
*These authors contributed equally
**Co-Corresponding Authors
The HTAN Consortium
Daniel L. Abravanel28, Samuel Achilefu18, Foluso O. Ademuyiwa18, Andrew C. Adey11, Rebecca Aft18, Khung Jun Ahn38, 
Fatemeh Alikarami38, Shahar Alon33, Orr Ashenberg2, Ethan Baker2, Gregory J. Baker1, Shovik Bandyopadhyay36, Peter 
Bayguinov18, Jennifer Beane23, Winston Becker19, Kathrin Bernt38, Courtney B. Betts11, Julie Bletz10, Tim Blosser32, Adrienne 
Boire9, Genevieve M. Boland28, Edward S. Boyden34, Elmar Bucher11, Raphael Bueno28, Qiuyin Cai17, Francesco Cambuli9, 
Joshua Campbell23, Song Cao18, Wagma Caravan18, Ronan Chaligné9, Joseph Chan9, Sara Chasnoff18, Deyali Chatterjee18, 
Alyce A. Chen1, Changya Chen38, Chia-hui Chen38, Bob Chen17, Feng Chen18, Siqi Chen18, Milan G. Chheda18, Koei Chin11, 
Hyeyoung Cho11, Jaeyoung Chun9, Luis Cisneros30, Robert J. Coffey17, Ofir Cohen2, Graham A. Colditz18, Kristina A. Cole38, 
Natalie Collins12, Daniel Cotter19, Lisa M. Coussens11, Shannon Coy24, Allison L. Creason11, Yi Cui34, Daniel Cui Zhou18, 
Christina Curtis19, Sherri R. Davies18, Inode Bruijn9, Toni M. Delorey2, Emek Demir11, David Denardo18, Dinh Diep40, Li 
Ding18, John DiPersio18, Steven M. Dubinett29, Timothy J. Eberlein18, James A. Eddy10, Edward D. Esplin19, Rachel E. Factor30, 
Kayvon Fatahalian19, Heidi S. Feiler11, Jose Fernandez19, Andrew Fields11, Ryan C. Fields18, James A.J. Fitzpatrick18, James 
M. Ford19, Jeff Franklin17, Bob Fulton18, Giorgio Gaglia24, Luciano Galdieri18, Karuna Ganesh9, Jianjiong Gao9, Benjamin L. 
Gaudio1, Gad Getz2, David L. Gibbs7, William E. Gillanders18, Jeremy Goecks11, Daniel Goodwin34, Joe W. Gray11, William 
Greenleaf19, Lars J. Grimm30, Qiang Gu11, Jennifer L. Guerriero12, Tuhin Guha19, Alexander R. Guimaraes11, Belen Gutierrez19, 
Nir Hacohen33, Casey Ryan Hanson19, Coleman R. Harris17, William G. Hawkins18, Cody N. Heiser17, John Hoffer1, Travis J. 
Hollmann9, James J. Hsieh18, Jeffrey Huang38, Stephen P. Hunger38, Eun-Sil Hwang30, Christine Iacobuzio-Donahue9, Michael D. 
Iglesia18, Mohammad Islam38, Benjamin Izar12, Connor A. Jacobson1, Samuel Janes39, Reyka G. Jayasinghe18, Tiarah Jeudi12, 
Bruce E. Johnson12, Brett E. Johnson11, Tao Ju18, Humam Kadara35, Elias-Ramzey Karnoub9, Alla Karpova18, Aziz Khan19, 
Warren Kibbe30, Albert H. Kim18 Lorraine M. King30, Elyse Kozlowski12, Praveen Krishnamoorthy18, Robert Krueger32, Anshul 
Kundaje19, Uri Ladabaum19, Rozelle Laquindanum19, Clarisse Lau7, Ken Siu Kwong Lau17, Nicole R. LeBoeuf28, Hayan Lee19, 
Marc Lenburg23, Ignaty Leshchiner2, Rochelle Levy12, Yize Li18, Christine G. Lian24, Wen-Wen Liang18, Kian-Huat Lim18, 
Yiyun Lin35, David Liu12, Qi Liu17, Ruiyang Liu18, Joseph Lo30, Pierrette Lo10, William J. Longabaugh7, Teri Longacre19, Katie 
Luckett9, Cynthia Ma18, Chris Maher18, Allison Maier31, Danika Makowski38, Carlo Maley30, Zoltan Maliga1, Parvathy Manoj9, 
John M. Maris38, Nick Markham17, Jeffrey R. Marks30, Daniel Martinez38, Jay Mashl18, Ignas Masilionis9, Joan Massague9, 
