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Abstract

Purpose: Develop a quantitative image analysis method to characterize the heterogeneous 

patterns of nodule components for the classification of pathological categories of nodules.

Materials and Methods: With IRB approval and permission of the National Lung Screening 

Trial (NLST) project, 103 subjects with low dose CT (LDCT) were used in this study. We 

developed a radiomic quantitative CT attenuation distribution descriptor (qADD) to characterize 

the heterogeneous patterns of nodule components and a hybrid model (qADD+) that combined 

qADD with subject demographic data and radiologist-provided nodule descriptors to differentiate 

aggressive tumors from indolent tumors or benign nodules with pathological categorization as 

reference standard. The classification performances of qADD and qADD+ were evaluated and 

compared to the Brock and the Mayo Clinic Models by analysis of the area under the receiver 

operating characteristic curve (AUC).

Results: The radiomic features were consistently selected into qADDs to differentiate 

pathological invasive nodules from (1) preinvasive nodules, (2) benign nodules, and (3) the 

group of preinvasive and benign nodules, achieving test AUCs of 0.847±0.002, 0.842±0.002 and 

0.810±0.001, respectively. The qADD+ obtained test AUCs of 0.867±0.002, 0.888±0.001 and 

0.852±0.001, respectively, which were higher than both the Brock and the Mayo Clinic Models.

Conclusion: The pathologic invasiveness of lung tumors could be categorized according to the 

CT attenuation distribution patterns of the nodule components manifested on LDCT images, and 

the majority of invasive lung cancers could be identified at baseline LDCT scans.
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Introduction

Lung cancer usually manifests as noncalcified nodules with solid and subsolid (part- and 

non-solid) composition on CT images. Histologically, lung cancer is classified into the 

categories of invasive (INV) carcinoma and pre-invasive (Pre-INV) carcinoma (including 

adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA)), representing 

a histological spectrum of carcinomas ranged from indolent to aggressive tumors (1, 2). 

Both AIS and MIA can achieve excellent (nearly 100%) postsurgery 5-year survival, 

whereas INV has worse prognosis (2). Studies of radiologic- pathologic correlation suggest 

that the degree of pathologic invasive growth in carcinoma can be quantified according 

to the proportion of the solid component of nodules on CT (3, 4). However, the visual 

classification of solid and subsolid nodules, and the outlining of the nodules with manual 

or semi-automated method have been reported to have large inter- and intra-observer 

variability among radiologists (5–9). The inconsistency may cause inaccurate and subjective 

assessment of nodule composition (10, 11). This study is to 1) develop a quantitative CT 

attenuation distribution descriptor (qADD) based method to characterize the heterogeneous 

patterns of nodule components, 2) investigate its capability for the classification of 

pathological categories of pulmonary nodules, and 3) compare to the Brock (12) and the 

Mayo Clinic Models (13).

Materials and Methods

Study population

With Institutional Review Board approval and permission of the National Lung Screening 

Trial (NLST) project, 103 subjects with positive baseline low dose CT (LDCT) scans 

were randomly selected from the NLST dataset. The image acquisition techniques were 

80–120 kVp, 40–120 mAs, and reconstructed at 1–2.5 mm slice interval. Forty-nine of 

the 103 subjects (47.6%) were women (median age 62 years; range 55–73 years) and 

54 were men (median age 60 years; range 55–74 years). A total of 166 nodules with 

size < 20 mm found by the NLST readers were included. Table 1 shows the categories 

of pathologically diagnosed invasive, preinvasive and benign nodules. Eighty-nine nodules 

were pathologically diagnosed as lung cancer in 53 subjects who underwent biopsy, of 

which 45 and 44 were invasive and preinvasive, respectively. Seventy-seven nodules were 

determined to be benign in 50 subjects by biopsy or 5-year follow-up exams.

