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Diabetes mellitus (DM) is a growing health problem. As a common complication of DM, diabetic foot ulcer (DFU) results in
delayed wound healing and is a leading cause of nontraumatic amputation. miR-199a-5p, a short noncoding RNA, had
abnormal expression in DFU wound tissues. The expression of miR-199a-5p was significantly increased in DFU wound tissues,
skin tissues of diabetic rats, and high glucose-induced cells. Vascular endothelial growth factor A (VEGFA) and Rho-associated
kinase 1 (ROCK1) are directly targets of miR-199a-5p. Inhibiting the expression of miR-199a-5p alleviated the inhibition of
VEGFA and ROCK1, thereby rescued impaired proliferation and migration of HG-induced cells, and restored the normal
function of the cells to some extent. In diabetic rats, inhibition of miR-199a-5p significantly increased the expression of
VEGFA and ROCK1, significantly promoted wound healing, and rescued impaired wound healing. miR-199a-5p and its targets
showed therapeutic effect on diabetic wounds.

1. Introduction

Diabetic foot ulcer (DFU) is one of the major complications
of diabetes [1]. The formation of DFU is closely related to
the metabolic disorder of diabetes. It includes infections,
anabrosis, and the damage to foot tissue, which has affected
nearly 6% of the patients with diabetes [2]. DFU will affect
15% of diabetic patients and have risk of amputation [3].
The 5-year mortality of patients with this disease is about
2.5 times higher than people with no DFU [4, 5]. As a dis-
abling disease, research on its etiology and treatment is of
great significance.

VEGFA is a class of vital growth factors that involved in
the diabetic wound healing. As a stimulator, it would bind
with specific receptors and cause a series of intracellular sig-
nal transduction reactions [6]. The signaling cascade medi-

ated by VEGFA can regulate the proliferation, migration,
survival of vascular endothelial cells, and control angiogene-
sis [7, 8]. ROCK1 signaling modulates cell adhesion and
cytoskeletal stretching upon cell migration, which has signif-
icant implications for cancer metastasis [9, 10].

MicroRNA (miRNA) is a kind of noncoding RNAs, about
22 nucleotides (nts) in length. miRNAs have been reported
that they were critical regulatory molecule in DFU [11, 12].
miR-199a plays an important role in tumorigenesis, such as
lung cancer [13, 14], hepatocarcinoma [15, 16], and ovarian
cancer [17, 18], but roles in diabetes or DFU are unclear. There
were limited studies that clarified the important roles of miR-
199a-5p in the wound healing progress of diabetic ulcer foot.
Wu et al. found that high glucose increased miR-199a-5p
expression and induced the inflammatory reaction in rat
mesangial cells [19]. Although the function of miR-199a-5p
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to inhibit the cell proliferation and migration in various types
of tumors has been verified [13, 20], whether it is involved in
the wound healing phase of diabetic ulcer foot is still unknown.
Therefore, in this study, we have a hypothesis that miR-199a-
5p plays a critical role via VEGFA and ROCK1 in the wound
healing progress of DFU. Our research will give a new poten-
tial drug target for diabetic wound healing.

2. Materials and Methods

2.1. Clinical Tissue Samples and Cell Lines. DFU tissues were
collected from the Department of Orthopedic Surgery,
Shanghai Jiao Tong University Affiliated Sixth People’s Hos-
pital (Shanghai, China), and were approved by the Ethics
Committee of Shanghai Jiao Tong University Affiliated Sixth
People’s Hospital.

Human umbilical vein endothelial cells (HUVECs) were
bought from Keygen Biotech company and cultured in ECM
medium with 5% FBS. Human foreskin fibroblast cells (HFF-
1) were obtained from Institute of Biochemistry and Cell Biol-
ogy, Shanghai, and cultured in DMEMmedium with 15% FBS.

