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Background. ST-elevation myocardial infarction (STEMI) is a myocardial infarction (MI) with ST-segment exaltation of elec-
trocardiogram (ECG) caused by vascular occlusion of the epicardium. However, the diagnostic markers of STEMI remain little.
Methods. STEMI raw microarray data are acquired from the Gene Expression Omnibus (GEO) database. Based on GSE60993 and
GSE61144, differentially expressed genes (DEGs) are verified via R software, and key modules associated with pathological state of
STEMI are verified by weighted correlation network analysis (WGCNA). Take the intersection gene of key module and DEGs to
perform the pathway enrichment analyses by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG).
Construct the protein-protein interaction (PPI) network by Cytoscape. Then, select and identify the diagnostic biomarkers of
STEMI by least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive
feature elimination (SVM-RFE) algorithms. Finally, assess the infiltration of immune cells of STEMI by CIBERSORT and analyze
the correlation between diagnostic markers and infiltrating immune cells. Results. We get 710 DEGs in the STEMI group and 376
genes associated with STEMI in blue module. 92 intersection genes were concentrated in 30 GO terms and 2 KEGG pathways. 28
hub genes involved in the development of STEMI. Moreover, upregulated ALOX5AP (AUC =1.00) and BST1 (AUC =1.00) are
confirmed as diagnostic markers of STEMI. CD8+T cells, regulatory T (Treg) cells, resting natural killer (NK) cells, MO
macrophages, resting mast cells, and neutrophils are related to the procession of STEMI. Moreover, ALOX5AP and BST1 are
positively related to resting NK cells, MO macrophages, and neutrophils, while ALOX5AP and BSTI are negatively related to CD8+
T cells, Treg cells, and resting mast cells. Conclusion. ALOX5AP and BST1 may be the diagnostic markers of STEMI. Immune cell
infiltration plays a key role in the development of STEMI.

1. Introduction

ST-elevation myocardial infarction (STEMI), one type of MI
diseases, is the main cause of human death [1]. Although
mortality declines due to primary percutaneous coronary
intervention (PCI) combined with modern antithrombotic
pharmacologic therapy, the heart failure is still a challenge
for survivors [2]. STEMI results in severe or complete
blockage of the coronary artery [3, 4]. Currently, the routine
diagnosis of STEMI is usually based on invasive approaches
(myocardial blush grade, intracoronary physiology, and
resistive reserve ratio) and noninvasive approaches (CMR

imaging). However, the early diagnosis of STEMI is im-
possible [5]. Therefore, screening the biomarkers of STEMI
patients is important to improve the prognosis of STEMI.

Recently, many studies find that immune cell infiltration
is related to the pathological progression of STEMI. For
instance, increasing the apoptosis of lymphocytes apoptosis
and proinflammatory Thl lymphocytes infiltration in the
heart is shown in STEMI patients with PCI treatment [6].
STEMI heart exhibits an increase of immune cell infiltration,
resulting in cardiomyocyte apoptosis and cardiac dysfunc-
tion [7]. Cell type identification by estimating relative
subsets of RNA transcripts (CIBERSORT), an analysis tool,
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is used to assess the immune cells and obtain various im-
mune cell ratios from RNA-seq data of samples [8, 9].
Analysis of immune cell infiltration in multiple diseases such
as cancer [10], congenital heart disease [11], and systemic
lupus erythematosus [12] has been widely used. However,
the research to analyze immune cell infiltration of STEMI by
CIBERSORT is little.

In our study, STEMI raw microarray data are acquired
from the Gene Expression Omnibus (GEO) database, and
differentially expressed genes (DEGs) are screened. Screen
and confirm the diagnostic markers by machine learning
algorithms. Subsequently, analyze the difference in immune
cells infiltration between the STEMI group and normal
group by CIBERSORT. Finally, verify the connection be-
tween diagnostic markers and infiltrating immune cells in
STEML

2. Materials and Methods

2.1. Data Download. Get the expression profile datasets
GSE60993 and GSE61144 of STEMI from the GEO database.

2.2. Data Preprocess and DEGs Screen. Merge the GSE60993
and GSE61144 gene expression matrices and use the “sva”
package to remove differences between GSE60993 and
GSE61144. Picture the effect of removing differences be-
tween GSE60993 and GSE61144 by quantile-quantile chart
(Q-Q chart). Demonstrate the effect of batch correction by a
two-dimensional PCA cluster chart. DEGs are filtered
through the “limma” package, and draw the volcano map of
DEGs by the “ggplot2” package and heat map of DEGs by the
“pheatmap” package. DEGs with p<0.05 and |log2FC| >1
are considered statistically significant.

