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Abstract
Genetic, environmental, and pharmacological interventions into the aging process 
can confer resistance to multiple age-related diseases in laboratory animals, including 
rhesus monkeys. These findings imply that individual mechanisms of aging might con-
tribute to the co-occurrence of age-related diseases in humans and could be targeted 
to prevent these conditions simultaneously. To address this question, we text mined 
917,645  literature abstracts followed by manual curation and found strong, non-
random associations between age-related diseases and aging mechanisms in humans, 
confirmed by gene set enrichment analysis of GWAS data. Integration of these asso-
ciations with clinical data from 3.01 million patients showed that age-related diseases 
associated with each of five aging mechanisms were more likely than chance to be 
present together in patients. Genetic evidence revealed that innate and adaptive im-
munity, the intrinsic apoptotic signaling pathway and activity of the ERK1/2 pathway 
were associated with multiple aging mechanisms and diverse age-related diseases. 
Mechanisms of aging hence contribute both together and individually to age-related 
disease co-occurrence in humans and could potentially be targeted accordingly to 
prevent multimorbidity.
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1  |  INTRODUC TION

Age-associated accumulation of molecular and cellular damage leads 
to an increased susceptibility to loss of function, disease, and death 
(Lopez-Otin et al., 2013). Aging is the major risk factor for many 
chronic and fatal human diseases, including Alzheimer's disease, 
multiple cancers, cardiovascular diseases, and type 2 diabetes mel-
litus (T2DM), which are collectively known as age-related diseases 
(ARDs) (Niccoli & Partridge, 2012). However, genetic (Kenyon, 2010), 
environmental (Austad & Hoffman, 2020), and pharmacological 
(Partridge et al., 2020) interventions can ameliorate loss of function 
during aging and confer resistance to multiple age-related diseases 
in laboratory animals. Age-related multimorbidity, the presence of 
more than one ARD in an individual, is posing a major and increasing 
challenge to healthcare systems worldwide (Pearson-Stuttard et al., 
2019). An important, open question, therefore, is whether mech-
anisms of aging can explain ARD co-occurrence in patients, and 
hence, whether intervention into these mechanisms could prevent 
or treat multiple ARDs simultaneously (Franceschi et al., 2018).

Specific biological mechanisms begin to fail as an individual ages 
(Lopez-Otin et al., 2013). Nine major aging processes were summa-
rized as “The Hallmarks of Aging” (Lopez-Otin et al., 2013): genomic 
instability, telomere shortening, epigenetic changes, impaired pro-
tein homeostasis, impaired mitochondrial function, deregulated 
nutrient sensing, cellular senescence, exhaustion of stem cells, and 
altered intercellular communication (Figure 1). Aging hallmarks are 
not themselves diseases, but they are present in the development 
and disordered physiology of clinically defined ARDs (Aunan et al., 
2016). For example, loss of proteostasis appears to have a promi-
nent role in neurodegenerative disorders, such as Alzheimer's and 
Parkinson's diseases, which are associated with protein aggregates 
composed of amyloid-beta and α-synuclein, respectively (Hou et al., 
2019). Genomic instability and epigenetic alterations frequently 
contribute to development of cancers of, for example, the breast and 
bowel (Hanahan & Weinberg, 2011). The role of genes in individual 
human ARDs and ARD multimorbidity has been studied extensively 
(Amell et al., 2018; Johnson et al., 2015; Zenin et al., 2019), as has 
the link between individual aging hallmarks and ARDs (Andreassen 
et al., 2019; Johnson et al., 2015). For example, previous studies 
have demonstrated that multiple, individual human ARDs share gene 
ontology (GO) terms linked to aging hallmarks (Johnson et al., 2015). 
However, whether these underlying mechanisms of aging contrib-
ute to ARD co-occurrence in patients has not previously been in-
vestigated. Here, we explore the notion that aging hallmarks may 
contribute to risk of co-occurrence of specific ARDs in patients. In 
model organisms, altering the activity of specific signaling pathways, 
such as insulin/ insulin-like growth factor signaling (IIS) (Lopez-Otin 
et al., 2013), Ras-ERK pathway (Slack et al., 2015), immune pathways 
(Moskalev & Shaposhnikov, 2011), and p53 pathways (Matheu et al., 
2007), can delay multiple ARDs and/ or extend lifespan. Therefore, 
we also explored the notion that common signaling pathways are 
shared across all aging hallmarks and, thus, may contribute more 
broadly to multiple ARDs and multimorbidity.

We integrated evidence derived from scientific literature ab-
stracts, genome-wide association (GWA) studies, and electronic 
health records to explore the role of aging hallmarks in human 
ARD co-occurrence. We began by scoring co-mentions of aging 
hallmarks and ARDs in 917,645 scientific literature abstracts and 
verified the differential aging hallmark-ARD associations that 
emerged using manual curation. Using the scores of verified lit-
erature aging hallmark-ARD associations, scaled by the number 
of mentions of each hallmark and ARD to control for study inten-
sity, we identified the top 30 ranked ARDs specifically associated 
with each aging hallmark (Figure 2a). To validate these associa-
tions independently, we used publicly available GWAS data and 
found that the annotations of proteins encoded by genes asso-
ciated with the top 30 ARDs were indeed enriched for processes 
related to the same aging hallmark (Figure 2b). The resulting 
associations were then propagated onto previously developed 
networks of ARD co-occurrence in clinical data from 3.01 million 
patients (Kuan, 2020; Kuan et al., 2021). We found that the top 
30 ARDs associated with each of 5 of the 9 aging hallmarks co-
occurred more frequently in individual patients than expected by 
chance (Figure 2c), and these associations were stable over 10-
year age ranges from age 50. Intervention into these individual 
hallmarks could thus prevent or ameliorate these specific groups 
of conditions.

In addition to the association of individual aging hallmarks to pat-
terns of ARD co-occurrence, GO annotation of the GWAS data also 
indicated that diverse, aging hallmark-associated ARDs were linked 
with common signaling pathways. These included innate and adap-
tive immune, Ras-ERK, and the intrinsic apoptotic signaling path-
ways. Interventions into these pathways may therefore have a broad 
preventative effect for these ARDs.

We also found that aging hallmarks may provide a mechanism for 
the etiology of ARDs with incompletely understood pathogenesis 
and/or pathophysiology.