2.2. Diabetic Rat Model Establishment and Tissues Taken.
Diabetic rats were obtained according to our previous study
[12]. A total of 20 clean male Sprague-Dawley (SD) rats,
weighing 250-300 g, were provided by the Experimental
Animal Center of the Shanghai Jiao Tong University Affili-
ated Sixth People’s Hospital and were fed as described in
reference [12]. 10 rats were selected randomly as the diabetes
model group (DM group) and followed by a Streptozotocin
(STZ, Aladdin, Shanghai) injection with a dose of 5mL/kg
through the abdominal cavity. STZ was dissolved in
citrate-sodium citrate buffer to prepare the STZ solution
with a concentration of 10mg/ml. The rats of the DM group
were fed with a high-sugar and high-fat diet for a week.
When blood glucose value of rat was ≥16.7mmol/L, a
successful diabetic model was obtained.

After successful anesthesia, the back hair of rats was
shaved, and a piece of 2 cm round whole-layer skin was
removed from both sides of the back, respectively. The tissue
was washed by saline solution wash and stored in liquid
nitrogen.

2.3. Immunohistochemistry Assay. Primary tumor tissues
were fixed with 10% formalin, embedded in paraffin, and
cut into slices with 4μm thickness. The following procedure
was performed as previous description [21]. Briefly, after the
rats were sacrificed, the wounds were harvested with the sur-
rounding tissue. The tissue specimens were fixed with 4wt%
paraformaldehyde in PBS at 4°C for 24h and embedded in
paraffin to prepare histological sections. The 4μm thick sec-
tions were stained with hematoxylin and eosin. Using a light
microscope, specimen was observed and measured.

2.4. Immunofluorescence Assay. Tissue processing and block-
ing were generally the same as the previous immunohisto-
chemistry processing methods. After blocking, tissues were
incubated with primary antibody against α-SMA, CD31 at
4°C overnight. The next day, the samples were washed three
times with PBS, 5 minutes each time. Incubated the tissues

with secondary antibodies at room temperature for 50
minutes and staining nuclei with DAPI for 10 minutes.
Finally, sealed slides with antifluorescence quenching mount-
ing medium and photographed by a confocal fluorescence
microscope (Carl Zeiss, Jena, Germany). The fluorescence
intensity was calculated using ImageJ software.

2.5. Total RNA Extraction and qRT-PCR. Rapid grinding
with liquid nitrogen of the tissue samples was indispensable
before total RNA extraction. Total RNA of tissue samples
and cells was isolated with TransZol Up (TransGen Biotech,
Beijing, China). The PrimeScript™ 1st Strand cDNA Synthe-
sis Kit (TaKaRa, Dalian, China) and the PrimeScript RT
Master Mix Perfect Real-Time Kit (TaKaRa, Dalian, China)
were used to construct the cDNA library of mRNAs and
miRNAs. The expression levels mRNAs or miRNAs were
assessed by qRT-PCR using SYBR GreenII (TaKaRa) and a
CFX96™ Real-time System (Bio-Rad). 18S rRNA and U6
snRNA were used as the endogenous controls for mRNAs
and miRNAs, respectively. The results were processed by
the relative quantification (2-ΔΔCt) method for relative quan-
tification of mRNAs and miRNAs. All of primer sequences
are shown in Supplementary Table S1.

2.6. Cell Transfection. HUVECs and HFF-1 cells were tran-
siently transfected with 50nM miR-199a mimic/inhibitor,
100nM VEGFA siRNA (siVEGFA), ROCK1 siRNA (siR-
OCK1), or negative control (siNC) (RIBOBIO, Guangzhou,
China) using Invitrogen™ Lipofectamine 2000 (Life Technol-
ogies, New York, USA) according to the manufacturer’s
instructions. After 24h to 72h posttransfection, cells were
used for qRT-PCR, cell proliferation analysis, wound healing
analysis, transwell analysis, and western blot.