Marciej A. Mazurowski30, Eliot T. McKinley17, Joshua McMichael18, Matthew Meyerson12, Gordon B. Mills11, Zahi I. Mitri11, 
Andrew Moorman9, Jacqueline Mudd18, George F. Murphy24, Nataly Naser AL Deen18, Nicholas E. Navin35, Tal Nawy9, Reid M. 
Ness17, Stephanie Nevins19, Ajit Johnson Nirmal12, Edward Novikov1, Stephen T. Oh18, Derek A. Oldridge36, Kouros Owzar30, 
Shishir M. Pant31, Wungki Park9, Gary J. Patti18, Kristina Paul19, Roxanne Pelletier1, Daniel Persson11, Candi Petty18, Hanspeter 
Pfister32, Kornelia Polyak12, Sidharth V. Puram18, Qi Qiu36, Álvaro Quintanal Villalonga9, Marisol Adelina Ramirez17, Rumana 
Rashid24, Ashley N. Reeb18, Mary E. Reid37, Jan Remsik9, Jessica L. Riesterer11, Tyler Risom19, Cecily Claire Ritch24, Andrea 
Rolong17, Charles M. Rudin9, Marc D. Ryser30, Kazuhito Sato18, Cynthia L. Sears17, Yevgeniy R. Semenov33, Jeanne Shen19, 
Kooresh I. Shoghi18, Martha J. Shrubsole17, Yu Shyr17, Alexander B. Sibley30, Alan J. Simmons17, Anubhav Sinha34, Shamilene 
Sivagnanam11, Sheng-Kwei Song18, Austin Southar-Smith18, Avrum E. Spira23, Jeremy St. Cyr12, Stephanie Stefankiewicz38, 
Erik P. Storrs18, Elizabeth H. Stover12, Siri H. Strand19, Cody Straub30, Cherease Street18, Timothy Su17, Lea F. Surrey38, 
Christine Suver10, Kai Tan38, Nadezhda V. Terekhanova18, Luke Ternes11, Anusha Thadi38, George Thomas11, Rob Tibshirani19, 
Shigeaki Umeda9, Yasin Uzun38, Tuulia Vallius1, Eliezer R. Van Allen12, Simon Vandekar17, Paige N. Vega17, Deborah J. Veis18, 
Sujay Vennam19, Ana Verma24, Sebastien Vigneau12, Nikhil Wagle12, Richard Wahl18, Thomas Walle9, Liang-Bo Wang18, Simon 
Warchol32, M. Kay Washington17, Cameron Watson11, Annika K. Weimer19, Michael C. Wendl18, Robert B. West19, Shannon 
White19, Annika L. Windon17, Hao Wu36, Chi-Yun Wu36, Yige Wu18, Matthew A. Wyczalkowski18, Jason Xu36, Lijun Yao18, 
Wenbao Yu38, Kun Zhang40, Xiangzhu Zhu17
27 Arizona State University, Tempe, AZ, USA
28 Brigham and Women’s Hospital, Boston, MA, USA
29 David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
30 Duke University Medical Center, Durham, NC, USA
31 Harvard Medical School, Boston, MA, USA
32 Harvard University, Cambridge, MA, USA
33 Massachusetts General Hospital, Boston, MA, USA
34 Massachusetts Institute of Technology, Cambridge, MA, USA
35 MD Anderson Cancer Center, Houston, TX, USA
36 Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
37 Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
38 The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
39 Division of Medicine, University College London, London, UK
40 University of California San Diego, San Diego, CA, USA
Author contributions
D.S., C.Y and A.S. initiated and implemented the MITI guidelines with extensive guidance from other authors and direct supervision 
by P.K.S. and S.S.. All authors contributed to and reviewed the final MITI guidelines. D.S., C.Y, A.S., P.K.S and S.S. wrote the 
manuscript with input from all authors.

