antibiotic resistome, i.e., the
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Figure 1. Study strategy for linking gut antibiotic resistome and progression of T2D. Our study was based on the Guangzhou Nutrition and Health Study
(GNHS) which is an ongoing community-based cohort study in China. We included 1210 participants in the current study, of whom 531 were healthy,
495 were prediabetes and 184 were T2D. To associate the gut antibiotic resistome and T2D, we profiled the stool metagenome. 278 individuals have
collected stool sample twice at different time points. We applied ARG-OAP2 and MetaPhlAn2 to perform the profiling of the gut antibiotic resistome and
gut microbiota, respectively. To explore the potential causal association of the identified ARG features with T2D, we performed genome-wide association
analyses (GWAS) and one-sample Mendelian randomization (MR) analyses. In addition, we examined the associations between gut ARG features and
cardiometabolic traits using the cross-sectional model, which was validated by the longitudinal model. We also constructed the co-occurrence network
between gut ARGs and microbial species. Finally, Spearman correlation analysis was used to investigate the associations between T2D related ARG
features and fecal metabolome.

collection of ARGs within microbiome, is rare in large human
cohorts. The antibiotic exposure usually leads to long-term en-
richment of ARGs in gut microorganisms,[4] but its consequence
and relation with human metabolic health were not clear.

We generated a hypothesis that gut antibiotic resistome may
be associated with type 2 diabetes (T2D) progression, given that
prior evidence suggested a close link between human gut micro-
biome and T2D,[5] and that self-reported long-term use of antibi-
otics was associated with higher T2D risk and future cardiovas-
cular diseases.[6] Moreover, due to the genetic and lifestyle het-
erogeneities across different populations, we argued that com-
pared with the prescriptions and questionnaires for inquiring an-
tibiotic use, tracking the antibiotic resistome of gut microbiome
would be more informative and help provide more mechanistic
insight.

Therefore, the aim of the present study was to depict the pro-
files of gut antibiotic resistome in a large human cohort and ex-
plore its relationship with gut microbial metabolites and host
metabolic health, which is a key step to understand the influence
of the gut antibiotic resistome on human health.

2. Results

2.1. Composition and Variation of the Gut Antibiotic Resistome

We included 1210 participants with a mean age of 64.9 years (SD:
5.5) and with fecal metagenomics data from the GNHS into our
present analysis (Figure 1).[7] We assessed the diabetes status of
the participants, of whom 531 were healthy, 495 were prediabetes
and 184 were T2D (Table S1, Supporting Information). Using
paired-end shotgun metagenomic sequencing, we obtained 42.4
million paired-end reads on average (Table S2, Supporting Infor-
mation).

We detected a total of 19 ARG types and 805 ARG sub-
types (Figure S2, Supporting Information). The most abundant
ARG types in this study included Multidrug, Tetracycline and
Macrolide-Lincosamide-Streptogramin (MLS), followed by Beta-
lactam, Aminoglycoside and Bacitracin (Figure 2A). After 10%
prevalence filtering, 17 ARG types and 233 subtypes remained
for further analysis. We observed that Tetracycline_TetQ was the
most abundant ARG subtype in our participants (Figure 2B).

Adv. Sci. 2022, 9, 2104965 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2104965 (2 of 14)



www.advancedsciencenews.com www.advancedscience.com

Figure 2. Compositional variation in human gut antibiotic resistome. A) Circus plot showing the mean relative abundance of top 10 antibiotic resistance
genes (ARGs) types among Healthy (n = 531), Prediabetes (n = 495) and Type 2 Diabetes (T2D, n = 184) groups. B) Box plot showing the abundance
of top 10 ARGs subtypes (n = 1210). C) The effect sizes of host factors on human gut antibiotic resistome were calculated by PERMANOVA (Adonis,
permutations = 999) (n = 947). MLS, Macrolide-Lincosamide-Streptogramin.

The prevalence of Quinolone, Quinolone_norB and subtypes of
Beta-lactam increased along with the diabetes progression (Fig-
ure S4A–C, Supporting Information). Overall, 17 core ARG sub-
types were shared by all of the participants among healthy, predi-
abetes, and T2D groups (Figure S4D, Supporting Information).

We correlated 7 demographic factors, 16 dietary intakes and
14 physiological factors to the inter-individual variation in the
gut antibiotic resistome. Age had the largest explanatory power
on the gut antibiotic resistome compositional difference (Bray-
Curtis distance, PERMANOVA, p = 0.002), which may be due
to the accumulation of ARGs during the lifespan and become
more diversified with age.[8] A total of 8 factors were found to be
significantly associated with the overall resistome variation (Fig-
ure 2C; Table S3, Supporting Information). In addition, we re-

peated our analysis among healthy, prediabetes and T2D groups,
respectively. Our data showed different patterns for the contri-
bution of those factors, which indicates the impact of diabetes
status on the relationship between gut antibiotic resistome and
those factors (Figure S5, Supporting Information).

2.2. Gut Antibiotic Resistome Composition are Associated with
Type 2 Diabetes

In total, 639 bacterial species were identified in the 1210 sam-
ples. To focus on more representative species, 156 were kept
for downstream analysis after filtering by relative abundance
(mean> 0.01%) and prevalence (>10%) (Figure S2 and Table S4,
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Figure 3. Gut antibiotic resistance genes are associated with type 2 diabetes. A,B) PCoA plots showing the compositional differences of gut antibiotic
resistome among different diabetes groups. p was calculated by PERMANOVA (Adonis, permutations = 999) based on Bray-Curtis distance. C) Forest
plot showing the odds ratio of T2D for each 𝛼-diversity index of gut antibiotic resistome (in SD unit). Logistic regression models were adjusted for age,
sex, BMI, smoking status, drinking status, education attainment, household income level, physical activity, Bristol stool scale, sequencing depth and
microbial gene richness (MGR). The error bars represent confidence intervals. * p < 0.05.