2  |  RESULTS

2.1  |  Associations between aging hallmarks and 
ARDs in the biomedical literature

Each aging hallmark has a greater role in the development and disor-
dered physiology of certain ARDs and a lesser role in others (Aunan 
et al., 2016; Lopez-Otin et al., 2013). If an aging hallmark and ARD 
are frequently co-mentioned in the scientific literature, this associa-
tion could indicate a causal connection between them. We therefore 
applied text mining to the biomedical literature to identify the ARDs 
with the highest co-mentions with each aging hallmark (Figure 2a). 
As the associations derived from text mining could be confounded 
by another factor, we verified that the aging hallmark-ARD associa-
tions derived from text mining were direct, using manual curation, 
and we also sought independent confirmation from GWAS data 
(Figure 2b).
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Our text data consisted of 1.85 million abstracts on human aging 
extracted from PubMed, termed the “human aging corpus,” and 
was separated into 20.48 million sentences (Figure 2a). Synonyms 
of the aging hallmarks and ARDs were needed to maximize iden-
tification of relevant sentences in the text data (Pletscher-Frankild 
et al., 2015). We therefore developed an aging hallmark taxonomy, 
so that synonyms and subclasses of an original aging hallmark could 
be brought into a dictionary for the nine aging hallmarks (Figure 1) 
(Baker et al., 2017). The starting point for the aging hallmark taxon-
omy was “The Hallmarks of Aging” (Lopez-Otin et al., 2013) paper, 

and the rationale for selection of each taxonomy term is in Table S1. 
The original nine hallmarks (Lopez-Otin et al., 2013) were expanded 
into a taxonomy of 65 related terms and four levels (Figure 1). To 
develop the ARD dictionary, we used a previous definition, yielding 
a list of 207 ARDs meeting the criteria (Kuan et al., 2021), from which 
four ARDs that were not specific enough for scientific literature min-
ing were excluded (Table S2). We then determined if each original 
aging hallmark synonym and/ or ARD synonym was mentioned in 
each of the 20.48 million sentences (see Methods, Figure 2a). We 
excluded 19 ARDs that had fewer than 250 associated sentences in 

F I G U R E  1 The “Hallmarks of Aging” expanded into a taxonomy. The nine original aging hallmarks were expanded into a taxonomy of 65 
related terms and four levels. Figure adapted from Lopez-Otin et al. (2013). Abbreviations: Table S9
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abstracts in the human aging corpus (Table S2). As a co-occurrence 
score to quantify aging hallmark-ARD associations for the remain-
ing 184 ARDs, we used the Ochiai coefficient (Ochiai, 1957), which 
scores sentences mentioning and co-mentioning an aging hallmark 
and an ARD, and adjusts for uneven study density of each aging hall-
mark and ARD.

Age-related diseases and aging hallmarks with higher Ochiai co-
efficients are likely to be related in some way, but the type of rela-
tionship, for instance a causal connection, is not known (Jensen et al., 
2006). Therefore, we manually examined sentences co-mentioning 

each aging hallmark-ARD pair to determine the type of relationship 
(Yang et al., 2016). We manually examined co-mentioning sentences 
until we had encountered a sufficient number (see Methods) that 
correctly reported that an aging hallmark had a role in the devel-
opment or disordered physiology of a disease (Table S4). Aging 
hallmark-ARD combinations with insufficient evidence of associ-
ation from manual curation were set to zero and the Ochiai coef-
ficient associating each aging hallmark and ARD was updated. The 
updated Ochiai coefficients were then sorted in descending order to 
provide a rank for association of each ARD with each aging hallmark 

F I G U R E  2 Summary of the methods. (a) Associating aging hallmarks (AHs) with ARDs using text mining. From 1.85 million scientific 
abstracts, we extracted sentences mentioning and co-mentioning aging hallmarks and ARDs to derive a score of their association. We 
kept scores verified using manual curation. The scores were used to identify the top 30 ranked ARDs linked to each aging hallmark. (b) 
Confirming ARD-aging hallmark associations using GWAS data and investigating enrichment of specific signaling pathways across all aging 
hallmarks. We identified the genes linked to each of the top 30 ARDs associated with an aging hallmark from text mining and took the union 
of genes, which were mapped to encoded proteins forming nine protein lists. We carried out GSEA to identify whether there was significant 
enrichment of GO terms related to the same aging hallmark as the ARDs were linked to in text mining. We also assessed whether there were 
significantly enriched signaling pathways across all aging hallmarks. (c) Association of aging hallmarks with ARD multimorbidities. The input 
data were the top 30 ARDs per aging hallmark from text mining and four ARD multimorbidity networks from age 50 years. We selected 
subnetworks of the top 30 ARDs per aging hallmark and compared the network density in these subnetworks to random expectation. 
(d) Associations of aging hallmarks to ARDs with incompletely understood pathogenesis or pathophysiology. We superimposed the aging 
hallmark-ARD scored associations from text mining onto the four ARD multimorbidity networks and iterated until convergence. We selected 
the top 30 ARDs based on the score of the nodes after network propagation and identified significant subnetworks. We identified ARDs 
with incompletely understood pathogenesis or pathophysiology newly associated with aging hallmarks (green) in the subnetworks and 
explored genetic data for links to the same aging hallmark

F I G U R E  3 Aging hallmark-ARD associations from text mining. (a) Aging hallmark-ARD associations based on the logarithm of the updated 
Ochiai coefficient. The highest ranked ARDs are in red and lowest ranked in yellow. ARDs with no association are shown in white. (b) The top 
30 ranked ARDs for each aging hallmark. 1st (dark red) to 30th (light yellow) ranked ARDs for a given aging hallmark are highlighted. ARDs 
not ranked in the top 30 are shown in white. Abbreviations: Table S9
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(Figure 3a). We selected the top 30 ARDs associated with each aging 
hallmark (Figures 2a and 3b) as a prioritized and sufficiently large 
number to explore in multimorbidity networks.

The Ochiai coefficients showed clear patterns of association be-
tween specific aging hallmarks and ARDs (Figure 3a,b). For instance, 
disorders frequently mentioned in association with genomic insta-
bility and epigenetic alterations were primary malignancies, such 
as lung cancer, bowel cancer, and leukemia (Figure 3b). This was as 
expected, since “genomic instability and mutation” are hallmarks of 
cancer and epigenetic alterations are important in cancer develop-
ment and progression (Hanahan & Weinberg, 2011; Kanwal & Gupta, 
2012). Highly ranked ARDs for telomere attrition and stem cell ex-
haustion were hematological disorders, including aplastic anemia, 
anemia, and myelodysplasia (Figure 3b) (Lopez-Otin et al., 2013). 
There were strong associations between proteostasis and neuro-
degenerative disorders including dementia, Parkinson's disease, and 
motor neurone disease (MND), which are indeed associated with 
amyloid-beta aggregates, α-synuclein aggregates, and dipeptide-
repeat polymers, respectively (Figure 3b) (Hou et al., 2019; Vanneste 
et al., 2019). Mitochondrial dysfunction was strongly associated 
with neurodegenerative disorders and cardiomyopathy, again 
showing that our approach could recapture established associ-
ations (Figure 3b) (Aunan et al., 2016; Johri & Beal, 2012). Highly 
ranked ARDs for cellular senescence included immunodeficiency, 
which is associated with immunosenescence, and cancers, which 
are exacerbated by the senescence-associated secretory phenotype 