2.7. Cell Proliferation Assay. The proliferation rates of
HUVEC and HFF-1 cells were determined by CCK-8 assay
(Cell Counting Kit-8 assay kit, Dojindo, Tokyo, Japan).
Briefly, the cells were plated in 96-well plates (Corning) at
the density of 2,000 cells/well and incubated at 37°C in a
5% CO2 humidified environment. The cells were counted
and equally seeded. After the transfection of miR-199a-5p
mimic or inhibitor for 24 h, CCK-8 was added and incubated
for 2.5 h, followed by the absorbance detection of cells at
24 h, 48 h, and 72 h, respectively.

2.8. Cell Migration Assay. The migration rates of cells were
determined by the wound healing assay and transwell assay.
As for the wound healing assay, cells were plated into 12-well
plates (Corning) at a density of 2:5 × 105 cells per well, and con-
tinuous culture occurs until the cell density reaches above 90%.
The sterile pipette 200μL tips were used to produce the scratch
wounds, and the cells were washed 2-3 times to discard the cell
debris by PBS. After incubating with serum-freemedium for 8h
(HFF-1) or 24h (HUVEC), the distances between the wounds
were assessed and photographed. Finally, the wound area was
determined by Image-Pro Plus software 5.1 (Media Cybernet-
ics, Inc. Siler Spring, MD) in order to perform for quantitative
assessment. Migration ratio = ðwidth of wound in 0 h −width
of wound in 24 hÞ/width of wound in 0 h × 100%.
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Cell transwell assay was performed by 24-well plates with
single chambers, 8000 cells incubated in 100μL fetal bovine
serum-free medium were plated into the upper chamber, and
500μL medium with 10% fetal bovine serum was added to
the lower part of the chamber. After a 24h migration, the cells
were fixed by methanol, stained by crystal violet, and photo-
graphed by a phase-contrast inverted microscope.

2.9.Western Blot Analysis.To isolate the proteins, cellular total
proteins were lysed with RIPA lysis buffer (CWBIO, Beijing,
China) and using a Protein BCA Assay Kit (Bio-Rad, Hercu-
les, California, USA) to quantify content of protein. Protein
samples were separated by SDS-PAGE and transferred to a
polyvinylidene difluoride (PVDF) membrane (Millipore Cor-
poration, Billerica, MA, USA). After blocking in 5% powdered
milk for at least 1h at room temperature, the membranes were
incubated by using rabbit anti-ROCK1 and anti-VEGFA anti-
bodies (1 : 1000, Cell Signaling Technology, Danvers, MA,
USA) at 4°C overnight. Afterward, washing and incubating
the membranes with a horseradish peroxidase- (HRP-) conju-
gated secondary antibody (1 : 10000, Cell Signaling Technol-
ogy, Danvers, MA, USA) for 1h at room temperature.
Subsequent visualization was detected using a chemilumines-
cent HRP substrate (Millipore Corporation, Billerica, USA)

and imaged with an E-Gel Imager. Protein levels were normal-
ized to GADPH.

2.10. Statistical Analyses. Image analysis was performed
using ImageJ software through area statistics with ROI. SPSS
v22.0 software was used to analyze data. The results are
expressed as the mean ± S:E:M. After verifying that it con-
formed to the normal distribution, the comparison of the
means between the two sets of data was performed using
the unpaired, two-tailed, homogeneous variance Student’s
T test. Differences were considered statistically significant
when P < 0:05. All experiments were performed in triplicate.

3. Results

3.1. miR-199a-5p Is Increased in Response to Diabetic
Stimuli. The expression levels of miR-199a-5p were investi-
gated in lower limb tissue samples from 26 patients with
DM and 9 patients with nondiabetic as control. In order to
further verify the effect of diabetic high glucose status on
wound healing, vascular endothelial cells (HUVEC) and
fibroblasts (HFF-1) were used to study the formation of
granulation tissue in wound healing for further experimental
exploration. The expression of miR-199a in DFU patients
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Figure 1: miR-199a-5p is upregulated in DM tissues and high glucose cell model. (a) Relative expression of miR-199a-5P in skin tissue of
control group and DFU group. (b, c) The expression levels of miR-199a-5p in HUVEC and HFF-1 cell lines. ∗P < 0:05, ∗∗P < 0:01.
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was significantly higher than that of health people
(Figure 1(a)). In HUVEC and HFF-1 cell cultured by higher
content glucose, the expression of miR-199a-5p was much
higher than that of control (Figures 1(b) and 1(c)).