Supporting Information). Pearson’s correlation analyses indi-
cated a positive association between 𝛼-diversity of the gut an-
tibiotic resistome and microbial gene richness (MGR) which is
an 𝛼-diversity indicator of the gut microbiota (r = 0.27–0.29, p <

2.2 × 10−16) (Figure S6A,B, Supporting Information). Similarly,
Procrustes analysis demonstrated a strong cooperativity of the
gut antibiotic resistome and gut microbiota profiles (Figure S6C,
Supporting Information). Notably, our data showed that MGR
was inversely associated with prevalent T2D after multivariable
adjustment (Odds Ratio (OR) = 0.67, p < 0.001) (Figure 3C).
Therefore, we further performed a multivariable logistic regres-
sion analysis to investigate the association between 𝛼-diversity
of the gut antibiotic resistome and T2D, adjusted for MGR and
other potential confounders. We found that larger Shannon index
(OR = 1.19, 95% CI 1.01–1.41, p = 0.036) and observed richness
(OR= 1.19, 95% CI 1.01–1.41, p= 0.038) of ARGs were associated
with a higher risk of T2D (Figure 3C), which was also indepen-
dent of microbial taxonomy (Table S5, Supporting Information),
such as metformin-related taxa Proteobacteria and Escherichia.[9]

Moreover, there were significant shifts for the gut antibiotic re-
sistome composition across the healthy, prediabetes and T2D in-
dividuals (Bray-Curtis distance, PERMANOVA, p < 0.05) (Fig-
ure 3A,B; Figure S7, Supporting Information). Interestingly, we
observed a significant difference in the composition of gut ARG
subtypes (p = 0.029) between healthy and prediabetes partici-
pants, but no significant change in the gut microbiota compo-
sition between the two groups (p = 0.304) (Table S6, Supporting
Information).

2.3. Shifts in Gut Antibiotic Resistome and Microbial Species
with Diabetes Status

We then identified 25 ARGs and 27 microbial species related to
T2D, based on the least absolute shrinkage and selection operator
(LASSO) regression model (Figure 4A; Tables S7 and S8, Sup-
porting Information).[10] Considering the progression effects of
T2D, we combined the selected features from three binary depen-

dent variable models: non-T2D (healthy and prediabetes)/T2D,
healthy/T2D, and prediabetes/T2D (Figures S8 and S9, Sup-
porting Information). Among those markers, we observed a
different overall pattern shift in the abundance for gut ARGs
and microbial species from healthy, prediabetes to T2D. Specif-
ically, the changes of abundance in 25 ARGs were divided into
three distinct clusters while 27 microbial species were divided
into two clusters (Table S9, Supporting Information). Among
the ARGs, Vancomycin_vanX, Multidrug_emrE, MLS_ermX and
Quinolone_norB were positively associated with T2D risk (OR =
1.15–1.18, p < 0.05) (Figure 4A; Table S10, Supporting Informa-
tion). Moreover, the former two also showed a positive correla-
tion with fasting blood glucose (FBG) (FDR-corrected p < 0.05,
Table S11, Supporting Information). We then used a one-sample
Mendelian randomization (MR) analyses to explore the potential
causal association of the above identified ARG features with T2D.
To enable the MR study, we performed genome-wide association
analyses for the selected ARG features and constructed genetic
instruments for these features (Table S12, Supporting Informa-
tion). We found that genetically predicted higher abundances of
Multidrug_emrE and MLS_ermX were associated with higher T2D
risk (OR = 1.10, 95% CI 1.04–1.16, p = 0.004; OR = 1.10, 95% CI
1.03–1.17, p = 0.01; Figure 4B). We also observed that genetically
predicted higher levels of gut ARG richness were associated with
higher T2D risk (OR = 1.26, 95% CI 1.00–1.50, p = 0.07, Fig-
ure 4B).

2.4. Gut Antibiotic Resistome Features are Associated with
Cardiometabolic Risk Factors

Based on the collection of T2D-related gut ARGs, we constructed
a novel Diabetes-ARG Score (DAS) which was positively asso-
ciated with T2D (p = 6.1 × 10−5), to represent the T2D-related
gut antibiotic resistome. In the sensitivity analysis, the granular
control for T2D medication use or microbial taxonomies did not
substantially change the association between DAS and T2D (Ta-
ble S13, Supporting Information). We also found that the DAS
was significantly associated with glycemic traits, such as FBG,
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Figure 4. Shifts in gut antibiotic resistome and microbial species with diabetes status. A) Left heatmap shows the mean relative abundance (scaled
by z score normalization) of the 25 identified T2D-related ARGs and 27 identified T2D-related microbial species from LASSO model. The abundance
differences of these markers in healthy, prediabetes and T2D groups were examined by Kruskal–Wallis test. Right forest plot shows the odds ratio of T2D
for each marker. Logistic regression models were performed, adjusted for age, sex, BMI, smoking status, drinking status, education attainment, income
level and physical activity. The error bars represent confidence intervals. B) Mendelian randomization analysis (n = 947). Forest plot shows the odds
ratios (95% confidence intervals) of T2D (outcome) per standard deviation increase in the host genetically predicted levels of the above identified ARG
features (exposure). p values were corrected by Benjamini-Hochberg method. MLS, Macrolide-Lincosamide-Streptogramin. *FDR-corrected p < 0.05.
#raw p < 0.05.
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glycated hemoglobin (HbA1c), insulin, and homeostatic model
assessment of insulin resistance (HOMA-IR). For instance, the
multivariable linear regression model indicated that a higher
DAS was associated with a higher level of FBG and HOMA-IR (all
p < 3.2 × 10−4) (Figure 5A). Furthermore, we used a linear mixed
model to investigate the longitudinal associations between DAS
and glycemic traits after excluding the baseline T2D cases. Our
analyses further validated the positive association of DAS with in-
sulin and HOMA-IR (both p < 5 × 10−3), suggesting that baseline
gut antibiotic resistome was associated with T2D progression,
characterized by the alteration of insulin resistance (Figure 5B).

