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1. Introduction
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Purpose. Artificial intelligence (AI) techniques are used in precision medicine to explore novel genotypes and phenotypes data.
The main aims of precision medicine include early diagnosis, screening, and personalized treatment regime for a patient based
on genetic-oriented features and characteristics. The main objective of this study was to review AI techniques and their
effectiveness in neoplasm precision medicine. Materials and Methods. A comprehensive search was performed in Medline
(through PubMed), Scopus, ISI Web of Science, IEEE Xplore, Embase, and Cochrane databases from inception to December
29, 2021, in order to identify the studies that used AI methods for cancer precision medicine and evaluate outcomes of the
models. Results. Sixty-three studies were included in this systematic review. The main AI approaches in 17 papers (26.9%) were
linear and nonlinear categories (random forest or decision trees), and in 21 citations, rule-based systems and deep learning
models were used. Notably, 62% of the articles were done in the United States and China. R package was the most frequent
software, and breast and lung cancer were the most selected neoplasms in the papers. Out of 63 papers, in 34 articles, genomic
data like gene expression, somatic mutation data, phenotype data, and proteomics with drug-response which is functional data
was used as input in AI methods; in 16 papers’ (25.3%) drug response, functional data was utilized in personalization of
treatment. The maximum values of the assessment indicators such as accuracy, sensitivity, specificity, precision, recall, and area
under the curve (AUC) in included studies were 0.99, 1.00, 0.96, 0.98, 0.99, and 0.9929, respectively. Conclusion. The findings
showed that in many cases, the use of artificial intelligence methods had effective application in personalized medicine.

living with a disability. The leading cause of cancer deaths
and DALYs for men is related to TBL (Tracheal, Bronchus,

Cancer refers to a set of diseases in which some body’s cells
decide to divide continuously, and as a result, they spread
into surrounding tissues (“National Cancer Institute”). Can-
cer is a genetic disease that changes genes’ function and can
control the way cells divide [1, 2]. In 2018, there were 24.5
million cancer cases (16.8 million without nonmelanoma
skin cancer [NMSC]) and 9.6 million cancer deaths world-
wide. Most of the disability-adjusted life-years (DALYs)
caused by cancer lead to 97% of lives lost and only 3% of

and Lung) cancer (1.3 million deaths and 28.4 million
DALYs). However, the common leading cause of cancer
death and DALYs for women is related to breast cancer
(601.000 deaths and 17.4 million DALYs) [3]. Due to the
growing number of cancer cases globally, timely detection
and selection of the best treatment are considered key steps.
Detection of cancer in the early stages can significantly
increase the possibilities of successful treatment [4]. Early
detection of cancer is greatly influenced by two factors of
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early diagnosis and screening [5]. In recent years, due to the
importance of analyzing the genetic profile of people with
cancer, the method of using extensive genomic data in a
new field called precision medicine has been introduced
[6]. With precision medicine and the progression of next-
generation sequence (NGS), patients’ genomic profiles can
be used for disease diagnosis, risk prediction, and treatment
of diseases [7]. Thus, the main aims of precision medicine
include early diagnosis, screening, and personalized treat-
ment regime for patient based on genetic-oriented features
and characteristics [8].

Precision medicine for treating diseases considers vari-
ous factors, which can be referred to the genome of indi-
viduals, lifestyle, environmental factors, and characteristics
of patients [9]. Precision medicine allows clinicians to
select more effective and accurate therapeutic and preven-
tive approaches to a specific illness such as cancer. It can
work in subgroups of patients based on their genetic
make-up, environmental factors, and lifestyle [10]. In
cancer genomics, the multiomics data, literature mining
and analyzing, and genotype-phenotype data through
genome-wide association studies (GWAS) have enriched
artificial intelligence methods and solutions, and this has
allowed health providers to give personalized care by
precision medicine [11].

Artificial intelligence is a branch of computer science
that makes intelligent machines that behave intelligently like
humans. Intelligent systems can understand complex situa-
tions, simulate human thinking and reasoning, and solve
complex problems. [12]. Recent advances in the field of Al
and machine learning methods have enabled them to be
used in biomedical sciences and health care [13]. Al uses a
set of theories, algorithms, and computing powers to per-
form intelligent tasks such as decision-making, reasoning,
language understanding, speech recognition, and visual per-
ception [14]. Al can increase the speed of data analysis and
accuracy of decision-making in the medical area [13]. Yet,
using Al algorithms in precision medicine to predict, diag-
nose, and treat cancer is relatively new.