Model development and evaluation

We developed a new 3D adaptive multi-component Expectation-Maximization (EM) 

analysis (AMEA) method (14, 15) to extract the volumes of the entire nodule, the solid 

and subsolid components, and the lung parenchymal region surrounding the nodule. The 

EM algorithm (16) is an iterative method to find maximum likelihood or maximum a 

posteriori (MAP) estimation of model parameters. Our AMEA method is fully automated 
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after the location of the nodule is marked by a single point. The EM analysis was 

performed in a cubical volume of interest (VOI) with side-length of 32 mm centered at 

the point and enclosing the nodule. We assumed up to 6 regions (e.g., air, solid or subsolid 

regions, etc.) being segmented in the nodule VOI as a priori knowledge. Assuming the 

CT values of each region followed a Gaussian mixture distribution, 6 initial Gaussians 

with equal variances were distributed evenly across the CT value histogram of the VOI. 

The EM algorithm then iteratively computed MAP estimates to fit a Gaussian model to 

each component. After the iteration reached convergence, any two adjacent fitted Gaussians 

were merged into one Gaussian when the difference of their means (mi) was less than 

one of their standard deviations (σi ), i.e., |m1-m2| < σ1 or σ2, where i =1, 2. Finally, 

all segmented components, excluding the background, constituted the nodule volume. A 

rim-like surrounding lung parenchyma region was then obtained by expanding the nodule 

volume by 3D morphological dilation with a 5-mm-diameter rolling ball structuring element. 

Fig.1(a) shows an example to illustrate the fitting of the Gaussian model by EM algorithm, 

in which the 6 fitted Gaussian models were merged into 4, indicating that 4 nodule 

components were segmented.

After AMEA segmentation, for each screen-detected nodule, we extracted 11 features to 

describe the size, the CT attenuation distributions of solid and subsolid components of the 

nodule, and the surrounding lung parenchyma region:

• Volume of the entire nodule (V-Nodule)

• Percent volume of solid (%-Solid) and subsolid (%-SS) components within entire 

nodule

• Mean and standard deviation of CT attenuation of solid (μ-Solid and σ-Solid) 

and subsolid (μ-SS and σ-SS) component

• Entropy (17) of CT attenuation of entire nodule (S-Nodule) and lung 

parenchyma (S-LP)

• Density of solid (ρ-Solid = %-Solid * μ-Solid), and subsolid (ρ-SS = %-SS * 

μ-SS) components.

The support vector machine (SVM) (18) is a supervised machine learning algorithm 

by finding a decision boundary to separate the two classes of data. We trained three 

SVM classifiers with linear kernel separately as a quantitative CT attenuation distribution 

descriptor (qADD) to differentiate invasive cancers from 1) preinvasive nodules, 2) benign 

nodules, and 3) the group of both preinvasive and benign nodules. For each task, we also 

built two hybrid models, qADD+ and qADD++ that combined radiomic qADD features with 

NLST documented demographic factors (Table 2, f1 to f12), excluding and including clinical 

risk factors (Table 2, f13 to f21), respectively. The least absolute shrinkage and selection 

operator (LASSO) method (19) with 5-fold cross-validation was used to select the effective 

features for each task.

Statistical Analysis

The documented demographic data of the subjects and the distribution of nodule size, 

margin and attenuation categories, were summarized by descriptive statistics and bar chart. 
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The Student’s t- test and Fisher exact test (20) for independence were used to compare 

their differences between invasive, preinvasive and benign nodules. The qADD, qADD+ 

and qADD++ were trained and validated with 5-fold cross-validation resampling method. 

The classification performances of the qADDs were evaluated and compared to the Brock 

model (21) and the Mayo clinic model (13) by analysis of the area under the receiver 

operating characteristic (ROC) curve (AUC) (22). The ROC curves were compared with 

the method of DeLong et al. (23). For subjects with more than one nodule, clustered ROC 

data analysis was used to account for the intra-subject correlation between different nodules 

within the same subject (24). The Bonferroni correction (25) was used to adjust the P-values 

for multiple comparison of invasive vs preinvasive and benign nodules. P-values less than 

0.05 after adjustment were considered statistically significant. The ROC analysis, SVM and 

LASSO methods, and other statistical analyses_were performed by using the R software 

packages (version 3.5.1; http://www.r-project.org/).