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2022 April 14.

Published in final edited form as:
Nat Methods. 2022 March ; 19(3): 262–267. doi:10.1038/s41592-022-01415-4.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MITI Minimum Information guidelines for highly multiplexed 
tissue images

Denis Schapiro1,2,3,4,*, Clarence Yapp1,5,*, Artem Sokolov1,6,*, Sheila M. Reynolds7, Yu-An 
Chen1, Damir Sudar8, Yubin Xie9, Jeremy Muhlich1, Raquel Arias-Camison1, Sarah Arena1, 
Adam J. Taylor10, Milen Nikolov10, Madison Tyler1, Jia-Ren Lin1, Erik A. Burlingame11,26, 
Human Tumor Atlas Network, Young H. Chang11, Samouil L Farhi2, Vésteinn Thorsson7, 
Nithya Venkatamohan12, Julia L. Drewes13, Dana Pe’er9, David A. Gutman14, Markus D. 
Herrmann15, Nils Gehlenborg6, Peter Bankhead16, Joseph T. Roland17, John M. Herndon18, 
Michael P. Snyder19, Michael Angelo19, Garry Nolan19, Jason R. Swedlow20, Nikolaus 
Schultz21, Daniel T. Merrick22, Sarah A. Mazzili23, Ethan Cerami12, Scott J. Rodig24, Sandro 
Santagata1,24,**, Peter K. Sorger1,25,**

1Laboratory of Systems Pharmacology, Ludwig Center for Cancer Research at Harvard, Harvard 
Medical School, Boston, MA, USA

2Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA

3Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University Hospital and 
Heidelberg University, Heidelberg, Germany.

4Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.

5Image and Data Analysis Core, Harvard Medical School, Boston, MA, USA

6Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA

7Institute for Systems Biology, Seattle, WA, USA

8Quantitative Imaging Systems LLC, Portland, OR, USA

9Program in Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New 
York, NY, USA

10Sage Bionetworks, Seattle, WA, USA

11Oregon Health and Science University, Portland, OR, USA

12Dana-Farber Cancer Institute, Boston, MA, USA.

13Johns Hopkins University School of Medicine, Baltimore, MD, USA

14School of Medicine, Emory University, Atlanta, GA, USA

15Department of Pathology, Massachusetts General Hospital and Harvard Medical School, 
Boston, MA, USA

16Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

17Vanderbilt University School of Medicine, Nashville TN, USA

18Department of Surgery, Washington University School of Medicine, St. Louis, MO USA.

19School of Medicine, Stanford University, Stanford, CA, USA

Schapiro et al. Page 2

Nat Methods. Author manuscript; available in PMC 2022 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



20Division of Computational Biology and Centre for Gene Regulation and Expression, University 
of Dundee, Dundee, UK

21Department of Epidemiology & Biostatistics at Memorial Sloan Kettering Cancer Center, New 
York, NY, USA

22Pathology, University of Colorado, Aurora, CO, USA

23Boston University, Boston, MA, USA

24Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA

25Department of Systems Biology, Harvard Medical School, Boston, MA, USA

26Current Affiliation: Indica Labs, Albuquerque, NM, USA

Abstract

The imminent release of tissue atlases combining multi-channel microscopy with single cell 

sequencing and other omics data from normal and diseased specimens creates an urgent need 

for data and metadata standards that guide data deposition, curation and release. We describe a 

Minimum Information about highly multiplexed Tissue Imaging (MITI) standard that applies best 

practices developed for genomics and other microscopy data to highly multiplexed tissue images 

and traditional histology.