(Figure 3b) (Gonzalez-Meljem et al., 2018; McLachlan et al., 1995). 
Highly ranked disorders for deregulated nutrient sensing were high 
triglycerides, low high-density lipoprotein (HDL) cholesterol, hy-
pertension, and type 2 diabetes mellitus (T2DM) (Figure 3b). These 
ARDs comprise the metabolic syndrome, which is strongly associ-
ated with insulin resistance (Lann & LeRoith,). Altered intercellular 
communication was associated with specific malignancies and auto-
immune disorders, such as prostate cancer and rheumatoid arthritis 
(RA), respectively (Figure 3b) (Kryvenko et al., 2012). Thus, our text 
mining approach correctly captured many molecular and cellular 
processes known to be involved in the respective ARD etiology and, 
importantly, confirmed that aging hallmark-ARD associations were 
highly non-random.

2.2  |  Confirmation of ARD-aging hallmark 
associations from GWAS data

We next used genetic information to obtain independent confirma-
tion of the aging hallmark-ARD associations derived from text min-
ing. We assessed whether proteins encoded by genes associated 
with top 30 ARDs showed significant enrichment of GO terms re-
lated to the same aging hallmark on GSEA (Figure 2b). We linked 
the top 30 ARDs per aging hallmark to genes using the GWAS cat-
alog (Buniello et al., 2019) (Figure 2b), thus obtaining 9  gene lists 
(Figure 2b). As GO terms are mapped to gene products, we mapped 

TA B L E  1 Number of proteins in each aging hallmark protein list and number of proteins in each list linked to the five significant signaling 
pathways

Aging hallmark

a. Total 
number of 
proteins in 
protein list

Number of proteins in protein list linked to signaling pathway(expected number)

b. IFN-γ c. T-cell
d. T-cell (positive 
regulation)

e. ERK1/2 (positive 
regulation)

f. intrinsic 
apoptotic

GI 511 9 (2.7)*** 13 (3.7)*** 3 (0.4)** 15 (6.0)** 7 (1.4)***

TA 872 19 (4.7)**** 21 (6.3)*** 5 (0.7)*** 27 (10.3)**** 8 (2.4)***

EA 658 14 (3.5)**** 20 (4.7)**** 4 (0.5)** 17 (7.8)** 7 (1.8)***

LOP 817 16 (4.4)**** 17 (5.9)*** 4 (0.6)** 26 (9.7)**** 6 (2.2)*

DNS 1212 20 (6.5)** 26 (8.7)**** 4 (1.0)* 31 (14.3)**** 7 (3.3)*

MD 1058 20 (5.7)**** 24 (7.6)*** 5 (0.8)*** 31 (12.5)**** 8 (2.9)**

CS 594 10 (3.2)** 17 (4.3)*** 3 (0.5)** 16 (7.0)** 9 (1.6)****

SCE 680 17 (3.7)**** 17 (4.9)** 4 (0.5)** 23 (8.0)**** 7 (1.8)***

AIC 809 14 (4.3)*** 19 (5.8)*** 3 (0.6)* 24 (9.6)**** 7 (2.2)**

Total (union of encoded proteins) 25 30 5 40 9

Total (union of mapped ARDs) 21 19 9 22 11

Note: We identified the genes linked to each of the top 30 ARDs associated with an aging hallmark from text mining. We took the union of genes 
leading to nine gene lists. Protein-coding genes within each gene list were mapped to proteins forming nine protein lists. (a) Total number of proteins 
in each protein list. The associated aging hallmark from text mining represents the rows in the “aging hallmark” column (i.e., genomic instability 
(GI), telomere attrition (TA), epigenetic alterations (EA), loss of proteostasis (LOP), cellular senescence (CS), deregulated nutrient sensing (DNS), 
mitochondrial dysfunction (MD), stem cell exhaustion (SCE), and altered intercellular communication (AIC)). We next carried out GSEA followed by 
a search for GO terms mentioning “pathway” or “cascade,” which showed significant enrichment of five pathways across all aging hallmark protein 
lists represented in (b-f). The number of proteins in each protein list linked to the GO terms: (b) “IFN-γ-mediated signaling pathway,” (c) “T-cell 
receptor signaling pathway,” (d) “positive regulation of T-cell receptor signaling pathway,” (e) “positive regulation of the ERK1/2 cascade,” and (f) 
“intrinsic apoptotic signaling pathways in response to DNA damage by p53 class mediator,” compared to the expected number (*p < 0.05, ** p < 0.01, 
***p < 0.001, ****p < 0.0001). The “total” rows show the union of proteins from all nine protein lists and the union of mapped ARDs.
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each of the protein-coding genes to a single protein typically rep-
resenting the canonical isoform, resulting in nine “protein lists” 
(Table 1a) (Szklarczyk et al., 2019). We then carried out GSEA to test 
for significant enrichment of biological process GO terms related to 
the same aging hallmark (Figure 2b, Figure S1a-i). The GWAS cata-
log is associated with PMIDs, and we avoided any risk of circularity 
by removing the PMIDs that intersected between studies included 
from the GWAS catalog and the 917,645 scientific titles/ abstracts 
mentioning aging hallmarks and/or ARDs. Thus, this approach to 
verifying aging hallmark-ARD associations was independent of the 
literature-based method.

We next tested whether biological processes related to each 
aging hallmark were indeed significantly enriched in the protein 
list representing the top 30 ARDs associated with that hallmark 
(Figure 2b, Figure S1a-i). Both 511 and 1212 proteins were asso-
ciated with each of the aging hallmarks (Table 1a). We carried out 
GSEA and searched for GO terms related to each aging hallmark 
(Figure S1a-i). We identified significant enrichment of terms related 
to the same aging hallmark as was associated with the ARDs via 
text mining (Figure S1a-i). For example, “DNA damage response,” 
“telomere maintenance,” “regulation of autophagy,” “replicative 
senescence,” “glucose homeostasis,” “regulation of mitochondrion 
fission,” and “stem cell differentiation” were significantly enriched 
in the genomic instability, telomere attrition, loss of proteostasis, 
cellular senescence, deregulated nutrient sensing, mitochondrial 
dysfunction, and stem cell exhaustion protein lists, respectively 
(Figure S1a,b,d-h). The altered intercellular communication protein 
list showed significant enrichment of processes related to hormone 
synthesis and inflammatory response while the epigenetic alteration 
protein list showed significant enrichment of terms related to his-
tone acetylation (Figure S1c, i). Thus, the protein lists derived from 
the aging hallmark-associated gene lists were significantly enriched 
for annotations related to their own aging hallmark. Therefore, anal-
ysis of GWAS data confirmed the specific associations between 
aging hallmarks and ARDs that had been found from the literature 
co-occurrence scores (Figure 2a,b).