The Procrustes analysis in 278 participants of the cohort
showed that the gut antibiotic resistome had a significant consis-
tency between the two time points (baseline and a follow-up visit)
(Figure 5C). Moreover, we also observed associations between
gut antibiotic resistome features and other cardiometabolic
traits. The gut ARG 𝛼-diversity indices were positively associ-
ated with triglycerides and total cholesterol/high-density lipopro-
tein (HDL) cholesterol ratio, while inversely associated with HDL
cholesterol (Figure 5D; Tables S14 and S15, Supporting Infor-
mation). Further subgroup analysis confirmed that the former
two associations were consistent in both T2D or Non-T2D partic-
ipants (Table S16, Supporting Information), which indicated that
these associations were independent of the T2D status. Overall,
our findings revealed that a higher gut ARG 𝛼-diversity was asso-
ciated with a higher cardiometabolic risk.

2.5. Co-Occurrence Patterns among T2D-Related ARGs and
Microbial Species

The positive correlations between the T2D-related ARGs and
microbial species suggest that the inverse correlations between
ARGs and T2D may be caused by the depletion of bene-
ficial bacteria. For instance, Multidrug_ABC_transporter, Van-
comycin_vanR, and Tetracycline_tet32 were positively associated
with Roseburia inulinivorans which is a producer of butyric acid
(Spearman’s rho = 0.34, 0.25, and 0.3, FDR-corrected p < 1.9
× 10−17) (Figure 6A; Table S17, Supporting Information). A
prior study showed that R. inulinivorans tended to be depleted
in the gut microbiome of individuals with T2D, which was in
line with our study (Figure 4A).[5] Moreover, co-occurrence net-
work depicted the positive associations (Spearman r ≥ 0.3 and
FDR-corrected p < 0.05) between the T2D-related ARGs and
all of the bacteria species, which could be an effective way to

track their potential hosts and co-occurring bacteria of human
gut or environmental ARGs.[11] Specifically, both our data and
the literature confirmed that Escherichia (s575 and s578) car-
ries the Multidrug_emrE (Figure 6B; Tables S18–S21, Supporting
Information).[12] Here, T2D was first found to be positively as-
sociated with Multidrug_emrE (OR = 1.16, 95% CI 1.01–1.32, p
= 0.037). Our data also showed that the number of edges of the
ARG-Species association networks had a gradual increment from
heathy (87) to prediabetes (100) and T2D (128), suggesting that
gut ARGs might be observed in more bacteria species with the
disease progression (Table S22, Supporting Information). The
above results together revealed a close relationship between the
gut antibiotic resistome and T2D progression.

Plasmid-mediated quinolone resistance in Klebsiella pneu-
monia was discovered in 1998, and it could transfer low-
level quinolone resistance to other bacteria.[13] Here, the
Quinolone_norB was only significantly co-occurred with Klebsiella
pneumonia (s581) in healthy and prediabetes populations (Fig-
ure S10, Supporting Information). However, in the T2D group
this gene was also found to newly co-occur with an unclassified
Olsenella species (s89) which had a positive association with T2D
(Figure 4A). In the global co-occurrence networks that contain
all the ARGs and microbial species, we found that ARGs tended
to co-occur more likely (O/R ratio = 1.67) with T2D-positively re-
lated microbial species (T2D-pos-Spe) whereas less likely (O/R ra-
tio = 0.21) with T2D unrelated species (ARG-Non-T2D-Spe) than
expected under random association (Table S23, Supporting Infor-
mation). In addition, the co-occurrence pattern between ARGs
and T2D-pos-Spe tended to be randomized in prediabetes popu-
lations (as suggested by O/R ratio = 0.89), implying the potential
for the spread of ARGs during the period of prediabetes, an early
developmental stage of T2D.

2.6. Gut Antibiotic Resistome Features are Associated with Fecal
Metabolome

Antibiotic resistance in bacteria is often associated with a
metabolic burden, while microbial metabolic adaptations accom-
panying the development of antibiotic resistome in T2D patients
are unclear.[14] We therefore examined the associations between
gut antibiotic resistome features and 117 targeted fecal metabo-
lites. As expected, the gut antibiotic resistome was widely as-
sociated with the fecal metabolites. Specifically, we found that
DAS and Vancomycin_vanX were positively associated with L-
isoleucine and L-leucine (all FDR-corrected p < 0.01) (Figure