Highly multiplexed tissue imaging using any of a variety of optical and mass-spectrometry 

based methods (Supplemental Table 1) combines deep molecular insight into the biology 

of single cells with spatial information traditionally acquired using histological methods, 

such as hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC)1. As 

currently practiced, multiplexed tissue imaging of proteins involves 20–60 channels of 

2D data, with each channel corresponding to a different antibody or colorimetric stain 

(Figure 1). Multiple inter-institutional and international projects, such as the Human Tumor 

Atlas Network (HTAN)2, the Human BioMolecular Atlas Program (HuBMAP)3, and the 

LifeTime Initiative4 aim to combine such highly multiplexed tissue images with single cell 

sequencing and other types of omics data to create publicly accessible “atlases” of normal 

and diseased tissues. Easy public access to primary and derived data is an explicit goal of 

these atlases and is expected to encompass native-resolution images, segmented single-cell 

data, anonymized clinical metadata and treatment history (for human specimens), genetic 

information (particularly for animal models), and specification of the protocols used to 

acquire and process the data. Given the imminent release of the first atlases, an urgent 

need exists for data and metadata standards consistent with emerging FAIR (Findable, 

Accessible, Interoperable, and Reusable) standards5. In this commentary, we establish 

the MITI (Minimum Information about highly multiplexed Tissue Imaging) standard and 

associated data level definitions; we also discuss the relationship of MITI to existing 

standards, practical implementations, and future developments.
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Scope and target audiences

MITI covers biospecimen, reagent, data acquisition and data analysis metadata, as well 

as data levels for imaging with antibodies, aptamers, peptides, dyes and similar detection 

reagents (Supplemental Table 1). The standard is also compatible with images based on 

H&E staining, low-plex immunofluorescence (IF) and IHC. A working group is currently 

extending MITI to cover subcellular resolution imaging of nucleic acids using methods 

such as MERFISH6. While conceived with today’s two-dimensional (2D) images in mind 

(these typically involve 5 – 10 μm thick sections of fixed or frozen specimens), MITI 

accommodates three-dimensional (3D) datasets acquired using confocal, deconvolution and 

light sheet microscopes7. MITI has been established as its own organization with its own 

GitHub repository, governing structure, and procedures for proposing and incorporating 

revisions. The definition of MITI is available in machine readable YAML format 

(https://github.com/miti-consortium/MITI) along with other relevant information. MITI has 

also been implemented in practice (https://github.com/ncihtan/data-models) and used to 

structure metadata available via the HTAN data portal (https://htan-portal-nextjs.vercel.app). 

However, MITI is independent of HTAN or any single research consortium.

Highly multiplexed imaging is derived from methods such as IHC and IF that are in 

widespread use in pre-clinical research using cultured cells and model organisms, and in 

clinical practice with human tissue specimens. Many standards and best practices have 

been established for these types of data (Supplemental Table 2), but high-plex imaging 

presents unique challenges: images are expensive to collect and can be very large (up to 

1TB in size), specimens are often difficult to acquire and may have data use restrictions, and 

accurate clinical and genomic annotation is a necessity. Recent interest in highly multiplexed 

tissue imaging has been driven by applications in oncology, largely due to the importance 

of the tumor microenvironment in immuno-editing and responsiveness to immunotherapy, 

but the approach is broadly applicable to studying normal development, infectious disease, 

immunology and other topics. HuBMAP3, for example, is using high-plex imaging to study 

a range of normal human tissues. MITI is also relevant to studies with model organisms 

and data tables have already been created to store data from genetically engineered mouse 

models (GEMMs) in a standardized manner.