2.3. WGCNA. Construct the coexpression network by
WGNCA package. Remove the abnormal samples to ensure
the network construction is credible. Then, set the soft
threshold power. The key module with the high correlation
with STEMI is identified.

2.4. Functional Correlation Analyze and PPI Network
Construct. Taking the intersection of the key module gene
set obtained by WGCNA and DEGs, 92 intersection genes
are obtained. Then, the GO enrichment analysis
(FDR <0.05) and KEGG enrichment analysis (FDR < 0.05)
of 92 intersection genes are performed by R package
“clusterProfiler.” Furthermore, construct the PPI network of
92 intersection genes via the STRING and visualize by the
Cytoscape. Minimum required interaction score >0.4 is
considered statistically significant, and the hub genes in PPI
network are constructed.

2.5. Screen and Verify Diagnostic Markers. Screen diagnostic
markers of STEMI by LASSO and SVM-RFE. Then, verify
the diagnostic biomarkers of STEMI via “e1071” package.
Finally, combine the genes verified by LASSO or SVM-RFE
algorithms to study.
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2.6. Evaluate the Immune Cell Infiltration. Analyze the
immune infiltration of STEMI and normal control samples
by R package “CIBERSORT” to get the distribution of 22
immune cells in the STEMI group with a p value <0.05.
Remove the three types of nonexpressing immune cells in
the sample, and the box plot is used to compare the immune
cells of STEMI and normal samples by box plot.

2.7. Analyze the Connection between Diagnostic Markers and
Infiltrating Immune Cells of STEMI. Analyze the connection
between diagnostic markers and infiltrating immune cells by
“ggstatsplot” package and visualize the results by “ggplot2”
package.

3. Results

3.1. Collect Data and Screen DEGs. First, merge the datasets
of GSE60993 and GSE61144, remove the interbatch differ-
ence of the gene expression data, and show the result by the
Q-Q plot (Figure 1). Then, normalize and process the
merged gene expression matrix, and the result shows in a
two-dimensional PCA cluster diagram before and after
normalization (Figures 2(a) and 2(b)). After preprocessing
the data, extract 710 DEGs from the gene expression data of
STEMI samples (Figures 2(c) and 2(d)).

3.2. Construct a Weighted Coexpression Network and Identify
Key Modules. First, we cluster the samples and set the height
cutoft value at 50, and one sample is excluded in our analysis
(Figure 3(a)). Then, a soft threshold power with a scale-free
R* about 0.9 and a slope about 1 is picked. To cluster
splitting, setting the soft thresholding power at 18 and the
minimum module size at 30, 9 gene coexpression modules
are constructed (Figures 3(b)-3(d)). Based on the criteria
that cor >0.90, p <0.001, blue module is confirmed as key
module to study (Figures 3(e) and 3(f)). According to
GS > 0.8 and MM > 0.8, the key genes of the blue module are
screened, and 376 key genes are confirmed (Figure 3(g)).

3.3. Analyze Functional Enrichment of Intersection Genes and
Construct the PPI Network. Take the intersection of the blue
module genes and DEGs, draw the Venn diagram and the
network diagram, and obtain 92 intersection genes
(Figures 4(a) and 4(b)). Perform GO enrichment analysis
(FDR <0.05) and KEGG enrichment analysis for 92 inter-
section genes which are concentrated in 30 GO terms
(Figure 4(c)) and 2 KEGG pathways including neutrophil
extracellular trap formation and fructose and mannose
metabolism (Figure 4(d)). Moreover, construct a PPI net-
work and sort the obtained PPI network according to the
number of nodes. Select genes with more than 3 nodes and
get a total of 28 hub genes (Figures 5(a) and 5(b)).