2.3  |  Enrichment of signaling pathways across all 
aging hallmarks

Our literature mining revealed highly specific associations between 
ARDs and aging hallmarks, and these were independently confirmed 
by GWAS data. However, hallmarks of aging are part of a complex 
nexus of failure of molecular and cellular processes, are not inde-
pendent of each other, and may share some common underlying 
signaling pathways. Therefore, we explored whether common sign-
aling pathways were shared across all aging hallmark protein lists 
and, thus, contribute to the development of multiple aging hallmark-
associated ARDs. For the ARDs that were associated with specific 
hallmarks and that were present in our GWAS analysis, there was 
clear evidence from the GWAS data for commonalities in the sign-
aling cascades and pathways across all aging hallmark protein lists 

(Figure 4a). GSEA followed by search for GO terms mentioning “path-
way” or “cascade” showed that five pathways were significantly en-
riched in all aging hallmark protein lists (Figure 4a, Table 1b-f). Three 
were linked to the innate and adaptive immune system, including 
the “interferon-γ-mediated signaling pathway” and the “T-cell re-
ceptor signaling pathway” and to its “positive regulation” (Figure 4a, 
Table 1b-d). These pathways are interconnected, as interferon-γ is 
a cytokine produced by multiple immune cells including cells of the 
adaptive immune system, such as T cells (Yen et al., 2000). “Positive 
regulation of the ERK1/2 cascade” and the “intrinsic apoptotic sign-
aling pathway in response to DNA damage by a p53 class mediator” 
were also significantly enriched across all aging hallmark protein lists 
(Figure 4a, Table 1e, f).

To explore these common pathways further, we derived the union 
of proteins associated with each of the GO terms across all aging 
hallmarks, mapped them to their underlying genes, and linked them 
to their associated ARDs (Table 1b-f). A total of 21 ARDs were linked 
to 25 genes encoding proteins associated with the interferon-γ path-
way (Figure 4b, Table 1b), 19 to 30 genes encoding proteins associ-
ated with the T-cell receptor signaling pathway (Figure 4c, Table 1c), 
9 to 5 genes encoding proteins associated with positive regulation 
of the T-cell receptor signaling pathway (Figure 4d, Table 1d), 22 to 
40  genes encoding proteins associated with the ERK1/2 cascade 
(Figure 4e, Table 1e) and 11 to 9 genes encoding proteins associated 
with the intrinsic apoptotic signaling pathway (Figure 4f, Table 1f). 
These signaling cascades are therefore implicated in the etiology of 
these diverse, aging-hallmark-associated ARDs.

2.4  |  Association of aging hallmarks with ARD 
multimorbidities

We next explored the possible role of aging hallmarks in the co-
occurrence of two ARDs in the same patient, known as multimor-
bidity (Figure 2c). To do this, we assessed whether ARDs associated 
with the same aging hallmark occurred more frequently in the 
same patient than random pairs of ARDs. We used previously cre-
ated multimorbidity networks (Kuan, 2020) reflecting non-random 
co-occurrence of two diseases in the same patient. The multimor-
bidity networks were created for different age classes by binning 
electronic health records of 3.01 million individuals into nine 10-year 
age intervals (Kuan, 2020; Kuan et al., 2019, 2021). Within each age 
interval, significantly co-occurring disease pairs were linked in the 
respective network (see Methods) (Kuan, 2020). The stratification 
by age accounts for the fact that occurrence (Kuan et al., 2019) and 
co-occurrence (Kuan, 2020) of diseases change with age. Since we 
were particularly interested in ARDs, we used the four networks for 
the age groups of 50  years and over for subsequent analyses be-
cause 170 of the 184 ARDs had a median age of onset ≥50 years 
(Figure 2c) (Kuan et al., 2021). Thereby, we obtained four networks 
of 184 ARDs (Table S6) (Kuan, 2020; Kuan et al., 2021).

We next assessed whether the ARDs associated with each aging 
hallmark were more likely to co-occur as multimorbidities in patients 
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than expected by chance. We selected the top 30 ARDs for each 
aging hallmark and extracted the subnetworks consisting of those 
30 diseases (Figures 2c and 3b), resulting in 36  subnetworks for 
the four age-specific ARD multimorbidity networks and the nine 
aging hallmarks. A higher observed network density than expected 
by chance indicates that there are more edges than expected, and 
hence that the ARDs within the subnetwork are more frequently 
multimorbidities than random ARD sets of the same size. In order 
to estimate the statistical significance of such differences, we per-
formed 20,000 random permutations of the network topology and 
obtained a background distribution of network densities. Next, 
we compared the network densities of the top 30 ARDs for each 
hallmark with that background distribution to obtain p-values (see 
Table 2 for details).

For five of nine aging hallmarks, namely deregulated nutrient 
sensing (p < 0.0001), mitochondrial dysfunction (p < 0.05), cellular 
senescence (p < 0.05), stem cell exhaustion (p < 0.001), and altered 
intercellular communication (p < 0.01), the nodes representing the 
top 30 associated ARDs were connected by more edges than ex-
pected by chance across all age categories (Table 2, Figure 2c). The 
ARDs associated with these five aging hallmarks thus co-occurred 
in individual patients more frequently than expected by chance and 
these associations were stable over 10-year age ranges from age 
50 years (Figure 5a-e, Table 2). For example, the deregulated nutri-
ent sensing multimorbidity subnetwork contained nodes connected 

by edges representing the progression of known multimorbidities, 
such as type 2 diabetes mellitus with fatty liver (Figure 5a) (Kneeman 
et al., 2012). These non-random associations suggest that these five 
aging hallmarks do indeed have a role in the development of ARD 
multimorbidity in patients (Table 2).

2.5  |  Associations of aging hallmarks with ARDs 
with incompletely understood pathogenesis or 
pathophysiology

The analysis above suggests that ARDs that are tightly connected in 
the multimorbidity networks are more likely affected by the same 
hallmark than random pairs of diseases. Thus, we speculated that 
this association could be used to identify hallmark-ARD associa-
tions that were so far unknown, that is, based on the fact that many 
neighboring ARDs in the network are associated with a common 
hallmark (“guilt by association”) (Cowen et al., 2017). Therefore, 
we focused on ARDs with incompletely understood pathogen-
esis or pathophysiology, that were not originally ranked in the top 
30 ARDs associated with a hallmark, but where the hallmark may 
nonetheless contribute to etiology.