Multiplexed imaging also promises to impact the pathological diagnosis of diseases, which 

is rapidly switching to digital approaches8. For over a century, histological analysis of 

anatomic specimens (from biopsies and surgical resection) has been the primary method 

of diagnosing diseases such as cancer9, and this remains true today, despite the impact of 

gene sequencing. Multiplexed tissue imaging promises to augment conventional pathological 

diagnosis with the detailed molecular information needed to specify use of contemporary 

precision therapies. This is therefore an opportune time to seek alignment of research and 

diagnostic approaches by establishing public standards able to take full advantage of the 

detailed molecular information revealed by emerging imaging methods.
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Existing standards and approaches

The Human Genome Project, the Cancer Genome Atlas (TCGA)10 and similar large-scale 

genomic programs have developed several approaches to data management of immediate 

relevance to tissue atlases. The first is the concept of “minimum information” metadata, 

which has been employed in microarrays (the MIAME standard)11, genome sequences 

(MIGS)12, and biological investigation in general (MIBBI)13. The second is the idea 

of “data levels” (https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/data-levels), 

which specify the extent of data processing (raw, normalized, aggregated or region of 

interest, corresponding to data levels 1–4) and access control. Access control is required 

because even anonymized DNA sequencing data pose a re-identification risk14. As a result, 

the database of Genotypes and Phenotypes (dbGaP), the NCI Genome Data Commons 

(GDC)15, and the US Federal Register (79 FR 51345) control access to primary sequencing 

data (so-called level 1 & 2 sequencing data) based on policies set by a data access 

committee. Higher level genomic data, which are generally more consolidated, involve 

information aggregated form many patients, and pose little or no re-identification risk can 

be freely shared16 (Figure 2). When datasets are combined, they acquire the most stringent 

restriction applied to any constituent element. While we are not aware of any policies 

addressing the anonymity of histological images, consultation with our Institutional Review 

Boards (IRBs, ethics committees) has led us to conclude that public release of tissue images 

does not constitute a risk to patient privacy. MITI data levels are nonetheless consistent with 

the existing GDC and dbGaP practice that data intended for unrestricted distribution are 

classified as level 3 and up. In the case of images adhering to the MITI standard, level 3 

data have been subjected to quality control and some degree of human annotation, making 

them more useful in a shared environment than raw images. We anticipate that IRBs and 

government agencies will in the future provide further guidance on sharing of datasets that 

combine clinical history, sequence information, and tissue images; MITI will be adapted to 

accommodate such guidance.

The MITI standard also draws extensively on image formats developed for cultured cells 

and model organisms and on a wide variety of open-source software tools (Supplemental 

Table 3). Noteworthy among these are the Open Microscopy Environment (OME) TIFF 

standard17 and the BioFormats18 approach to standardization of microscopy data. MITI 

field definitions are harmonized with the QUality Assessment and REProducibility for 

Instruments and Images in Light Microscopy (QUAREP-LiMi)19 effort, the Resource 

Identification Initiative20, and antibody standardization efforts by the Human Protein 

Atlas21 and are also compliant with the recently developed Recommended Metadata for 

Biological Images initiative22. Metadata on model organisms (particularly GEMMs - and 

patient derived xenografts - PDXs) are aligned with existing standards, many developed 

for genomic information (see Supplemental Table 2 for a full list of antecedent resources). 

Well-curated clinical information is essential for the interpretation of data from human 

specimens but standardizing such information has proven to be a major challenge in the past, 

for example in TCGA23. Thus, HTAN and other current NCI projects focused on human 

specimens are emphasizing standardization of clinical metadata, and the MITI standard is 

Schapiro et al. Page 5

Nat Methods. Author manuscript; available in PMC 2022 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/data-levels


designed to closely align with the Genomic Data Commons (GDC) Data Model24 in this 

regard (Supplemental Tables 5–6).