3.4. Screen and Verify the Diagnostic Markers. Identify 7
genes from hub genes as diagnostic markers for STEMI by
the LASSO logistic regression algorithm (Figure 6(a)); 2
genes as diagnostic markers of STEMI are obtained from
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FIGURE 1: Remove the interbatch difference of GSE60993 and GSE61144 datasets by the Q-Q plot.

hub genes by the SVM-RFE algorithm (Figure 6(b)). In-
tersect the gene markers got via the two algorithms and
finally identify 2 diagnostic markers (Figure 6(c)). Upre-
gulation of ALOX5AP (AUC = 1.00) and BST1 (AUC = 1.00)
have a high diagnostic value for STEMI (Figures 7(a) and
7(b)).

3.5. Analyze Immune Cell Infiltration. The results of im-
mune cell infiltration via CIBERSORT analysis find that
there is significant difference in immune cell infiltration
between the STEMI group and the control group
(Figure 8(a)). Removing the three types of nonexpressing
immune cells in the sample, the connection heatmap of the
19 types of immune cells is analyzed (Figure 8(b)). The
results show the resting NK cells, MO macrophages, and
neutrophils infiltrated more, while resting CD8+ T cells,
Treg cells, and resting mast cells infiltrate less in the STEMI
group (Figure 8(c)).

3.6. Analyze the Connection between ALOX5AP, BSTI, and
Infiltrating Immune Cells. Connection analysis find that
ALOX5AP and BST1 are positively related to resting NK
cells, MO macrophages, and neutrophils, while ALOX5AP
and BST1 are negatively related to CD8+T cells, Treg cells,
and resting mast cells (Figure 9(a) and Figure 9(b)).

4. Discussion

Failure of STEMI patients with PCI to restore an open artery
remains as poor outcomes and results in coronary micro-
embolization (CME) [13, 14]. STEMI is an acute coronary
syndrome, and inflammation is the primary cause of
myocardial injury [15]. Owing to the lack of early diagnostic
markers, the STEMI patients lose the great opportunity to
treat, resulting in a poor prognosis. Moreover, studies find
that immune cell infiltration is related to the development of
STEMI [16, 17]. Therefore, obtaining the specific diagnostic
biomarkers and studying the immune cell infiltration of
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FIGURE 2: Screen the DEGs. (a)-(b) Two-dimensional PCA cluster plot of the GSE60993 and GSE61144 datasets before and after sample
correction. (c) Volcano map of DEGs of the STEMI group. (d) Heat map of the DEGs STEMI group.

STEMI is important to better development of STEMI pa-
tients. Bioinformatics provide an effective strategy to screen
molecular markers, and CIBERSORT analyses the immune
cell infiltration of STEMI. In our study, we define diagnostic
biomarkers of STEMI and probe the immune cell infiltration
in STEML

We obtain the STEMI gene expression data from the
GEO database and confirm 710 DEGs and 376 blue module
gene which are positively correlated with STEMI. GO-BP
enrichment analysis shows that 92 intersection genes be-
tween the blue module genes and DEGs are mainly related
to  neutrophil  degranulation and  neutrophil
and lymphocyte activation related to immune response. 92
intersection genes enrich in neutrophil extracellular trap
formation and mannose metabolism. The above findings
find that the immune response is related to STEMI.
Moreover, there is significant difference in immune cell

infiltration between the STEMI group and the control
group. Kulasingam et al. [18] found that biomarkers about
immune and inflammatory response increase in the
pathogenesis of STEMI, which supports the finding of our
study.