3.2. miR-199a-5p Inhibits Proliferation and Migration in ECs
and in Fibroblasts.miR-199a-5pmimic was used to investigate
the cellular function of miR-199a-5p in ECs and fibroblasts.
First, the cell proliferation was significantly restrained after
being transfected with the miRNA mimic by cell counting
kit 8 (CCK-8) assays in HUVEC and HFF-1 cells
(Figure 2(a)). Then, the effect of miR-199-5p on the migration
of HUVEC and HFF-1 cells was verified with wound healing
and transwell assays. The results indicated that miR-199a-5p
mimic transfected cells migrated toward the wound at a much
slower rate than the NC group cells in the wound healing assay

(Figure 2(b)) and could reduce the migration of HUVEC and
HFF-1 cells in the transwell assay (Figure 2(c)). At the same
time, the miR-199a-5p inhibitors were transfected into the
cells to downregulate the expression of miR-199a-5p and to
further verify the effects of miR-199a-5p on the function of
HUVEC and HFF-1 cells. The expression levels of miR-
199a-5p and its targets, VEGFA and ROCK1, after miR-
199a-5p inhibitor transfection were validated by qRT-PCR
and Western blot (Supplementary Figure S1A-C). The cell
function of HUVEC and HFF-1 induced by miR-199a-5p
overexpression was rescued by miR-199a-5p inhibitor trans-
fection (Supplementary Figure S1D-F).

3.3. miR-199a-5p Affects Diabetic Wound Healing via VEGFA
and ROCK1. As previously reported, miR-199a-5p can simul-
taneously target VEGFA and ROCK1 [22–24], which have
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Figure 2: miR-199a-5p could inhibit the proliferation and migration in ECs and fibroblasts. (a) Cell proliferation ability of HUVEC and
HFF-1 cells transiently transfected with miR-199a-5p mimic measured by CCK-8 assay for 24 h, 48 h, and 72 h. (b) HUVEC and HFF-1
cells transfected with miR-199a-5p mimic or NC were subjected to wound healing assay and images were taken at 0 h and 24 h. (c)
Transwell migration assay performed after transfection of HUVEC and HFF-1 cells with miR-199a-5p mimic or NC for 24 h and 8 h,
respectively. The migrated cells were stained with crystal violet and photographed. Migrated cells were counted and analyzed. Each assay
was performed in triplicate. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗ P < 0:001.
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corresponding targeted binding sites (Figure 3(a)). In order to
explore whether the roles of miR-199a-5p on diabetic wound
healing were mediated by VEGFA and ROCK1, we detected
the expression levels of VEGFA and ROCK1 in miR-199a-5p
overexpression cells. The transfection effects of miR-199a-5p
in HUVEC and HFF-1 cells were confirmed by qRT-PCR
(Figure 3(b)). As expected, the mRNA and protein levels of
VEGFA were decreased by miR-199a-5p in HUVEC and

HFF-1 cells significantly through qRT-PCR and western blot-
ting detection (Figures 3(c)–3(e)).