Figure 5. Gut antibiotic resistome features are associated with glycemic and cardiometabolic traits. A) Forest plot showing the cross-sectional associa-
tions between DAS and glycemic traits. Linear regression models were performed, adjusted for age, sex, BMI, smoking status, drinking status, education
attainment, income level, physical activity and Diabetes-Microbiota Score (DMS). Standardized difference is the difference (in SD unit of the glycemic
traits) per 1 SD change of DAS. The error bars represent confidence intervals. B) Forest plot showing the longitudinal associations between the baseline
DAS and glycemic traits (repeated measured at baseline and a follow-up visit). Linear mixed models were performed, adjusted for potential covariates the
same as above linear model. Standardized difference is the difference (in SD unit of the glycemic traits) per 1 SD change of DAS. The error bars represent
confidence intervals. C) Procrustes analysis of gut ARGs at the baseline versus gut ARGs at a follow-up visit (n = 278). The median follow-up time was
3.2 years. Baseline and follow-up visit ARGs are shown as blue and purple dots, respectively. Baseline and follow-up visit ARGs from the same individual
are connected by grey lines. D) Associations between gut antibiotic resistome features and cardiometabolic risk factors. Linear regression models were
used, adjusted for potential covariates the same as above linear model. Total number of participants in each analysis was 1175 for HDL cholesterol,
LDL cholesterol, total cholesterol and TC/HDL ratio, 1176 for triglycerides, 1210 for diastolic blood pressure, systolic blood pressure and BMI, and
1203 for waist circumference. DAS, Diabetes-ARG Score, FBG, insulin, HOMA-IR were log-transformed. FBG, fasting blood glucose, HbA1c, glycated
hemoglobin; HOMA-IR, homeostatic model assessment of insulin resistance; BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density
lipoprotein. HbA1c, glycated hemoglobin. Triglycerides and TC/HDL ratio were log-transformed. *p < 0.05.
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Figure 6. Co-occurrence patterns among T2D-related ARGs and microbial species. A) The heatmap shows the Spearman correlation coefficients between
T2D-related gut antibiotic resistance genes (ARGs) and T2D-related microbial species. B) Correlation-based networks of co-occurring T2D-related ARGs
and all microbial species colored by node affiliation. A node stands for an ARG type/subtype or a species and a connection (i.e. edge) stands for a
significant (FDR-corrected p < 0.05, Spearman’s rho ≥ 0.3, n = 1210) pairwise correlation. Node size is proportional to the number of connections
(i.e., degree). Network was colored by ARGs and phylums. Ami, Aminoglycoside; Bet, Betalactam; Chl, Chloramphenicol; MLS, Macrolide-Lincosamide-
Streptogramin; Mul, Multidrug; Qui, Quinolone; Tet, Tetracycline; Van, Vancomycin; *FDR-corrected p < 0.05, ** FDR-corrected p < 0.01, ***FDR-corrected
p < 0.001.
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S11, Supporting Information). In addition, we observed that DAS
and Multidrug_emrE were positively associated with 10-trans-
heptadecenoic acid and 8,11,14-eicosatrienoic acid, while nega-
tively associated with butyric acid (Figure S11, Supporting Infor-
mation). After the adjustment for 3 taxonomic principal compo-
nents, more than a third of the significant associations were not
substantially changed (Table S24, Supporting Information).

3. Discussion

Here, we not only demonstrate the previously unperceived as-
sociation between ARGs and microbiota, but also discover a
shift and spread in gut antibiotic resistome with the progression
of T2D, which may accompany with widespread host-microbial
metabolic adaptations. Our study unravels a novel link between
the gut microbiome and progression of T2D via antibiotic resis-
tome.

A previous small-scale study showed that TetQ and ErmB were
the top two abundant ARGs in the Chinese.[15] Similarly, we ob-
served that Tetracycline_TetQ was also the most abundant ARG
subtype in our cohort participants, and MLS_ermB was the third
abundant ARG subtype. Moreover, six of the top ten abundant
ARG subtypes were consistent with the study aforementioned.

Notably, we found for the first time, to the best of our knowl-
edge, that ARG diversity was positively associated with T2D. In
contrast, previous studies showed that the diversity of gut micro-
biota is inversely associated with T2D.[16] To avoid potential con-
founding effect of the gut microbiota, our model was adjusted for
the total microbial gene richness and taxonomies. These results
suggest that the diversity of the gut antibiotic resistome is differ-
ent from that of the gut microbiota, in terms of their relation-
ships with metabolic disease. In addition, we observed a signifi-
cant difference in the composition of gut ARG subtypes between
healthy and prediabetes participants, but no significant change
in the gut microbiota composition between the two groups. The
latter is in line with a previous study which reported no signif-
icant microbiota change between the impaired fasting glucose
tolerance participants and the low-risk normal glucose tolerance
participants.[17] These results suggest that the gut antibiotic re-
sistome may change earlier than the gut microbiota during the
progression of T2D, and/or that changes in the gut antibiotic re-
sistome are more sensitive to the development of T2D.

Although it is hard to determine whether the gut ARG fea-
tures causally increase the T2D risk, our data indirectly permit
fairly speculation. For example, the results of MR analyses in our
study reveal a potential causal links between gut ARG richness,
Multidrug_emrE and T2D. Multidrug_emrE is a small-drug efflux
pump, which confers resistance to a wide variety of antimicro-
bial agents including cationic disinfects (e.g., quaternary ammo-
nium compounds used in the hospitals and food industry)[18] and
antibiotics (e.g., ampicillin, erythromycin, and tetracycline).[19]

Nevertheless, the current MR analyses were preliminary and ex-
ploratory, given the limited availability of genetic instrument for
analyzing ARG features. More studies are required to further elu-
cidate the causal links between gut ARGs and T2D.

Previous evidence showed that plasma L-isoleucine and L-
leucine had highly significant associations with future diabetes
risk.[20] In our study, both of them in fecal samples were posi-
tively associated with DAS and Vancomycin_vanX. Moreover, we

observed that DAS and Multidrug_emrE were positively associ-
ated with 8,11,14-eicosatrienoic acid, which is also known as
dihomo-gamma-linolenic acid (DGLA). A cross-sectional study
revealed that the DGLA level was an independent determinant
for HOMA-IR in 225 Japanese patients with T2D.[21] Further-
more, our study found that the gut antibiotic resistome was
widely associated with the fecal metabolites, which may reflect
the host-microbial metabolic adaptation. Bacteria could develop
resistance to many classes of antibiotics vertically, by making mu-
tations in central housekeeping genes, which correspondingly
affected metabolism.[22] One study on E. coli demonstrated that
the acquisition of antibiotic resistance is accompanied by specif-
ically reorganized metabolic networks in order to circumvent
metabolic costs.[23] Taken together, these results provide a poten-
tial interpretation for the mechanism behind the observed asso-
ciation in the present study.