Results

Per-Subject analysis: NLST-risk factors

The distribution of the NLST-documented subject demographic data was summarized in 

Table 2. The Student’s t-test shows that the ages of the subjects with invasive nodules 

were not significantly different from those with preinvasive (P=0.516) or benign nodules 

(P=0.142), and the group of subjects who had preinvasive and benign nodule (P=0.348). 

Only the years of smoking for subjects with invasive nodules (n=33, years 43.0±5.6) were 

significantly different from those with benign nodules (n=50, years 37.5±7.5) and the groups 

of subjects with preinvasive or benign nodules (n=70, years 39.2.0±7.7) (P < 0.05 by 

Student’s t-test). The differences of all other risk factors were not significant for subjects 

who had invasive, preinvasive or benign nodules.

Per-Nodule analysis: radiologist-provided radiologic descriptors, Brock and Mayo Clinic 
Models

Table 2 also summarizes radiologic risk factors provided by NLST radiologists for the 166 

nodules. Fig. 2 shows the bar chart of distribution of nodule sizes measured as the longest 

diameter (mm) by NLST radiologists. The mean size of the 89 (45+44) malignant invasive 

and preinvasive nodules (11.7±5.9 mm) was significantly larger than that of the 77 benign 

nodules (7.3±3.0 mm) (P <0.001 by Student’s t-test). Among the 89 malignant nodules, 

there was extensive overlap between the size of invasive nodules (12.1±5.6 mm) and that 

of preinvasive nodules (11.4±6.2 mm) (P =1.000). On the other hand, the mean size of the 

invasive nodules is significantly larger than that of the 121 (44+77) preinvasive and benign 

nodules (8.8±4.8 mm) and that of the 77 benign nodules (7.3±3.0 mm), respectively (P 
<0.001).

The Fisher exact test indicates that a larger number of invasive nodules had spiculated 

margins than that of the preinvasive and benign nodules (18 vs 1+5) (P<0.05), and a 

larger number of benign nodules exhibited smooth margins than invasive (52 vs 11) and 

preinvasive nodules (52 vs 14) (P<0.05). The NLST radiologists described the majority 

of invasive (31/45=68.9%) and benign nodules (48/77=62.3%) as homogenous soft tissue 
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attenuation, while more than half of the preinvasive nodules (29/44=65.9%) had non-solid/

ground glass attenuation.

We applied the NLST-documented subject demographic data, clinical risk factors and 

radiologic descriptors to the Brock and the Mayo Clinic Models for differentiating the 

invasive nodules from the preinvasive, the benign, and the group of preinvasive and benign 

nodules. Table 3 shows that the Brock models achieved a test AUC of 0.741±0.033, 

0.855±0.031 and 0.843±0.031, respectively. The corresponding test AUCs achieved by 

the Mayo Clinic model were 0.693±0.030, 0.821±0.032 and 0.771±0.032 for the three 

classification tasks, respectively.

qADD for categorization of pathologic subtypes of nodules

With the LASSO feature selection method, 4, 4, and 3 effective features were selected 

from the 11 radiomic features for the three classification tasks of differentiating the invasive 

nodules from the preinvasive, the benign, and the group of preinvasive and benign nodules, 

respectively. The selected features were combined within each task to generate three qADDs 

by three SVM classifiers, respectively. The selected features and classification results are 

listed in Table 3. The test ROC curves of the three qADDs obtained from the 5-fold 

cross-validation method are shown in Fig. 3. The corresponding AUCs were 0.847±0.002, 

0.842±0.002, and 0.810±0.001 for the three classification tasks, respectively.