All imaging methods generate data that comprises a sequence of intensity values on a raster; 

multi-spectral imaging simply adds new dimensions to the raster. The cameras that collect 

H&E and IHC images from bright-field microscopes or high-plex images from fluorescence 

microscopes generate a raster; ablation-based mass-spectrometry imaging (e.g. MIBI and 

IMC) is also raster based. As currently defined, MITI specifies that raster images should 

be stored in the OME-TIFF 6 standard, but OME formats are currently being migrated to 

a set of next generation file formats (collectively OME-NGFF)25 to improve scalability and 

performance on the cloud. MITI will be updated to align with these new formats as they 

come into general use. Another area of translational and clinical research in which imaging 

is commonly encountered is radiology, which is almost entirely digital, and uses data 

interchange standards governed by DICOM (https://www.dicomstandard.org/). DICOM has 

recently been extended to accommodate both radiology data and OME-TIFF standards26. 

The NCI’s ongoing program to create an Imaging Data Commons27 is expected to be based 

on this dual standard, or on a successor using OME-NGFF. MITI is, or will be, compatible 

with these foundational data standards.

In highly multiplexed tissue imaging antibodies are either conjugated to fluorophores 

directly or via oligonucleotides, or are bound to secondary antibodies (Figure 1, 

Supplemental Table 4). Images are then acquired serially, one to six channels at a time, 

to assemble data from 20–60 antibodies. In ablation-based methods, antibodies are labelled 

with metals and vaporized with lasers or ion beams after which they are detected by atomic 

mass spectrometry (Supplementary Table 4). In all cases, the raw output of data acquisition 

instruments comprises Level 1 MITI data (Figure 2), analogous to the Level 1 FASTq files 

in genomics.

Whole slide imaging is required for clinical applications28 and also necessary to ensure 

adequate power in pre-clinical studies29. However, resolution and field of view have a 

reciprocal relationship – both with respect to optical physics and the practical process of 

mapping image fields onto the fixed raster of a camera (or ablating beam). Whole slide 

images of histological specimens8 must therefore be acquired by dividing a large specimen 

into contiguous tiles. This usually involves acquisition of ~100 to 1,000 tiles by moving 

the microscope stage in both X and Y, with each tile being a multi-dimensional, subcellular 

resolution, TIFF image. Tiles are combined at sub-pixel accuracy into a mosaic image 

in a process known as stitching. When high-plex images are assembled from multiple 

rounds of lower-plex imaging, it is also necessary to register channels to each other 

across imaging cycles and to correct for any unevenness in illumination (so-called flat 

fielding)30. Stitched and registered mosaics can be as large as 50,000 × 50,000 pixels 

× 100 channels and require ~500 GB of disk space. They correspond to Level 2 MITI 

data and represent full-resolution primary images that have undergone automated stitching, 

registration, illumination correction, background subtraction, intensity normalization and 

have been stored in a standardized OME format. The level of processing is analogous to 

BAM files, a common type of Level 2 data in genomics.
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Level 3 data represent images that have been processed with some interpretive intent, which 

may include (i) full-resolution images following quality control or artifact removal, (ii) 

segmentation masks computed from such images, (iii) machine-generated spatial models, 

and (iv) images with human or machine-generated annotations. Level 3 MITI data is roughly 

analogous to Level 3 mRNA expression data in genomics. However, whereas many users 

of genomic data only require access to processed level 3 and 4 data, which are usually 

quite compact, quantitative analysis of tissue images adds a requirement for full-resolution 

primary images so that images and computed features can be examined in parallel31. Level 3 

MITI data is intended to be the primary type of image data distributed by tissue atlases and 

similar projects.