The present study has several strengths. First, we profile the
gut antibiotic resistome configuration in a large population with
different diabetes status, which has not been investigated before.
Second, previous studies mainly focus on the relationship be-
tween gut microbiota and T2D, while we also examine the as-
sociation between gut antibiotic resistome and T2D progression,
and the results were validated by the longitudinal analyses. Fi-
nally, we modelled, for the first time, the association between the
antibiotic resistance and T2D and constructed a novel diabetes-
ARG score, which may help inform a new mechanism discov-
ery for the pathophysiology of T2D. Nonetheless, there are sev-
eral limitations. First, our study is based on the Chinese popu-
lation and may not be generalizable to other ethnicities. There-
fore, the generalization of our findings would require validation
in other countries or ethnicities. Second, our results are from an
observational study, which is subject to the influence of resid-
ual confounders. Third, given the considerable effects of drugs
on gut microbiome,[24] and the factor that diabetes patients are
prone to infection, although we have controlled the taxonomic
confounders for our findings, our results may still be affected
by specific drugs exposures, such as antibiotics or metformin.
Finally, detailed mechanism behind our observed association is
not clear, more mechanistic investigation in future is needed to
provide causality.

In conclusion, our study depicts a comprehensive profile of the
gut antibiotic resistome in a large human cohort and provides a
novel insight about the relationship between antibiotic resistance
and T2D progression. These results also suggest that the gut an-
tibiotic resistome is closely connected with fecal metabolites and
host metabolic health. These novel ARG features may potentially
serve as intervention target of T2D in future studies.

4. Experimental Section
Study Design and Participants: The current study was based on the

Guangzhou Nutrition and Health Study (GNHS) which is an ongoing
community-based cohort study in China. Between 2008 and 2013, a total of
4048 participants aged between 45 and 70 years, who lived in Guangzhou
city for at least 5 years were enrolled in the GNHS. There were two waves
for recruitment, 3169 were recruited between 2008 and 2010, and 879 were
recruited between 2012 and 2013. All participants were followed up ap-
proximately every 3 years. Detailed information on the study design has
been reported previously.[25] The study was registered at clinicaltrials.gov
(NCT03179657).
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In the present study, participants were excluded according to the crite-
ria: without metagenomics data (n = 2829), with missing data on main
covariates including age, sex, BMI, smoking status, alcohol drinking, ed-
ucation, and income level (n = 2) or without Bristol stool scale informa-
tion (n = 1). Participants who used antibiotics within two weeks before
fecal samples collection were also excluded (n = 6). Finally, 1210 partici-
pants were included in the analysis (Figure S1, Supporting Information).
The study protocol was approved by the Ethics Committee of the School
of Public Health at Sun Yat-sen University (2018048) and Ethics Commit-
tee of Westlake University (20190114ZJS0003). All participants provided
written informed consent.

Metadata Collection—Assessment of Diabetes Status and Definitions:
Diabetes status was defined according to the criteria of the American Di-
abetes Association and the World Health Organization: prediabetes was
ascertained if a participant met one of the following criteria: i) without a
history of diabetes,(ii) glycated hemoglobin (HbA1c): 5.7–6.4%, iii) fasting
blood glucose (FBG): 6.1–6.9 mmol L−1; T2D cases were defined in adults
as meeting one of the criteria: FBG ≥ 7.0 mmol L−1, HbA1c ≥ 6.5% or self-
reported medical treatment for diabetes.[26] The diabetes medical history
was from the questionnaire: “Have you taken T2D medications following
your physicians’ instructions during the past year?

1: Yes; 2: Most of time (Yes); 3: Half of the time (Yes); 4: Little of the
time (Yes); 5: No”. For those having record of taking diabetic medications,
they were defined as diabetes cases in the study.

Metadata Collection—Covariates Assessment: The metadata on demo-
graphics, lifestyle, medical history and physical activity was collected by
questionnaires. Education attainment was categorized into primary (0–6
years), secondary (7–9 years), and higher education (≥ 10 years). Smok-
ing status was categorized into current smoker and non-smoker. Alcohol
drinking was classified as current drinker and non-drinker. Habitual di-
etary intakes at baseline were estimated from a validated food frequency
questionnaire (FFQ), which recorded the frequencies of foods in the past
12 months. The food intakes were then divided into 16 food groups ac-
cording to the Guidelines for Measuring Household and Individual Dietary
Diversity.[27]

Physical activity was assessed as total metabolic equivalent for task
(MET) hours per day based on a validated physical activity questionnaire,
and it was classified into four groups according to quartiles. Body weight,
height, waist circumference, hip circumference, neck circumference, and
blood pressure were measured by trained nurses on site. Fasting venous
blood samples were collected at both baseline and follow-up visits. Glu-
cose, total triglycerides, high-density lipoprotein (HDL) cholesterol, low-
density lipoprotein (LDL) cholesterol, and total cholesterol in serum were
measured on an automated analyzer (Roche cobas 8000 c702, Shanghai,
China). Glycated hemoglobin (HbA1c) was measured with the Bole D-10
Hemoglobin A1c Program on a Bole D-10 Hemoglobin Testing System.
Insulin was measured using the electrochemiluminescence immunoas-
say (ECLIA, Roche cobas 8000 e602) method. The homeostatic model as-
sessment of insulin resistance (HOMA-IR) was calculated as fasting blood
glucose (mmol L−1) times fasting insulin (mIU L−1) divided by 22.5.[28]

Fecal Metagenomics Profiling: Fecal samples of 1210 participants were
collected during on-site study visits between 2015 and 2019. Before DNA
extraction, the fecal samples were kept frozen at −80 °C. Fecal DNA ex-
tractions were carried out by a standardized CTAB procedure. DNA con-
centration was measured using Qubit dsDNA Assay Kit in Qubit 2.0 Fluo-
rometer (Life Technologies, CA, USA). For DNA library preparation, a total
amount of 1μg DNA per sample was used as input material. In addition,
the NEBNext Ultra DNA Library Prep Kit (NEB, USA) was used follow-
ing manufacturer’s recommendations and index codes were added to at-
tribute sequences to each sample. The DNA samples were fragmented
by sonication to a size of ≈350 bp. Then, the DNA fragments were end-
polished, A-tailed, and ligated with the full-length adaptor for Illumina se-
quencing with further PCR amplification. After that, PCR products were pu-
rified (AMPure XP system) and libraries were analyzed for size distribution
by Agilent2100 Bioanalyzer and quantified using real-time PCR. The clus-
tering of the index-coded samples was performed on a cBot Cluster Gen-
eration System according to the manufacturer’s instructions. After cluster
generation, the library preparations were sequenced on an Illumina HiSeq

platform and 150 bp paired-end reads were generated. Finally, on average,
42.4 million paired-end raw reads for each sample were obtained(Table S2,
Supporting Information).