qADD+ and qADD++ : added value of subject demographic and risk factors

We added NLST-documented subject risk factors (12 factors (f1 to f12) shown in Table 

2) to the 11 radiomic features to form a new feature pool. Among those 23 features, 

5, 7, and 7 features, respectively, were identified to be effective by the LASSO feature 

selection method for distinguishing the invasive nodules from the preinvasive, the benign, 

and the group of benign and preinvasive nodules. The comparison of the AUCs between 

the classifiers with and without adding the subject data to the qADD is summarized in 

Table 3. The same 4, 4 and 3 radiomic features selected for the qADD classifiers were 

consistently selected for the corresponding qADD+ classifiers, respectively. The qADD+ for 

differentiating the invasive from benign nodules achieved higher AUC of 0.888 by selecting 

the subject gender, smoking-years, and nodule location (upper-lobe or not) as additional 

features. The qADD+ classifier for differentiating the invasive from the preinvasive selected 

the feature of emphysema or COPD (E-COPD) history and improved the AUC from 0.847 

to 0.867. The qADD+ classifier for differentiating the invasive from the group of preinvasive 

and benign nodules selected the additional features of gender, smoke-years and E-COPD 

and improved the AUC from 0.810 to 0.852. However, none of the improvement reached 

statistical significance.

We also formed another new feature pool of 32 features by adding the 9 radiologic 

descriptors provided by NLST radiologists (f13 to f21) together with 12 NLST factors 

(f1 to f12) to the 11 radiomic features. Three qADD++ classifiers were built with 7, 8 

and 7 LASSO-selected features for the same three tasks to distinguish invasive nodules 

(Table 3). The same 4, 4 and 3 radiomic features selected for the qADD and qADD+ 

classifiers were also consistently selected by the qADD++ classifiers. Compared with 
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qADD+, the descriptors of GGO, spiculated and the nodule size provided by the radiologists 

as additional features slightly improved the AUC from 0.867 to 0.901, from 0.888 to 0.909, 

and from 0.852 to 0.877, for differentiating invasive from preinvasive, benign and the 

group of preinvasive and benign nodules, respectively, but none of the improvement reached 

statistical significance.

Comparing qADD and qADD+ to two clinical models (Table 3), the test AUC achieved 

by the qADD+ was significantly (P<0.05) higher than those of the Mayo Clinic Models 

in all three classification tasks. Without the additional factors, the test AUC of qADD was 

significantly higher than that of Mayo Clinic Model for differentiating the invasive from 

preinvasive (P<0.05).

Discussions

Biologically, the pulmonary tumor cells initially grow along the alveolar lining with minimal 

thickening of the alveolar septa. As the number of tumor cells increases, the alveolar walls 

become thickened and collapse. The nodule becomes denser due to the alveoli invaded and 

replaced by cells, which appear on CT images as subsolid or completely solid. Several 

radiology-pathology correlation studies (2–4, 6, 26, 27) found that the degree of tumor 

invasion to the alveoli seen with microscopic histology assessment is correlated with the 

size of solid components manifested on macroscopic CT images. The presence of a solid 

component in the nodule that is measurable with CT images depends on the amount of 

tumor cell invasion to the alveoli. For lung cancer screening with LDCT, although the image 

quality of LDCT is sufficient for detecting nodules, the increased image noise degrades the 

visibility of the nodule margins and solid components, thereby affecting the classification 

of benign and malignant nodules as well as the degree of tumor cell invasion. Our AMEA 

method has the advantage of being more consistent than manual segmentation. It not only 

can segment multiple regions of interest allowing quantitative analysis but also facilitates 

direct visualization of nodule component structures with a color heat map (Fig.1). Thus may 

be useful for monitoring the changes of nodule components during follow-up CT scans.