Assembled level 3 images are typically segmented to identify single cells31, which are 

quantified to produce a “spatial feature table” that describes marker intensities, cell 

coordinates and other single-cell features. The Level 4 data in spatial feature tables are 

a natural complement to count tables in single cell sequencing data (e.g. scRNA-seq, 

scATAC-seq, scDNA-seq) and can be analyzed using many of the same dimensionality 

reduction methods (e.g. PCA, t-SNE and U-MAP)32 and on-line browsers such as cellxgene 

(Supplemental Table 3)33. These types of tabular data are all examples of “Feature 

Observation Matrixes” which are themselves being standardized across domains of biology 

to improve their utility and inter-compatibility. Level 5 MITI data comprise results computed 

from spatial feature tables or primary images. Because access to TB-size full-resolution 

image data is impractically burdensome when reading a manuscript or browsing a large 

dataset, a specialized type of Level 5 image data has been developed to enable panning and 

zooming across images using a standard web browser. In the case of Level 5 images viewed 

with MINERVA software, the aim is to exploit similar functionality and concepts as those in 

Google Maps or electronic museum guides34. The inclusion of digital docents with images 

makes it possible to combine pan and zoom with guided narratives that greatly facilitate 

comprehension of complex datasets and promote new hypothesis generation35.

For any metadata standard to be used, a balance must be struck between ease of data 

entry, which minimizes non-compliance by data generators, and level of detail, which 

must be sufficient for data retrieval, analysis, and publication in a reproducible manner. 

Moreover, specifying a metadata standard is separate from the essential task of developing 

a practical and reliable means for capturing information needed to ensure adherence to 

the standard. Two approaches have proven most effective in addressing this requirement. 

One, exemplified by OMeta36, involves a relational database and web interface that data 

generators use to input necessary information in a controlled manner. Another approach, 

exemplified by MAGE-TAB37, involves a standardized format for collecting metadata 

via a series of structured documents, which are then used to populate web pages and 

databases38. As a practical test of MITI we have implemented the latter approach in a 

JSON schema (https://github.com/ncihtan/data-models) that also conforms to the design 

principles of SCHEMA.org. These principles focus on the creation, maintenance and 

promotion of schemas for structured data that is supported by major web search engines, 

thereby enhancing discoverability. In this TAB-like approach the MITI standard is exposed 

to data collectors as Google Sheets with dropdowns representing controlled vocabularies 

and highlighting required or optional elements; many fields are automatically validated upon 
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entry. These documents are ingested using SCHEMATIC (Schema Engine for Manifest 

Ingress and Curation; https://github.com/Sage-Bionetworks/schematic), automatically linked 

to primary imaging data, and stored as cloud assets. These implementations continue to 

evolve, and entirely different approaches are possible: nothing in a MITI-type standard 

constrains how data are collected.

Whereas many research agencies and countries have made a major investment in curating, 

storing, and distributing genomic data, fewer repositories exist for primary image data. The 

Image Data Resource39 maintained by the European Bioinformatics Institute (EBI) is an 

exception, but as the volume of image data grows, other means of data distribution will 

almost certainly be required. In the U.S., in the absence of a major public investment 

in data storage, the development of “requester pays”40 access to datasets is a promising 

development. The primary cost associated with creation and maintenance of a dataset on 

a commercial cloud service involves data download, not data ingress and storage. In a 

“requester pays” model, a user seeking access to a dataset pays the cost of data egress 

directly to the cloud provider making access both secure and anonymous (moreover, the 

cost of egress into another account on the same commercial cloud is low). Although the 

“requester pays” approach might appear to create an impediment to research, the actual cost 

of egress is quite low (currently, about hundred US dollars per TB) compared to any form 

of data acquisition and a key goal is to avoid a tragedy of the commons in which frequent, 

duplicate downloads overwhelm the system. A combination of a MITI implementation on 

a cloud service (as described above) with “requester pays” cloud access will also make 

it possible for individuals to distribute very large FAIR image datasets at relatively low 

cost. Such an approach does not obviate the need for public investments, such as those 

being made but EBI, but does represent a practical way forward to democratize release 

of standardized data – some of which can then be incorporated into publicly supported 

resources. Regardless, the MITI standard described here is available for immediate use, 

without being impacted by how access to the primary data is provisioned.