Next, raw sequencing reads were first quality-controlled with PRINSEQ
(v0.20.4): 1) trim the reads by quality score from the 5′ end and 3′ end
with a quality threshold of 20; 2) remove read pairs when either read was
< 60 bp, contained “N” bases or quality score mean bellow 30; and 3)
deduplicate the reads. Reads that could be aligned to the human genome
(H. sapiens, UCSC hg19) were removed (aligned with Bowtie2 v2.2.5 using
–reorder –no-contain –dovetail).[29]

Taxonomic profiling of the shotgun metagenomic data was per-
formed using MetaPhlAn2 (v2.6.02), which uses a library of clade-specific
markers to provide pan-microbial quantification at the species level.[30]

MetaPhlAn2 was run using default settings. Only species-level relative
abundance data were considered in this study. Species were filtered out
if their mean relative abundance and prevalence were <0.01% or <10%
(Figure S2, Supporting Information). Functional profiling was performed
with HUMAnN2 v2.8.1, which maps sample reads against the sample-
specific reference database to quantify gene presence and abundance in a
species-stratified manner, with unmapped reads further used in a trans-
lated search against Uniref90 to include taxonomically unclassified but
functionally distinct gene family abundances.[31] Microbial gene richness
(MGR) was computed by the number of genes present in each sample.

The ARG types and subtypes were annotated by ARGs-OAP v2.0 with de-
fault parameters.[32] ARG-OAP is a read-based tool, which was developed
for the rapid annotation and classification of ARGs using SARG database
and has been widely applied for antibiotic resistome profiling in human
gut and environmental microbiota.[33] Compared with the metagenome-
assembly-based method, the read-based approaches have a good scala-
bility in the case of ever-increasing query sequences and antimicrobial re-
sistance reference data. More importantly, they were able to identify ARGs
from low-abundance organisms present in complex communities, which
may be missed by assembly-based methods owing to incomplete or poor
assemblies.[34] The expanded SARG database of ARGs-OAP v2.0 contains
sequences not only from CARD and ARDB databases, but also carefully
selected and curated sequences from the latest protein collection of the
NCBI-NR database, to keep up to date with the increasing number of ARG
deposited sequences. Each reference sequence was tagged with its func-
tional gene annotation (ARG subtype) and membership within a class of
antibiotics targeted by the gene (ARG type). For example, the prefix of
Tetracycline_TetQ is ARG type and the suffix ‘TetQ’ is ARG subtype. The
pipeline provides an algorithm for estimating cell number. The abundance
of ARG was calculated and normalized by the cell number in the research,
expressed as ‘copies of ARG per prokaryote’s cell’ using following equation

ARG abundance = Σn
1

NARG × Lreads∕LARG−ref

cell number
(1)

where n is the number of ARG reference sequences belonging to an ARG
type or subtype; NARG is the number of the ARG-like sequences annotated
to one specific ARG reference sequence in the metagenome; Lreads is the
sequencing length of metagenomic reads; LARG-ref is the average length of
the correspondingly specific ARG reference sequences. The cell number
was computed based on the following equation[35]

Cell number =
Σn

1N16S sequences × Lreads∕L16S Sequences

Σm
i = 1Mi × ai∕A

(2)

where m is the total taxa detected from the metagenomics dataset based
on the extracted hyper variable region information; Mi represents the num-
ber of copies of taxon i from the CopyRighter database; ai is the number
of aligned hypervariable sequences of taxon i in the metagenomics datas
set; A is the total number of aligned hypervariable sequences in all m taxa.

In addition, the ARG types or subtypes were excluded that were present
in less than 10% of the samples (Figure S2, Supporting Information).
Unclassified ARG types or subtypes were also excluded in current study.
The 𝛼-diversity of gut antibiotic resistome was represented by three
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diversity indices: Shannon, Richness (Observed unique ARGs) and Even-
ness (Pielou’s index), which was estimated by the vegan R package.[36] To
validate whether the annotation results were robust to differences in the
sequencing depths across samples, top 50 and bottom 50 samples based
on the reads number after quality control were selected. The reads number
of these 100 samples were range from 18M to 61M. Then, every sample
was randomly rarefied to 18M reads. The annotation pipeline was re-ran
to obtain the abundance and composition of ARGs. The alpha diversity
measures of ARGs without rarefaction and with rarefaction were highly
consistent (Pearson’s r >0.96; Figure S3, Supporting Information).

Genotyping Data: Host DNA was extracted from leukocytes using the
TIANamp Blood DNA Kit (DP348, TianGen Biotech Co, Ltd., China) ac-
cording to the manufacturer’s instructions. DNA concentrations were de-
termined using the Qubit quantification system (Thermo Scientific, Wilm-
ington, DE, USA). Extracted DNA was stored at −80 °C. Genotyping was
carried out with Illumina ASA-750K arrays. Quality control and relatedness
filters were performed by PLINK1.9.[37] Individuals with a high or low pro-
portion of heterozygous genotypes (outliers defined as 3 standard devia-
tions) were excluded[38]. Individuals who had different ancestries (the first
two principal components ± 5 standard deviations from the mean) or re-
lated individuals (IBD > 0.185) were excluded.[38] Variants were mapped
to the 1000 Genomes Phase 3 v5 by SHAP EIT,[39] and then genome-wide
genotype imputation was conducted with the 1000 Genomes Phase 3 v5
reference panel by Minimac3.[40] Genetic variants with imputation accu-
racy RSQR > 0.3 and MAF > 0.05 were included in the analysis.