In our study, ALOX5AP and BST1 are confirmed as
diagnostic biomarkers for STEMI via SVM-RFE and LASSO
methods. Arachidonate 5-lipoxygenase activating protein
(ALOX5AP) controls lipid mediator production to induce
macrophage M1 polarization resulting in neutrophilic in-
flammation [19, 20]. One study showed that ALOX5AP is
directly involved in myocardial infarction [21]. SNP
rs17216473 of ALOX5AP gene is related to the risk of MI
[22]. Bone marrow stromal cell antigen 1 (BST1)/CD157,
one of ADP ribosyl cyclase gene family, involves in the
regulation of immunoregulatory functions in pathological
conditions [23, 24]. A study shows that BST1 could be used
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as biomarkers of chronic lung allograft dysfunction (CLAD)
in bronchoalveolar lavage (BAL) [25]. The urine excretion
rates of Ang II-regulated BST1 increase, which is correlated
strongly with chronic inflammation [26]. Previous studies
show ALOX5AP and BST1 may be related to the progression
of STEMI and are the potential diagnostic biomarkers of

STEMLI, but the clinical study is still needed to confirm the
diagnostic value of ALOX5AP and BST1.

To further study the immune cell infiltration in STEMI,
use CIBERSORT to confirm the immune infiltration of
STEMI. Our study finds that there is an increase of infil-
tration of resting NK cells, MO macrophages, and neutrophil,
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while infiltration of resting CD8+ T cells, Treg cells, and  nonculprit lesions of STEMI patients with high-intensity
resting mast cells decrease, which may be contacted with the ~ statin therapy treatment have a decrease in macrophage
pathogenesis of STEMI. Previous studies found that  accumulation [27]. Intracoronary thrombi of STEMI
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patients show increased infiltration neutrophils [28]. An-
other study shows Dectin-1 contributes to neutrophil in-
filtration, which is positively contacted with the severity of
cardiac dysfunction of STEMI [7]. The CD8+ T cells in
STEMI patients after reperfusion decreased [29]. Galectin-9
inhibits Th17 and upregulates Tregs to inhibit IL-17 pro-
duction and promote the TGF-f1 secretion, resulting in the
development of STEMI [30]. Compared to the control
samples, the number of Treg decreases in STEMI patients
[31]. The above study combined with our study show that
resting NK cells, MO macrophages, neutrophil, resting CD8
T cells, Treg cells, and resting mast cells play an important
role in STEMI and should be to further studies.

To analyze the connection between ALOX5AP, BSTI,
and immune cells, we find that ALOX5AP and BSTI are
positively related to resting NK cells, MO macrophages and

neutrophil, while ALOX5AP and BST1 are negative related
to CD8+ T cells, Treg cells, and resting mast cells. Studies
show that M1 macrophages upregulate the level of
ALOX5AP [19, 32]; The hypomethylation of ALOX5AP is
strongly related to the neutrophils and dendritic cells (DCs)
[33]. A subset of CD3, CD4, CD8 T cells exhibits an increase
of BST1 [34]. BST1, a GPI-anchored cell surface glycopro-
tein, highly expresses in normal monocytes and neutrophils
[35, 36]. Peripheral blood NK cells express BST1 [37].
Therefore, we speculate that ALOX5AP and BSTI raise
resting NK cells, MO macrophages, and neutrophil or reduce
CD8+ T cells, Treg cells, and resting mast cells to participate
in the pathogenesis of STEMI. However, the reliability of our
study needs being studied.

In general, we find that ALOX5AP and BST1 are the
diagnostic biomarkers of STEMI. We also find that resting
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FIGURE 8: Assessed and visualized immune cell infiltration. (a) Analyzed immune cell infiltration between the STEMI group and control
group by CIBERSORT. (b) Heat map of 19 types of immune cells connection. (c) Violin diagram of the proportion of 19 types of immune

cells.
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NK cells, MO macrophages, neutrophil, CD8+ T cells, Treg
cells, and resting mast cells may be contacted with the
development of STEMI. In addition, upregulation of
ALOX5AP and BST1 are positively contacted with resting
NK cells, MO macrophages, and neutrophil, while
ALOX5AP and BST1 are negatively contacted with CD8+
T cells, Treg cells, and resting mast cells. These immune cells
may be related to the pathogenesis of STEMI, providing
immunomodulatory therapies for STEMI patients.

This study had several limitations. Clinical data will be
needed in future studies. Moreover, functional studies of
ALOX5AP and BST1 identified here are needed. Finally,
methods based on molecular biology approaches should
help validate our findings.
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