3.4. Silencing VEGFA and ROCK1 Inhibits Proliferation and
Migration of ECs and Fibroblasts. To validate the regulatory
role of VEGFA and ROCK1 in ECs and fibroblasts, VEGFA
and ROCK1 were silenced by using siRNA. Our results
revealed that the expression levels of VEGFA and ROCK1
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Figure 3: VEGFA and ROCK1 were directly target of miR-199a-5p. (a) Predicted target of miR-199a-5p in the 3′-UTR of VEGFA and
ROCK1-mRNA. (b) The relative expression of miR-199a-5p mRNA after upregulating with miR-199a-5p mimic as measured by qRT-
PCR. (c) The expression mRNA levels of VEGFA and ROCK1 in HUVEC and HFF-1 cell lines after transfected with miR-199a-5p
mimic or NC mimic. (d) Protein levels of VEGFA and ROCK1 in HUVEC and HFF-1 cell lines after transfected with miR-199a-5p
mimic or NC mimic. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗ P < 0:001.
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Figure 4: Knockdown of VEGFA and ROCK1 reduces cell proliferation and migration of ECs and fibroblasts. (a)–(d) The levels of VEGFA
and ROCK1 mRNA and protein in HUVEC 24 h and HFF-1 8 h cells transfected with siRNA (si-VEGFA, si-ROCK1) were measured by
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determined by CCK-8, which was tested in 24 h, 48 h, and 72 h. (f) HUVEC and HFF-1 cells transfected with si-VEGFA/si-ROCK1 or
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photographed. ∗∗P < 0:01 and ∗∗∗ P < 0:001.
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mRNA (Figure 4(a)) and protein (Figures 4(b) and 4(c)) were
significantly downregulated in HUVEC and HFF-1 cells,
which were transfected with siVEGFA and siROCK1,
respectively, compared with the siNC. Furthermore, cell
proliferation showed that transfect with siVEGFA and siR-
OCK1 has a significant suppression in HUVEC and HFF-1
cells, compared with that of the siNC transfected cells
(Figure 4(d)). Then, the effect of siVEGFA and siROCK1 on
the migration of HUVEC and HFF-1 cells was done with
wound healing and transwell assays. The results indicated that
siVEGFA and siROCK1 could inhibit the migration of
HUVEC and HFF-1 cells in the transwell assay, and it
migrated toward the wound at a much slower rate than the
NC group cells in the wound healing assay and transwell
(Figures 4(e) and 4(f)).

3.5. Downregulating miR-199a-5p Accelerates Cutaneous
Wound Healing in a Diabetic Rat Model.We used the models
of diabetic on rat to explore the treatment effect of miR-199a-
5p in vivo. For the wounds were injected with miR-199a-5p
agomiR/antagomiR, compared with the NC-treated group in
normal and DM rat, the therapeutic effect of miR-199a-5p
about diabetic rat picture began to show in 0 day, 4 day,
7 day, 10 day, and 14 day. We can observe that the wound
at five times nodes, in the NC group, NC +miR − 199a − 5p
agomiR group, DM group, and DM+miR − 199a − 5p
antagomiR group, the wound area decreased with pass of time
(Figure 5(a)). In general, the healing rate of nondiabetic rats is
faster than that of diabetic rats. Although the healing rate of
the two groups of nondiabetic rats (NC group and NC +
miR − 199a − 5p agomiR group) is statistically different, the
wound healed almost completely between 10 and 14 days after

surgery (Figure 5(b)). However, rats in the diabetic group (DM
group and DM+miR − 199a − 5p antagomiR group) did not
heal completely on the 14th day (Figure 5(c)).

Next, we observed the rat full-thickness skin defect
model by H&E staining. The observation site is the junction
of the wound and normal skin tissue to ensure that the
observation site is the new granulation tissue and the new
skin tissue. The results showed that diabetic rats (DM group
and DM+miR − 199a − 5p antagomiR group) had worse
healing compared with nondiabetic rats (NC group and
NC +miR − 199a − 5p agomiR group) (Figure 5(d)). After
7 days of operation, H&E staining results showed that the
inflammatory cells in each group were infiltrated obviously,
the epidermal layer was hyperplasia and thickened, and the
new granulation tissue and epithelial tissue migrated from
the wound edge to the wound center. After 14 days of oper-
ation, the wound tissues in the nondiabetic rats (NC group
and NC +miR − 199a − 5p agomiR group) were almost
completely covered by epithelial cells, but the new skin tissue
in the NC +miR − 199a − 5p agomiR group was disordered,
with more inflammatory cell infiltration and less sebaceous
gland structure compared with NC group. Nevertheless,
the wound in the diabetic rats (DM group and DM+miR
− 199a − 5p antagomiR group) did not heal, the epithelial
tissue did not completely cover the wound, the inflammatory
reaction was severe, the skin was thin, and the normal
arrangement and accessory structures were lacking on the
14th day (Figure 5(d)). Thus, downregulating miR-199a-5p
can improve the quality of wound healing.