Targeted Fecal Metabolome Profiling: The absolute quantification of fe-
cal samples (n = 1012) was performed by an ultra-performance liquid
chromatography coupled to tandem mass spectrometry (UPLC-MS/MS)
system. Detailed information about the measurements has been de-
scribed previously.[41] The list of metabolites was selected to capture the
microbiota-related metabolites and some key host metabolites. Finally,
117 metabolites were selected. These metabolites mainly include amino
acids, bile acids and fatty acids.

Statistical Analysis: All statistical analyses were performed using Stata
version 15 or R version 4.0.2. Participants were categorized into three
groups (healthy, prediabetes and T2D) based on their diabetes status. To
explore the compositional variation of gut antibiotic resistome, 37 factors
(including demography, physiology and dietary factors) were correlated to
the ARG subtype distance matrix (Bray-Curtis) using permutational mul-
tivariate analysis of variance (PERMANOVA). Then, Pearson correlation
analysis was used to examine the association between 𝛼-diversity of gut
antibiotic resistome and microbial gene richness. The principal coordi-
nates analysis (PCoA) on Bray-Curtis distance and PERMANOVA were
performed to examine the structural differences of gut antibiotic resis-
tome and gut microbiota among three different groups using the adonis
function (permutations = 999). In addition, Procrustes analysis was per-
formed to investigate the relationship between gut antibiotic resistome
and gut microbiota, and the p value was generated based on 999 permu-
tations. Then the association between 𝛼-diversity indices of gut antibiotic
resistome and gut microbiota and prevalent T2D was examined using a
logistic regression model, adjusted for potential confounders as follows:
age, sex, body mass index (BMI), physical activity, smoking status, drink-
ing status, education attainment, household income level, Bristol stool
scale, sequencing depth, and MGR. The 𝛼-diversity indices were z-score
normalized before regression analysis. As metformin showed impact on
the abundance of human gut microbiome,[9] to control the confounding
effect of microbial taxonomies, sensitivity analysis was conducted for the
PERMANOVA model and logistic regression model with or without adjust-
ment for the taxonomies, such as the abundance of Proteobacteria (phy-
lum), Firmicutes (phylum), Escherichia (genus) or three top taxonomic prin-
cipal components (PCs). The three top PCs were obtained through the
principal component analysis based on the whole species abundance ma-
trix. These models were compared regarding the p values to examine the
robustness of corresponding results.

To identify the markers of T2D, the least absolute shrinkage and selec-
tion operator (LASSO) regression model was used with 5 repeated 5-fold
cross-validations based on the gut ARGs, microbial species and main co-
variates (age, sex, BMI, physical activity, smoking status, drinking status,

education attainment, household income level, systolic blood pressure, di-
astolic blood pressure and Bristol stool scale). LASSO was implemented
in the R package glmnet using a binomial response type for binary de-
pendent variables (Non-T2D (healthy and prediabetes)/T2D, healthy/T2D,
prediabetes/T2D).[42] The predictive performance of the selected models
was assessed by estimating the area under the receiver operation curve
(AUC) for binary responses (alpha = 1; 100 lambda tested) (Figure S8,
Supporting Information). The selected value of ‘lambda.min’ was defined
using cross-validation, the lambda controls the overall impact of LASSO.
Then the features were merged with nonzero coefficients of the three mod-
els (Non-T2D/T2D, healthy/T2D, prediabetes/T2D) as markers of T2D
progression.

Subsequently, the abundances of the markers were z score transformed.
Kruskal-Wallis test and Mann-Whitney U test were used to examine the
abundance differences of the marker ARGs and microbial species among
healthy, prediabetes and T2D groups. The logistic regression was per-
formed to estimate the odds ratio of T2D for the markers after adjustment
for age, sex, BMI, smoking status, drinking status, education attainment,
income level, and physical activity. We then performed a linear regres-
sion analysis to explore the associations between the T2D-related ARGs
and glycemic traits, such as FBG, HbA1c, insulin and HOMA-IR, adjusted
for the covariates as the above model. Here, p values were controlled by
Benjamini-Hochberg method for multiple tests. FDR-corrected or raw p
values < 0.05 were considered to be significant.

Statistical Analysis—Genome-Wide Association Analysis of T2D-Related
ARG Features: To further examine the probability that ARG features in-
creased the risk of T2D, GWAS for ARG 𝛼-diversity indices and T2D pos-
itively related ARG markers were conducted in 947 participants with both
host genetic and metagenomics data. For the targeted ARG features, we
used log transformation and z-score normalization to change the skewed
distribution before GWAS analysis. A mixed linear model-based leave-one-
chromosome-out association (MLMA-LOCO) analysis in GCTA was used
to assess the association, fitting the first five genetic principal components
of ancestry, age and sex as fixed effects and the effects of all the SNPs as
random effects.[43]

Statistical Analysis—One Sample MENDELIAN Randomization Analysis:
To test if ARG features were causally linked to T2D, the genetic variants
used for one sample MR analysis were extracted from the GNHS study
with a moderate cutoff of p < 5 × 10−5. The weighted polygenic risk score
for each trait was constructed with the effect size from the additive model.
The two-stage one-sample analysis was implemented to estimate the po-
tential casual association. The first stage included a regression of the ARGs
or 𝛼-diversity index on the polygenic risk score, adjusted for age at the time
of stool sample collection, sex and the first five genetic principal compo-
nents of ancestry. The second stage included a logistic regression of T2D
using the prediction value constructed with the first stage regression, ad-
justed for age, sex and the first five genetic principal components of an-
cestry. Results were presented as odds ratio per 1-SD increase in polygenic
risk score.