For each aging hallmark, we superimposed the aging hallmark-
ARD co-occurrence scores (or updated Ochiai coefficients) from 
text mining onto the respective ARD nodes in each of the four 

F I G U R E  4 Significantly enriched signaling pathways across all aging hallmark protein lists. (a) p-values of enriched signaling pathways 
across all aging hallmarks. We identified the genes linked to each of the top 30 ARDs associated with an aging hallmark from text mining 
and took the union of genes. These were mapped to encoded proteins forming nine protein lists. The associated aging hallmark from text 
mining represents the column labels of the heatmap. We carried out GSEA and searched for GO terms related to signaling pathways. Five 
signaling pathways were significantly enriched across all aging hallmark protein lists. (b-f) The union of proteins/ genes associated with each 
of the five significantly enriched pathways was derived and they were linked to their associated ARDs. These are shown in the circos plots 
representing: (b) IFN-γ-mediated signaling pathway, (c) T-cell receptor signaling pathway, (d) positive regulation of T-cell receptor signaling 
pathway, (e) positive regulation of the ERK1/2 cascade, and (f) the intrinsic apoptotic signaling pathway in response to DNA damage by 
p53 class mediator. Abbreviations: Table S9

Aging hallmark

ARD network density

50–59 years 60–69 years 70–79 years ≥80 years

Genomic instability 0.0805 0.0989 0.0897 0.0782

Telomere attrition 0.1126 0.1218 0.1103 0.1011

Epigenetic alterations 0.0851 0.0759 0.0782 0.0713

Loss of proteostasis 0.0897 0.0805 0.0828 0.0552

Deregulated nutrient sensing 0.2598**** 0.2644**** 0.2368**** 0.2207****

Mitochondrial dysfunction 0.1655* 0.1471* 0.1356* 0.1080*

Cellular senescence 0.1379* 0.1494* 0.1195* 0.0989*

Stem cell exhaustion 0.2092*** 0.2000*** 0.1724*** 0.1609****

Altered intercellular comm. 0.2000*** 0.1839** 0.1540** 0.1333**

Note: The number of times the network density from permutations (n = 20,000) was greater than 
or equal to the true network density for that aging hallmark was used to calculate the p-value. The 
p-value was corrected for multiple testing across the 4 age categories per aging hallmark using the 
Benjamini–Hochberg procedure (*p < 0.05, ** p < 0.01, ***p < 0.001, ****p < 0.0001).

TA B L E  2 Network density of 
subnetworks of the top 30 ranking ARD 
nodes compared to random expectation 
for age categories 50–59 years, 60–
69 years, 70–79 years, and ≥80 years
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multimorbidity networks (Figure 2d). The scores were then 
smoothed over the network, which amplifies regions where ARDs 
have higher co-occurrence scores with a given aging hallmark and 
dampens regions with lower scores (Cowen et al., 2017) and thus 
assigns relatively high scores to ARDs that are surrounded in the 
network by ARDs associated with a common hallmark. Since this 
process changes the ARD-hallmark associations of all diseases 
in the network, it also changes the ranking of ARDs associated 
with each aging hallmark (Figure 2d). We identified those subnet-
works with a significantly greater network density than random 
expectation and identified newly prioritized ARDs within them 
(Table S7).

Two ARDs with incompletely understood mechanism of patho-
genesis or pathophysiology were newly ranked among the top 30 
ARDs, namely essential tremor and Bell's Palsy (Table S7, Figure 
S2a,b) (Louis, 2014; Zhang et al., 2020). Essential tremor is a neu-
rological disorder characterized by an involuntary, rhythmic tremor 
and was newly prioritized as a top 30 ARD associated with mito-
chondrial dysfunction (Figure S2a). It has previously been associ-
ated with mitochondrial abnormalities; however, the degree of their 
role is unclear (Unal Gulsuner et al., 2014). This disorder also has 
genetic evidence of association with five genes (i.e., STK32B, NAT2, 
LINGO1, CTNNA3, and LRRTM3) at genome-wide significance. 
However, we cannot exclude that the association is a consequence 
of initial misdiagnosis, such as of Parkinson's disease as essential 
tremor (Thenganatt & Louis, 2012). Bell's palsy was newly prioritized 
as a top 30 ARD associated with deregulated nutrient sensing, which 
has previously been reported to be associated with prognosis of the 
Bell's palsy (Karagoz et al., 2020). However, the association may also 
be a consequence of initial misdiagnosis of diabetic mononeurop-
athy as Bell's palsy (Figure S2b) (Pecket & Schattner, 1982). There 
were no reported genetic associations with Bell's palsy in the GWAS 
catalog at genome-wide significance. Overall, our findings indicate 
that aging hallmarks may contribute to a better understanding of 
disease etiology.

3  |  DISCUSSION

The contribution of aging hallmarks to co-occurrence of ARDs in 
humans is largely unexplored. We have addressed the issue by com-
bining aging hallmark-ARD associations derived from text mining, 
independently verified using genetic data, with disease networks 
derived from electronic health records.

First, we explored patterns of association between specific aging 
hallmarks and ARDs. We text mined 917,645  literature abstracts, 
followed by manual curation, and found strong, non-random associ-
ations between ARDs and aging hallmarks.

By integrating our findings with networks of ARD co-occurrence 
in patients, we found that five aging hallmarks were indeed non-
randomly associated with specific ARD co-occurrence networks. 
Deregulated nutrient sensing, mitochondrial dysfunction, cellular 
senescence, stem cell exhaustion, and altered intercellular communi-
cation were associated with the co-occurrence of ARDs in individual 
patients more than expected by chance. Reassuringly, these aging 
hallmarks were associated with ARD multimorbidity across all four 
decadal age ranges, and the associations were often highly signifi-
cant. Overall, these findings indicate that therapies targeted at each 
of these five aging hallmarks may prove to be beneficial in the pre-
vention of their associated ARD multimorbidities in humans. For in-
stance, sirolimus and related compounds inhibit the TORC1 complex 
in the nutrient-sensing network (Castillo-Quan et al., 2019) and can 
both extend healthy lifespan in model organisms (Correia-Melo et al., 
2019) and boost the response to vaccination against influenza in el-
derly people (Mannick et al.,). Senolytics and senescence-associated 
secretory phenotype (SASP) modulators eliminate senescent cells 
and inhibit the SASP, respectively, and thus target the cellular senes-
cence hallmark (Gonzalez-Meljem et al., 2018), and can both improve 
tissue health during aging and increase lifespan in mice (Xu et al., 
2018) and may prevent cellular senescence-associated ARD multi-
morbidities (Khosla et al., 2020). It will be important in any clinical 
trials that target these aging mechanisms pharmacologically to con-
sider potential effects on the multiple associated ARDs.