Then, the thickness of granulation tissue in nondiabetic
rats was greater than that in diabetic rats on the 7th and
14th day after operation (Figures 5(e) and 5(f)). It was
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Figure 5: Downregulating miR-199a-5p accelerates cutaneous and improves granulation tissue formation wound healing in a diabetic rat
model. (a) Representative images of full-thickness skin defects in rats of NC group, NC +miR − 199a − 5pm group, DM group, and DM
+miR − 199a − 5pi group immediately, 4, 7, 10, and 14 days postoperatively. (b) Wound closure rate (%). (c) Representative images of
(50×, scale bar 200μm) H&E stained sections of the NC group, NC +miR − 199a − 5pm group, DM group, and DM+miR − 199a − 5pi
group 7 and 14 days postoperatively. The weights tumors isolated from mice after 7 weeks. (d) Illustration of measuring granulation
tissue thickness (50×, scale bar 200μm). (e) Granulation tissue thickness 7 and 14 days postoperatively (μm). ∗P < 0:05, ∗∗P < 0:01, and
∗∗∗ P < 0:001.
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Figure 6: miR-199a-5p promotes angiogenesis in the cutaneous wound areas of diabetic rats. Representative images (100×, scale bar
100μm) of immunofluorescent staining for CD31 (red) and α-SMA (green) of NC group, NC +miR − 199a − 5pm group, DM group,
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postoperatively and (d) 14 days postoperatively. ∗∗P < 0:01 compared to NC group, #P < 0:05 compared to DM group, ##P < 0:01
compared to DM group.
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concluded that downregulating miR-199a-5p could promote
the healing rate of diabetic wound and improve granulation
tissue formation in DM.

3.6. miR-199a-5p Promotes Angiogenesis in the Cutaneous
Wound Areas of Diabetic Rats. To assess the effect on angio-
genesis by miR-199a-5p, immunofluorescent (IF) was used
in this experiment. Newly formed blood vessels were defined
by positive CD31 staining. Mature blood vessels were
defined by positive CD31 and α-SMA staining. IF staining
for CD31 (red) and α-SMA (green) 7 days postoperatively
and 14 days was performed postoperatively (Figures 6(a)
and 6(b)). In nondiabetic rats, the intensity of new blood
vessels and mature blood vessels of the NC +miR − 199a −
5pm group was significantly lower than that of the NC group
in 7 and 14 days after operation, separately (Figure 6(c)). In
diabetic rats, the intensity of new blood vessels and mature
blood vessels in the DM+miR − 199a − 5pi group was
significantly higher than that in the DM group post 7- and
14-day operation (Figure 6(d)).

4. Discussion

miRNAs are involved in the development of a variety of can-
cers and chronic diseases. Usually, miRNAs function as pro-
moters or inhibitors in the progress of disease [25]. Studies
have found that miR-411 can promote lung cancer progres-
sion [26]. miR-34a inhibits progression of lung cancer via
targeting EGFR, a cancer-drive gene [27]. miR-199a-5p
was associated with a poor prognostic phenotype and inhib-
ited proliferation and metabolism by targeting in colorectal
cancer [22]. miR-199a also influenced cell angiogenesis,

which was detected by tube formation assay. Ghosh et al.
found that miR-199a-3p inhibited angiogenesis through tar-
geting VEGFA, VEGFR1, VEGFR2, HGF, and MMP2 in
hepatocellular carcinoma [28]. Wang et al. also found that
miR-199a-3p inhibited angiogenesis by targeting the
VEGF/PI3K/AKT signaling pathway in an in vitro model
of diabetic retinopathy [29].