Public data and metadata standards have been essential for the success of genomics and 

other fields of biomedicine, but the creation of a new standard is no guarantee of successful 

adoption. An outpouring of effort 10–20 years ago led to the development of widely 

adopted and well maintained standards such as MIAME11, MIGS12 and MIBBI13, and 

these have been consolidated and further documented by the Digital Curation Center (https://

www.dcc.ac.uk/), FairSharing.org, and similar projects. However many other minimum 

information projects have been left unattended41, and it remains unclear whether existing 

metadata adequately conform to user needs42. The development of MITI and of the initial 

HTAN implementation enjoys NCI support and is expected to become part of the NCI 

Cancer Research Data Commons27, helping ensure its viability. However, individuals and 

organizations are invited to join in the further development of MITI and should make contact 

via the image.sc forum or submit pull requests (i.e. requests for inclusion in the MITI 

“code base” at https://github.com/miti-consortium/MITI). Because high high-plex tissue 

imaging is in its infancy and MITI has attracted the great majority of developers of existing 

high-plex tissue image acquisition methods, it represents a solid beginning for what will 

need to be an evolving standard. By having its own repository and governance structure, 
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independent of any particular research program or constituency, MITI also conforms with 

other requirements of successful open standards43.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1: Schematic diagram of the steps in a canonical multiplexed tissue imaging 
experiment and the associated metadata
In a typical workflow, samples collected from patient biopsies and resections or from animal 

models are formaldehyde fixed and paraffin embedded (FFPE) or frozen and then sectioned 

and mounted onto either a standard glass microscope slide (for CyCIF, mIHC, IMC, MELC 

or mxIF), fluidic chamber (for CODEX) or specialized carriers (for MIBI). Clinical and 

biospecimen metadata (extracted from clinical records, for example) is linked to all other 

levels of metadata via a unique ID (Biospecimen ID). Data is acquired using cyclical or 

non-cyclical staining and imaging methods and both reagent and experimental metadata 

collected (consisting of antibody, reagent and instrument metadata). In both cyclic and non-

cyclic methods, sections undergo pre-processing, antigen retrieval, and antibody incubation 

and images are acquired. In cyclical imaging methods, fluorophores or chromogens are 

inactivated or removed and additional antibodies and/or visualization reagents are applied 

and data acquisition repeated. Channel and instrument metadata capture these essential 

details. Created with BioRender.com.
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FIGURE 2: MITI data levels and formats
Data levels specify the extent of data processing and, in the case of sequencing data, 

whether access requires the approval of a data access committee. In common practice, 

data at levels 3 and up are freely shared. Primary data arising from microscopes and data 

acquisition instruments corresponds to level 1 data. Because the raw image data acquired 

from one slide usually consists of separate image fields, possibly from proprietary formats, 

they are processed to correct for uneven illumination and other instrumentation artifacts 

and assembled into a single multi-channel image in the OME-TIFF format (level 2 data). 

OME-TIFF image mosaics undergo quality control (including artefact removal, channel 

rejection, evaluation of staining quality) to generate full-resolution, assembled and curated 

level 3 image data; segmentation algorithms generate one or more label masks that also 

comprise level 3 data. The great majority of users will want to access these level 3 images. 

Each label mask (e.g., nuclei, cytoplasmic-regions, whole cells, organelles, etc.) is used 

to compute quantitative features, such as the mean signal intensity, spatial coordinates of 

individual cells and morphological features, which are stored as level 4 spatial feature tables 

(where rows represent single cells and columns the extracted cellular features); these data 

are suitable for analysis using the dimensionality reduction and visualization tools used for 

other types of single-cell data (e.g. UMAP plots). Spatial models computed from images 

and spatial feature tables, or by direct application of machine learning to images, as well as 

images annotated by humans, comprise level 5 data.
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