Based on the identified T2D-related ARGs, a diabetes-ARG score (DAS)
was constructed as a new feature to represent the gut antibiotic resistome
associated with T2D. The formula was used to compute DAS as follows

DAS = Σn
1 (ORi − 1) × Ai (3)

Where n is the number of marker ARGs of T2D progression; ORi is the
odds ratio of T2D for the i-th marker ; Ai is the i-th normalized abundance
(z score) of ARGs.

To test the reliability of DAS, a logistic regression analysis was per-
formed to examine the cross-sectional association (independent variable
and dependent variable were from the same time point) between DAS and
T2D, adjusted for potential confounders. To clarify the influence of T2D
medication use on the above model, the abundance of Proteobacteria (phy-
lum), Firmicutes (phylum), and Escherichia (genus) was further separately
or simultaneously adjusted. A sensitivity analysis was also performed af-
ter excluding the participants who used diabetic medications in the recent
one year before stool sampling. The significances of DAS in these models
were tested by the Wald test. In addition, the cross-sectional correlation
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between DAS and glycemic traits, including fasting blood glucose, HbA1c,
insulin and HOMA-IR (homeostatic model assessment of insulin resis-
tance), was assessed. The linear regression analysis was performed after
adjustment for age, sex, BMI, smoking status, drinking status, education
attainment, income level, physical activity. Considering that T2D related
taxonomies of the gut microbiota may confound the above association,
the Diabetes-Microbiota Score (DMS) constructed by the same method
as DAS was also adjusted, in the logistic regression model. Based on the
identified T2D-related species, DMS was constructed as a feature to rep-
resent the gut microbiota associated with T2D. The formula was used to
calculate DMS as follows

DMS = Σn
1 (ORi − 1) × Ai (4)

where n is the number of marker species of T2D progression; ORi is the
odds ratio of T2D for the i-th marker ; Ai is the i-th relative abundance of
species.

Moreover, the linear mixed models were used to examine the longitudi-
nal association between DAS (baseline) and glycemic traits (repeat mea-
sure at baseline and follow-up visit) after excluding the baseline T2D cases,
adjusted for age, sex, BMI, smoking status, drinking status, education at-
tainment, income level, physical activity and DMS. Here, the independent
variable was baseline DAS (single time point) and the dependent variables
were glycemic traits (at two time points). As only the resistome informa-
tion was used at baseline of the cohort, it might be that the gut antibiotic
resistome would change over time. To address this concern, a Procrustes
analysis was performed in 278 participants of the cohort with a median
follow-up of 3.2 years. The fecal samples of these participants were col-
lected twice (baseline and a follow-up visit). In addition, a multivariable
linear regression model was used to assess the cross-sectional associa-
tion of the gut antibiotic resistome features (including DAS and 𝛼-diversity
indices) with other cardiometabolic risk factors, including BMI, waist cir-
cumference, total cholesterol, triglycerides, HDL cholesterol, LDL choles-
terol, TC/HDL ratio, systolic blood pressure, and diastolic blood pressure.
The dependent variables with skewed distribution were log-transformed
before analysis (fasting blood glucose, insulin, HOMA-IR, TC/HDL-C and
TG). A subgroup analysis was also performed in T2D (cases) or Non-T2D
participants (controls). The regression associations were expressed as the
difference in cardiometabolic risk factors (in SD unit) per 1 SD difference
in each gut antibiotic resistome feature. The significance was assessed by
the two-tailed t test. P values were corrected for multiple testing using the
Benjamini-Hochberg procedure.

Statistical Analysis—Network Analysis of ARG-Microbe Associations:
Spearman correlation analysis was performed to examine the as-
sociations between T2D-related ARGs and T2D-related gut micro-
bial species, based on ‘Co-occurrence Network Analysis’ package
(github.com/RichieJu520)[44]. To explore the underlying associations
among T2D-related ARGs and all gut microbial species, a correlation ma-
trix was constructed by calculating the pairwise Spearman correlation coef-
ficients. A correlation between ARG-ARG, species-species, or ARG-species
was considered significant if FDR-corrected p< 0.05. Gephi was further ap-
plied to visualize the correlations (Spearman’s rho was ≥ 0.3) in a network
interface and explore its topological properties.

To fully explore the hidden deterministic (or non-random) co-
occurrence patterns, the global co-occurrence associations between all the
gut ARGs and microbial species identified were also computed. The ob-
served (O%) and random incidences (R%) of co-occurrence correlation
between two group entities (i.e., ARG and/or species) were statistically
checked using the method as described previously.[44,45] Briefly, O% was
calculated as the number of observed edges divided by total number of
edges in the observed network, while R% was theoretically calculated by
considering the frequencies of two group entities and assuming random
association. Here co-occurrence patterns with Spearman’s rho ≥0.6, O%
≥1.0/R% ≥1.0, and O/R ≥1.5/O/R ≤ 0.5 were considered as significant
difference.

Spearman correlation analysis was finally used to investigate the
associations between gut antibiotic resistome features (DAS, Mul-
tidrug_emrE, Vancomycin_vanX, Quinolone_norB, and MLS_ermX) and 117

fecal metabolites. The concentrations of the metabolites were transformed
to z-scores before analysis. To evaluate whether these associations are in-
dependent of the taxonomic shifts, a linear regression model was used to
examine the association of 3 taxonomic PCs with log-transformed con-
centrations of metabolites. Residuals of the model were taken as the
taxonomy-adjusted metabolites for Spearman correlation analysis with gut
antibiotic resistome features. The Spearman’s rank correlation test was
used to assess their significance. P values were corrected for multiple test-
ing using the Benjamini-Hochberg procedure.
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the author.
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