Unlike other radiomics methods extracting hundreds of features that may contain a 

significant amount of noise and highly correlated features (28, 29) for a specific 

classification task, we extracted only 11 features that were designed to characterize the 

volumes and CT value distribution of AMEA- segmented nodule components. The results 

of our qADD classifiers showed that several effective features were selected consistently by 

the LASSO method and achieved high accuracies for different classification tasks (Table 3). 

The features of σ-Solid and μ-SS were designed to quantify the variation in attenuation of 

the solid portion and the mean attenuation of the ground-glass area of a nodule that may 

characterize the degree of tumor cell invasion to the alveoli manifested on CT images; both 

were selected for all three classification tasks. The entropy-based feature S-LP was designed 

to characterize the inhomogeneity of CT attenuation in the lung parenchyma surrounding the 

nodule that may be caused by tumor angiogenesis extending to the lung parenchyma. Our 

results indicated that this feature played an important role in distinguishing invasive nodules 

from the benign and the group of preinvasive and benign nodules. The NLST-factors, 

Zhou et al. Page 6

Eur J Radiol. Author manuscript; available in PMC 2022 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



including nodule characteristics and subject demographic data, provide varied degrees of 

correlation with cancer (Tables 2 & 3).

A number of studies (6, 30–33) demonstrated that the nodule size is highly predictive of the 

risk of malignancy. Our data set shows that, the number of benign nodules is significantly 

larger than that of invasive and preinvasive malignant nodules for the nodules <5 mm in 

diameter (Fig.2). It is worth noting that, none of our size-related radiomic features such as 

%-Solid, %-SS and V-Nodule were selected as effective features for differentiating invasive 

nodules from other types of nodules (Table 3). Table 2 and Table 3 show that the radiologic 

descriptors of nodule attenuation (soft (f14), and GGO (f15)) can be a useful factor to 

differentiate invasive nodules from preinvasive nodules, and the spiculated margin (f18) to 

differentiate invasive nodules from preinvasive and benign nodules. The major difference 

between the two clinic models is that the Brock model includes the attenuation descriptor 

of solid or subsolid nodule. Table 3 shows the Brock model achieved higher AUCs than 

the Mayo model for the three classification tasks. The comparison of qADD+ to qADD++ 

(Table 3) show that adding the radiologic descriptors did not significantly improve the 

AUC for the three classification tasks. The subjective attenuation descriptors might correlate 

with some of our radiomic features that were designed to characterize nodule attenuation 

distribution patterns.

There are several limitations in our pilot study. First, the relatively small sample size might 

not be representative of a general lung cancer screening population, although the subject 

cases in our study were basically random samples from the national multicenter prospective 

NLST study. It is important to further validate the performance with a large independent 

data set, and investigate the predictive values of incorporating the quantitative descriptors 

of nodule components with other risk factors (i.e., occupation, environmental exposure, 

etc.). Further independent cohort studies are also needed to validate the qADD approach to 

improving the baseline interpretation of nodule aggressiveness, as well as the management 

of indeterminate nodules. Second, due to the limited sample size available, there were 

not enough samples to further divide the data into subsets and study the effects of the 

CT acquisition or reconstruction parameters (e.g., kVp, mAs, slice thickness, etc) on the 

performance of our methods, which will be of interest in future studies. Third, we did not 

directly evaluate the segmentation accuracy of our AMEA method because radiologists’ 

segmentation has large variabilities. Instead of attempting to obtain gold standard to evaluate 

the accuracy of our AMEA method for nodule component segmentation, we used task-

driven methodology to evaluate the performance of our nodule classification method, in 

which radiomic features were extracted from the segmented nodule components. The high 

classification accuracy indicated that the nodule components obtained from the AMEA 

segmentation correlated with the invasiveness of the nodule, regardless of whether the 

segmentation agreed with manual segmentations.