Yang et al. reported that miR-199a-5p was sponged to
hsa_circ_0060450, releasing target gene SHP2, and showed it
suppressed the JAK-STAT signaling pathway triggered by type
I interferon (IFN-I) to inhibit macrophage-mediated inflam-
mation in T1DM [30]. Lin et al. found that miR-199a-5p
was upregulated in pancreatic β-cells in response to high
glucose and promotes apoptosis and ROS generation by
targeting SIRT1 in T2DM [31]. And Wang et al. also investi-
gated miR-199a-3p role in DM [Wang H, Wang Z, Tang Q].
Reduced expression of microRNA-199a-3p is associated with
vascular endothelial cell injury induced by type 2 diabetes mel-
litus [32]. They foundmiR-199a-3p expression was reduced in
patients with T2DM compared with healthy subjects. It sug-
gested miR-199a-3p may function as miR-199a-5p in our
research.

In the pathogenesis of diabetic wounds, VEGFA is acti-
vated in foot skin [33, 34]. This will impair the balance of
ECM synthesis and degradation and result in unhealed
wounds. In this study, we explored the relationship between
VEGFA and ROCK levels and the severity of DFUs.

Then, we focused on VEGFA and ROCK posttranslational
regulation. Our research before found that some miRNAs can
regulate NF-κB signaling and affect inflammation [35, 36],
and it means noncoding RNAs will play more important role
in DFU. Noncoding RNAs, such as long noncoding RNA

miR – 199a – 5p

VEGFA ROCK1

Proliferation&
migration 

Inflammation

Wound healing

Wound

Figure 7: Possible mechanism of miR-199a-5p and VEGFA (ROCK1) axis in DM.
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[37, 38], circRNA [39–41], and microRNA [41, 42], play
pivotal roles in wound healing. Here, we analyzed miRNA-
199a-5p expression in the samples of patients with DFUs.

Compared with the normal wounds, the inflammatory
period of diabetic foot ulcer wounds is abnormally prolonged,
which makes it difficult to heal the ulcer wound and is easy to
recur [43, 44]. miRNAs also play pivotal roles among the
inflammation stages of DFU [45, 46]. In this study, HE stain-
ing of histological sections showed that compared with the
DM+miR − 199a − 5pi group, severe infiltration of inflam-
matory cells in the wound granulation tissue was detected in
the DM group, which suggested aggravated effects of miR-
199a-5p on the inflammatory reaction of DFU.

miRNA mimics or inhibitors have been confirmed to be
potential drug for nonhealing wounds [47, 48]. In this study,
subcutaneous injection of miR-199a-5p agomir accelerated
diabetic wound healing, improved the skin thickness in a
diabetic wound animal model through decreased VEGFA
and rock the protein expression level, increased collagen
content, and enhanced migration of keratinocytes. As men-
tioned above, in vitro experiments showed that the overex-
pression or inhibition of miR-199a-5p resulted in the
downregulation or upregulation of VEGFA and ROCK
expression, respectively, and the concomitant change of
VEGFA and ROCK protein levels in EC and HIFF cells. Fur-
thermore, miR-199a-5p antagomiR also showed an outstanding
healing effect for the wound injury caused by inflammation
in vivo (Figure 7).

5. Conclusion

In summary, our findings demonstrate an important role for
miR-199a in diabetic wound healing. We found that the
expression of miR-199a-5p was significantly increased in the
skin tissues of DFU samples, meanwhile, VEGFA and ROCK1
were direct targets of miR-199a-5p. Overexpression of miR-
199a-5p arrested the cell proliferation, migration, and invasion
of HUVEC and HFF-1 cells through the inhibition of VEGFA
and ROCK1. In vivo, inhibition of miR-199a-5p promoted the
wound healing rate and angiogenesis in the cutaneous wound
areas of diabetic rats. Accordingly, these findings give insight
into miR-199a-5p potential use and therapeutic targets to
reduce complications from diabetic wounds.
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