In model organisms, targeting common signaling pathways de-
lays the onset of ARDs and extends lifespan (Lopez-Otin et al., 
2013; Matheu et al., 2007; Moskalev & Shaposhnikov, 2011; Slack 
et al., 2015). Specific signaling pathways are intertwined with the 
aging hallmarks, for example, the IIS pathway is associated with 
the deregulated nutrient sensing aging hallmark (Lopez-Otin et al., 
2013). Aging hallmarks are not independent of each other with, 
for instance, DNA damage and telomere shortening contributing 
to cellular senescence (Fyhrquist et al., 2013) and loss of stem cell 
function (Behrens et al., 2014). Thus, different aging hallmarks may 
share some common underlying pathways, which will hence con-
tribute to the development of multiple, aging-hallmark-associated 
ARDs. Five signaling pathways/ cascades were significantly en-
riched across the protein lists for all nine aging hallmarks. These 
pathways are therefore likely to play a key role in the etiology of 
ARDs. Among these five signaling pathways, three were involved 
in the innate and/ or adaptive immune response. The underlying 
genes were derived from ARDs comprising metabolic syndrome 
disorders, autoimmune disorders, and cancers, thus highlighting 
the importance of the immune response across multiple ARDs 
(Johnson et al., 2015). The “intrinsic apoptotic signaling pathway 
in response to DNA damage by a p53  class mediator” was also 
significantly enriched across all aging hallmark protein lists. The 

F I G U R E  5 Subnetworks containing nodes representing the top 30 ranked ARDs for each aging hallmark (50–59 year age category). The 
(a) deregulated nutrient sensing, (b) mitochondrial dysfunction, (c) cellular senescence, (d) stem cell exhaustion, and (e) altered intercellular 
communication subnetworks. Nodes are colored by ARD ranking for a given aging hallmark: the 1st to 10th ranked in red, the 11th to 20th 
ranked in orange, and the 21st to 30th ranked in yellow. Abbreviations: Table S9
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underlying genes were derived from multiple cancers and met-
abolic syndrome disorders (Hanahan & Weinberg, 2011; Mercer 
et al., 2010). The ERK1/2 pathway regulates many processes in-
cluding cell survival, metabolism, and inflammation (Sun & Nan, 
2017) and was significantly enriched across all aging hallmark 
protein lists. The underlying genes were derived from 22 aging 
hallmark-associated ARDs (Figure 4e), and indeed, activation of 
the ERK1/2 pathway has been suggested to play a role in these 
ARDs either directly or through their risk factors. For example, 
increased activity of the ERK1/2 pathway has been identified in 
type 2 diabetes mellitus (Tanti & Jager, 2009) and hypertension 
(Roberts, 2012), which are major risk factors for cardiovascular 
disorders. Additionally, activating mutations upstream of ERK1/2 
contribute to over fifty percent of human cancers (Montagut & 
Settleman, 2009). Increased phosphorylation of cellular ERKs 
has also been identified in the thyroid disorder, hypothyroidism 
(Suarez et al., 2010), and in atrial fibrillation (Goette et al., 2000). 
Furthermore, ERK1/2 inhibition reduces beta-amyloid neurotox-
icity in Alzheimer's disease (Sun & Nan, 2017), decreases inflam-
mation and apoptosis in stroke patients (Sun & Nan, 2017), and 
prevents rheumatoid arthritis in mouse models (Ohori, 2008). 
Interestingly, the ERK1/2 cascade is linked to aging in model or-
ganisms and the MEK inhibitor, Trametinib, prolongs lifespan in 
Drosophila (Slack et al., 2015). Thus, our analysis suggests that 
inhibition of the ERK1/2 pathway could prevent up to 22 human 
aging hallmark-associated ARDs.

Using network propagation, we identified ARDs with incom-
pletely understood pathogenesis where aging hallmarks may con-
tribute to their development. Essential tremor has previously been 
associated with mitochondrial abnormalities, but the degree of 
their role is unclear (Louis, 2014; Unal Gulsuner et al., 2014). We 
found that essential tremor co-occurred with many ARDs strongly 
linked to mitochondrial dysfunction implying this is in fact a key 
pathogenic mechanism in essential tremor. However, we cannot ex-
clude the association as a consequence of initial misdiagnosis, such 
as of Parkinson's disease as essential tremor (Thenganatt & Louis, 
2012). Our findings were also supported by genetic data, as essen-
tial tremor is also associated with the variant N-acetyltransferase 
2 (NAT2) gene. NAT2 is associated with insulin resistance (Knowles 
et al., 2015), and deficiency of the mouse orthologue (i.e., NAT1) has 
also been associated with mitochondrial dysfunction (Chennamsetty 
et al., 2016). Therefore, aging hallmarks may contribute to the de-
velopment of ARDs with incompletely understood mechanisms of 
development.

A potential limitation is that, because certain ARDs occupy more 
of the scientific research effort, there is a risk that they would be 
more frequently included in the top 30 ARDs associated with aging 
hallmark and, therefore, included in multimorbidity subnetworks. 
To reduce the risk of this, we adjusted for uneven study density 
on each ARD by using a co-occurrence score based on the Ochiai 
co-efficient. A further potential limitation of the literature search is 
that it may have missed some associations between aging hallmarks 

and ARDs because they have been little studied. However, similar 
associations emerged from GSEA using GO annotations of proteins 
encoded by genes linked to the top 30 ARDs. We were thus able to 
detect signals that allow us to conclude that: (1) individual hallmarks 
contribute to multiple diseases, (2) highlight which hallmarks and 
pathways contribute to which diseases and (3) direct future research 
toward interventions on the hallmarks (and associated pathways) to 
tackle the prevention/management of these multiple diseases. An 
additional potential limitation is that ARD multimorbidities may be 
connected in electronic health records due to incorrect initial di-
agnosis, which may complicate the evaluation of incompletely ex-
plained ARDs. These limitations will be overcome as our knowledge 
of the aging hallmarks, ARD multimorbidities, and genes underlying 
ARDs improves.

Our study provides evidence for the role of aging hallmarks in 
the etiology of human ARD multimorbidities and ARDs with incom-
pletely understood pathogenesis. We also raise the possibility that 
multiple ARDs may be prevented by targeting common signaling 
pathways, such as the innate and adaptive immune pathways, the in-
trinsic apoptotic signaling pathway, and the ERK1/2 pathway. Future 
work will determine whether a prophylactic agent or cure for human 
ARD multimorbidities can be developed by targeting each of five 
aging hallmarks.

4  |  METHODS

The methods are summarized in Figure 2.