In conclusion, our study demonstrated the feasibility of estimating the pathologic 

invasiveness of lung cancers using our qADD approach to characterize the CT attenuation 

distribution patterns of the nodule components manifested on LDCT images, and that 

the majority of invasive lung nodules could be identified early before treatment, thus has 

potential to reduce over-diagnosis and over- treatment of indolent lung cancer.
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Highlights

• EM analysis is feasible to extract the volume of the nodule and its solid and 

subsolid components.

• Radiomics have potentials to quantify CT attenuation distribution patterns of 

nodule components.

• The pathologic invasiveness of lung tumors could be categorized by radiomic 

descriptors.

• Clinical risk factors add discriminative value to radiomics in differentiating 

nodule subtypes.

• The Brock and Mayo Clinic Models are less accurate than the quantitative 

approach.
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Fig.1. 
Examples of automated segmentation of three types of nodules using the AMEA method. 

The regions of the segmented nodule components are rendered by a color heat map where 

the region with high CT values is mapped to hot colors and low CT values to cold 

colors. (a) a pure non solid nodule located at the left lower lobe, measuring 15×12 mm 

in diameters with poorly defined margins, pathologically diagnosed as adenocarcinoma 

in situ. The histogram of the nodule VOI excluding zero gray level illustrates that the 4 

segmented nodule components including ground glass tissue and small portion of solid 

component were represented by 4 EM fitted Gaussians (G1 – G4). (b) a subsolid nodule 

located at the right lower lobe, measuring 15×10 mm in diameters, with spiculated margins, 

pathologically diagnosed as invasive adenocarcinoma, (c) a non-solid nodule containing 

small solid components located at right upper lobe, measuring 9×7 mm in diameters with 

poorly defined margins, pathologically diagnosed as adenocarcinoma in situ.
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Fig.2. 
Distribution of the longest diameters of the lung nodules in the data set as measured by 

NLST radiologists on the axial slices of the CT examinations.
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Fig.3. 
Test ROC curves for classification of different types of nodules by qADD (left) and qADD+ 

that combined NLST risk factors with qADD (right).
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Table 1.

the categories of pathologically diagnosed invasive, preinvasive and benign nodules

Invasive (n=45) Preinvasive (n=44) Benign (n=77)

acinar 17 Adenocarcinomas in situ 35 77

papillary 7 Atypical adenomatous hyperplasia 7

large cell carcinomas 7 Squamous cell carcinomas in situ 2

squamous cell 7

mixed subtype 7
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Table 2.

NLST documented demographic factors ( f1 to f12 )and clinical radiologic risk factors ( f13 to f21 )

Variable Subcategory *Group-1 *Group-2 *Group-3 *Group-4 ** P 1 ** P 2 ** P 3

Per-Subject N=33 N=20 N=50 N=70

Gender (f1) female 18 10 21 31

Male 15 10 29 39 1.000 0.736 0.400

Age (f2) 62.8±5.7 64.6±5.1 60.6±5.2 61.7±5.4 0.516 0.142 0.348

Race (f3) White 32 20 48 68

other 1 0 2 2 1.000 1.000 0.999

Ethnicity (f4) Hispanic/Latino 0 0 2 2

other 33 20 48 68 1.000 1.000 0.999

Packs/yr (f5) 61.5±20.5 65.3±29.6 61.6±39.3 62.7±36.6 1.000 1.000 0.834

Smoke Starting Age (f6) 16.5±3.6 16.4±3.1 16.5±3.8 16.5±3.6 1.000 1.000 0.939

Years (f7) 43.0±5.6 43.3±6.7 37.5±7.5 39.2±7.7 1.000 0.0006 0.005

BMI (f8) 26.2±3.7 27.0±4.4 27.5±4.9 27.4±4.7 1.000 0.302 0.168

Emphysema (f9) 5 1 3 4 0.144 0.370 0.071

Medical COPD (f10) 1 0 2 2 1.000 1.000 0.540

History Emphysema/COPD 6 1 4 5 0.466 0.370 0.168

(E-COPD) (f11)

Family (f12) 7 5 11 16 1.000 1.000 0.810

Per-Nodule N=45 N=44 N=77 N=121

Upper-Lobe (f13) 27 32 34 66 0.526 0.266 0.599

Attenuation Soft (f14) 31 5 48 53 <0.001 1.000 <0.001

GGO (f15) 5 29 17 46 <0.001 0.301 <0.001

Mix (f16) 9 10 12 22 0.800 1.000 0.824

Size (f17) 12.1±5.6 11.4±6.2 7.3±3.0 8.8±4.8 1.000 <0.001 <0.001

Margin Spiculated (f18) 18 1 5 6 <0.001 <0.001 <0.001

Smooth (f19) 11 14 52 66 0.972 <0.001 <0.001

Poor (f20) 12 23 13 36 0.012 0.612 0.596

Undetermined (f21) 4 6 7 13 1.000 1.000 0.999

*
Group-1, 2, 3, 4 are Invasive, Preinvasive, Benign, and group of Preinvasive and Benign nodules, respectively.

**
P1, P2, P3: P-value of the differences between Group-1 and Group-2, Group-3 and Group-4, respectively. The values of P1, P2 were corrected 

for Bonferroni multiple comparisons (N=2).

-Age, Smoke history, BMI and Size are shown as mean±standard deviation; the P values of their differences are calculated by Student’s t-test. The 
integers are the number of the subjects or nodules and compared by Fisher Exact Test (P value).
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Table 3.

Test AUC achieved by qADD, the combination of qADD and subject demographics and risk factors, and 

excluding (qADD+) or including radiologic descriptors (qADD++), the Brock and Mayo Clinic Models for 

differentiating invasive nodules from the preinvasive nodules, Benign nodules and the group of Pre-INV and 

Benign nodules.

Task Invasive vs Preinvasive Invasive vs Benign Invasive vs Preinvasive 
&Benign

qADD AUC 0.847±0.002 0.842±0.002 0.810±0.001

Selected 
features

μ-Solid, σ-Solid, μ-SS, ρ-SS σ-Solid, μ-SS, S-Nodule, S-LP σ-Solid, μ-SS, S-LP

AUC 0.867 ±0.002 0.888±0.001 0.852±0.001

qADD+ Selected 
features

μ-Solid, σ-Solid, μ-SS, ρ-SS, E-
COPD

σ-Solid, μ-SS, S-Nodule, S-LP, 
Gender, Smoke-years, Upper-
lobe

σ-Solid, μ-SS, S-LP, ρ-SS, 
Gender, Smoke-years, E-COPD

vs qADD P = 0.208 P =0.089 P =0.280

qADD++

AUC 0.901±0.001 0.909±0.001 0.877±0.001

Selected featu s μ-Solid, σ-Solid, μ-SS, ρ-SS, E-
COPD, GGO, Spiculated

σ-Solid, μ-SS, S-Nodule, S-LP, 
Smoke-years, E- COPD, Size, 
Spiculated

σ-Solid, μ-SS, S-LP, ρ-SS, 
Smoke-years, E-COPD, Size

vs qADD P = 0.046 P =0.027 P =0.069

vs qADD+ P = 0.102 P =0.159 P =0.096

AUC 0.741±0.033 0.855±0.031 0.843±0.031

Risk factors Age, Gender, Family, Emphysema, Size, Attenuation, Upper-lobe, Spiculated.

Brock Model vs qADD P=0.121 P=0.185 P=0.469

vs qADD+ P=0.039 P =0.167 P=0.770

Mayo Clinic 
Model

AUC 0.693±0.030 0.821±0.032 0.771±0.032

Risk factors Age, Smoker, Non-Lung-Cancer, Size, Upper-lobe, Spiculated.

vs qADD P =0.033 P =0.681 P =0.523

vs qADD+ P =0.014 P =0.042 P =0.028

vs Brock P=0.242 P=0.341 P=0.012
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