4.1  |  Information retrieval of the “human aging 
corpus”

A set of primary research articles (or corpus) on human aging was 
required for text mining. Our corpus was developed by defining 
inclusion and exclusion criteria followed by retrieving 1.93 mil-
lion PubMed identifiers (PMIDs) of abstracts meeting those cri-
teria from PubMed (Table S8a,b). The 1.93 PMIDs representing 
title/ abstracts on human aging meeting our search criteria were 
retrieved from the PubMed database using the Biopython Entrez 
application programming interface (Cock et al., 2009) on April 10, 
2020. Next, the 2019 PubMed baseline contains over 29 million 
abstracts and was downloaded in Extensible Mark-up Language 
(XML) format. Data were extracted from the XML files to pro-
duce separate, comma-separated values (CSV) files containing 
29,138,919  million rows and six columns including titles, ab-
stracts, and PMIDs. The rows containing the 1.93 million PMIDs 
of the human aging corpus were identified. PMIDs associated 
with missing data were eliminated, and, subsequently, the text 
data were cleaned. This gave 1.85 million abstracts representing 
the “human aging corpus,” which were tokenized into 20.48 mil-
lion sentences.
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4.2  |  Information extraction by dictionary-based 
methods with co-occurrence scoring

4.2.1  |  Aging hallmark dictionary

An aging hallmark taxonomy was developed to maximize re-
trieval of relevant literature on each aging hallmark from PubMed 
(Figure 1). We modeled our methodology on the approach used 
previously to develop a cancer hallmarks taxonomy (Baker et al., 
2017; Hanahan & Weinberg, 2011). The starting point for the 
taxonomy was the original “The Hallmarks of Aging” (Lopez-Otin 
et al., 2013) paper from which we selected relevant subcategories 
of the nine original aging hallmarks; however, occasionally, we in-
ferred a particular taxonomy term that was not specifically stated 
in original paper (Figure 1, Table S1). Additional taxonomy levels 
represented increasingly specific biological processes within a 
subclass (Table S1). Synonyms for each aging hallmark taxonomy 
term were retrieved from the Unified Medical Language System 
(UMLS) Metathesaurus (Bodenreider, 2004) from the U.S. National 
Library of Medicine (NLM) and relevant review articles. The aging 
hallmark taxonomy term synonyms were combined to form an 
aging hallmark dictionary and then linked to the corresponding 
original aging hallmarks.

4.2.2  |  Age-related disease dictionary

The ARD definition was developed previously by applying a hier-
archical agglomerative clustering algorithm to clinical data on 278 
diseases (Kuan et al., 2021). Four of nine “main” clusters contained 
207 diseases, and these diseases also had an adjusted R2 of greater 
than 0.85 on the Gompertz–Makeham model (Kuan et al., 2021). 
These 207 diseases were defined as ARDs (Table S2) (Kuan et al., 
2021). Four ARDs that did not translate effectively to scientific text 
mining approaches were eliminated from further analysis (Table 
S2). We next retrieved synonyms for each of the remaining 203 
ARDs from the MeSH thesaurus from the NLM (NCBI Resource 
Coordinators, 2017). The Comparative Toxicogenomics Database's 
“merged disease vocabulary” (Davis et al., 2019) was downloaded 
on March 21, 2019. It contains the MeSH diseases hierarchy pro-
cessed in a CSV file. Supplementary concepts and animal diseases 
were excluded. This left 4789 human diseases mapped to 28,638 
entry terms, or synonyms, after processing. MeSH terms were as-
signed to the 188 of 203 ARDs from the 4789 diseases. The 188 
ARDs were mapped to a hierarchical tree of 1427 rows containing 
MeSH term subclasses of assigned MeSH terms, of which, 545 rele-
vant subclasses were kept. The synonyms to each subclass were ed-
ited manually and then merged for each ARD. For the remaining 15 
ARDs, synonyms were derived from the Unified Medical Language 
System (UMLS) Metathesaurus (Bodenreider, 2004). The synonyms 
were merged to form an ARD dictionary and then linked to the cor-
responding 203 ARDs.

4.2.3  |  Calculating the Ochiai coefficient

The aging hallmark dictionary and human ARD dictionary were 
matched against the 20.48  million sentences from PubMed titles 
and abstracts. About 19 ARDs with <250 associated sentences were 
eliminated (Table S2). The co-occurrence of the nine aging hallmarks 
with the remaining 184 ARDs was scored at the sentence level using 
the Ochiai coefficient (Ochiai, 1957) (Equation 1). The Ochiai coef-
ficient (OC(H,D)) adjusts for the fact that certain ARDs are frequently 
studied in the biomedical literature while others are infrequently 
studied. For a given aging hallmark and ARD, nHD is the total num-
ber of sentences that co-mention the aging hallmark and ARD. nD 
and nH are the total number of sentences that mention the ARD and 
aging hallmark, respectively (Equation 1) (Lage et al., 2008).

4.2.4  |  Verifying extracted associations by 
manual curation

Age-related diseases and aging hallmarks with higher Ochiai coef-
ficients are likely to be related in some way, but the type of rela-
tionship is not known (Jensen et al., 2006). Therefore, we manually 
assessed the sentences co-mentioning aging hallmarks and ARDs 
to determine whether they correctly reported an association be-
tween the aging hallmark and ARD (Table S5) (Yang et al., 2016). 
Our approach to manual curation was to define co-mentioning 
sentences as either (1) “confirmed association” where an aging 
hallmark is reported (or inferred) to have a role in the ARD devel-
opment or persistence, (2) “no association,” (3) “irrelevant,” or (4) 
“error” (Gutierrez-Sacristan et al., 2015) (Table S3). For aging hall-
marks with <2500 co-mentioning sentences, we manually examined 
all sentences co-mentioning a given aging hallmark-ARD pair until 
we found one sentence that satisfied the criteria of “confirmed as-
sociation” (Table S3 and S5). For the remaining aging hallmarks, three 
sentences that satisfied the criteria of “confirmed association” were 
required (Table S3 & S5). If an aging hallmark-ARD pair could not 
be confirmed by a sufficient number of sentences, its Ochiai coef-
ficient was set to zero to increase the reliability of our findings. The 
30 highest scoring ARDs were selected for each aging hallmark.

4.3  |  Analysis of aging hallmark-associated 
multimorbidity subnetworks and network 
propagation

4.3.1  | Multimorbidity networks

We used multimorbidity networks derived from previously ana-
lyzed clinical data on 289 diseases, including the 184 ARDs, 
in 3.01  million individuals (Kuan, 2020; Kuan et al., 2021). The 

(1)OC(H,D) =

√
nHD2

nH ⋅ nD
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clinical data were obtained from Clinical Practice Research Datalink 
(CPRD), which was linked to the Hospital Episode Statistics admit-
ted patient care (HES APC) dataset and accessed via the CALIBER 
research platform (Kuan, 2020; Kuan et al., 2021). From the multi-
morbidity network data, we derived an undirected ARD network, 
where the nodes represent the 184 ARDs which were connected 
by edges. Edges linked ARD nodes if they were linked by a positive, 
significant partial correlation (after Bonferroni correction). The 
partial correlation was used as the edge weight (Kuan, 2020; Kuan 
et al., 2021). 170 of the 184 ARDs had a median age of first re-
corded diagnosis 50 years or older (Kuan, 2020; Kuan et al., 2021). 
Therefore, we used four multimorbidity networks for the 184 
ARDs representing age categories from 50 years (Table S6) (Kuan, 
2020; Kuan et al., 2021).

4.3.2  |  Network analysis of top 30 ranked aging 
hallmark-associated ARDs

We selected the top 30 ranking nodes for each aging hallmark from 
each of the four multimorbidity networks and, therefore, plot-
ted 36 subgraphs. The network density (D) was calculated for each 
subnetwork using the algorithm shown in Equation 2 where E is the 
number of edges in a subnetwork and V is the number of nodes in a 
subnetwork.

For each aging hallmark and age category, we shuffled the up-
dated Ochiai coefficient associated with the 184 ARDs 20,000 
times. At each shuffle, we selected the top 30 ARD nodes to form 
a subnetwork and calculated their network density. For a given per-
mutation, each time the random network density (Dk) was greater 
than or equal to the actual network density (D0) we added a score of 
1, and otherwise 0. The p-value (p) for the network density was de-
rived using Equation 3 where K is the total number of permutations 
(Qian et al., 2014).

The p-value was corrected for multiple testing across the 4 age 
categories per aging hallmark using the Benjamini–Hochberg proce-
dure (Benjamini & Hochberg, 1995).

4.3.3  |  Network propagation onto 
multimorbidity networks

For each aging hallmark and age category, the updated Ochiai coef-
ficient scores (F0) were superimposed onto each of the ARD nodes 
of the multimorbidity network. Using a Random Walk with Restart 

(RWR) algorithm, the scores were smoothed over the network 
(Equation 4) from the R package BioNetSmooth version 1.0.0 to de-
rive the posterior score (Chokkalingam et al., 2021).

In the RWR algorithm, Fi and Fi−1 are the posterior evidence of as-
sociation of an aging hallmark with an ARD at smoothing iteration, i 
and i−1, respectively, and we iterated until convergence (i = 30). The 
degree row-normalized adjacency matrix of the weighted disease 
network is represented by W′. The entries in the adjacency matrix 
(i.e., W� = [w�r,c]) are defined in Equation 5,

where dr is the degree of the ARD node vr and the edge weight be-
tween ARD node vr and ARD node vc is wr,c. Alpha (α) was set at 
0.5. The top 30 ARDs with the highest posterior score after net-
work propagation were selected to form a subnetwork. Significant 
subnetworks were identified using the approach described previ-
ously (Equation 3) with correction for multiple testing (Benjamini 
& Hochberg, 1995). We identified ARDs newly prioritized in the 
top 30 ARDs associated with an aging hallmark in these subnet-
works, which also had an incompletely understood pathogenesis or 
pathophysiology.

4.4  |  Identification of functionally enriched 
biological processes using genetic data

4.4.1  |  Genes underlying ARDs

The NHGRI-EBI GWAS Catalog (Buniello et al., 2019) was down-
loaded on February 26, 2020. 103 of the 203 defined ARDs were 
represented in the GWAS catalog (Buniello et al., 2019). These 103 
ARDs were mapped to 181 “Mapped Traits,” which are terms from 
the Experimental Factor Ontology that are assigned to each GWAS 
and represent, for example, the disease investigated (Buniello et al., 
2019). Single nucleotide polymorphisms (SNPs) with a p-value of 
<5  ×  10−8 associating them to ARDs were kept. GWAS studies in 
European populations were included; however, certain groups were 
excluded (e.g., Amish). SNPs located were assigned to genes (i.e., 
Ensembl Gene IDs) if they were located within a gene or intergenic 
SNPs less than 50 kilobase pairs (kbp) from a gene. For newly pri-
oritized ARDs after network propagation, intergenic SNPs were 
assigned to genes at a distance of 75 kbp to maximize retrieval of rel-
evant genes. The Ensembl gene IDs were mapped to National Centre 
for Biotechnology Information (NCBI) Gene IDs, where available, 
using the NCBI Gene database of Homo sapiens (Brown et al., 2015). 
Thus, 2364 NCBI Gene IDs were linked to 84 ARDs and 135 Mapped 
Traits subclasses.

(2)D =
2E

V (V − 1)

(3)p =

∑K

k=1
I(Dk ≥ DO)

K

(4)Fi = �W�Fi−1 + (1 − �) F0

(5)w�r,c =

⎧
⎪⎨⎪⎩

wr,c

dr
, if vr is adjacent to vc

0, otherwise

,
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4.4.2  |  Functional enrichment of biological 
processes for top 30 ARDs mapped to aging hallmarks

We identified the union of genes linked to the top 30 ARDs per 
aging hallmark (based on text mining) (Figure 2b). The NCBI Gene 
IDs for protein-coding genes were mapped to “stringId”s using 
the STRING database forming nine protein lists (Szklarczyk et al., 
2019). Of all 86 ARDs included in top 30 ranked node subnet-
works, 55 were associated with 1698 NCBI Gene IDs and mapped 
to 1693 stringId. The background set was also downloaded from 
the STRING database on January 27, 2019 (Szklarczyk et al., 2019), 
which contained 16,598 stringIds mapped to the biological process 
GO terms. 1560 of 1693 stringIds were also in the background set 
(Johnson et al., 2015). We used topGO (Alexa et al., 2006) with 
Fisher's exact test to identify biologically enriched processes 
against the background set and applied the “weight01” algorithm 
to reduce redundancy of GO terms. The final p-value cutoff was 
0.05, and the minimum node size was 5. Using our previously cre-
ated aging hallmark dictionary, we searched for GO terms related 
to the aging hallmarks. Shortened synonyms and abbreviations 
were appended to the dictionary for specific aging hallmarks. We 
also searched for GO terms related to “pathway” and “cascade,” 
and we kept only the pathways that were significantly enriched 
across all aging hallmark protein lists.

4.5  |  Computational analyses and images

Computational analyses were carried out in Python 3.7.0 and R 
Version 3.3.0 and 3.6.0. Aging hallmark and ARD images were down-
loaded from Adobe Stock and Shutterstock after obtaining a stand-
ard license.
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