L.1. Objectives. The main objective of this study is to review
the applications of Al algorithms and their effectiveness in
personalized medicine approaches. This systematic review
tries to respond to the main subsequent questions: RQI1:
What are the applications of “Al neoplasms personalized
medicine”? RQ2: Which AI techniques or intelligent
methods have been applied in cancer precision medicine?
RQ3: In which category do each of the Al approaches fall?
RQ3: How successful Al methods have been reported to
improve the care of neoplasms patients?

Performing this systematic review will give researchers a
broad perspective on applying various artificial intelligence
techniques in personalized medicine. Also, by examining
the effectiveness of different artificial intelligence techniques,
researchers can select techniques that have been highly accu-
rate in personalized medicine. This study will also introduce
software and data sources used in personalized medicine for
cancer. They can also have a broad view of personalized
medical applications in diagnosing and treating cancer.
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2. Methods

The following Preferred Reporting Items for Systematic
Reviews and Meta-analysis (PRISMA) for 2020 proposed
by Page et al. were used in this study [15].

2.1. Eligibility Criteria. SPICE is a useful tool (like PICO) for
asking focused clinical questions and qualitative reviews.
The acronym SPICE stands for Setting, Perspective, Inter-
vention, Comparison, and Evaluation and presents a way
to formulate practice questions for finding evidence in exist-
ing research. SPICE may be more appropriate for formulat-
ing our research questions:

(i) Setting: All publications in the world

(ii) Perspective: Patients and health providers
(iii) Intervention: Artificial intelligence
(iv) Comparison: Precision medicine

(v) Evaluation: What is the effectiveness of selected
papers

Studies with the following inclusion and exclusion
criteria were included in this review.

2.1.1. Inclusion Criteria. The studies that met all the follow-
ing criteria were entered in the review:

(1) Original articles and proceedings

(2) The system was designed for diagnosis, prediction,
risk assessment, treatment, or screening of cancers

(3) One of the AI methods was used for modeling
(4) The diagnostic accuracy of the system was reported

(5) The genomic, radiomic, proteomic, or phenotype
data were applied in Al methods

(6) Articles with English language
(7) Papers that examined human-related neoplasms

(8) All related studies without time limitation
2.1.2. Exclusion Criteria. The exclusion criteria were as follows:

(i) The results of system test were not reported
quantitatively

(ii) Other than journal articles and proceedings such as
review papers, letters, and book chapters

(iii) The papers whose English full text of them was not
available

(iv) The studies whose knowledge modeling approach
was not explicitly explained

2.2. Information Sources and Search Strategy. A systematic
search was conducted in electronic databases including
Web of Science, Medline (through PubMed), Scopus, IEEE
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Xplore Digital Library, and Cochrane Central Register of
Controlled Trials to identify relevant studies published
inception to December 29, 2021; we did not set a time limit
for retrieving articles. Also, we searched Embase database
until January 10, 2020. The search strategy used in this study
included a combination of keywords and Medical Subject
Headings (Mesh) terms related to “neoplasm,” “precision
medicine,” and “artificial intelligence.” Table 1 shows the
complete list of keywords and terms used in the search strat-
egy for Scopus database. A reference manager software
(EndNote X8, Thomson Reuters) was utilized to collect
references and to exclude duplicates. The dates of coverage
for each database is given in Table 2.

2.3. Study Selection. In this stage, assessment of records was
done by more than one reviewer. The titles and abstracts
of the identified articles were independently screened by
two reviewers (S.R and S.S). The full text of the articles
was retrieved and examined if it was supposed potentially
relevant by two reviewers. Any disagreement between the
reviewers was resolved by discussion by the third
researcher. The following data were extracted from the
selected studies and entered into a structured form in
Excel. Data were extracted by each of the reviewers, and
then, the forms were compared with each other. The
screening procedures are displayed in Figure 1 based on
the 2020 PRISMA method.

Meanwhile, the main classification of reviewed articles
was determined by two authors independently. The two
authors (S.R and S.S) analyzed and synthesized the main
characteristics of selected papers, and then, they extracted
the main specification of papers. The next author
(S.RNK) evaluated the extracted information and validated
the main elements.

2.4. Data Collection Process and Data Items. The first
reviewer (SR) gathered the required information from the
selected studies. Then, a second reviewer (SS) verified the
accuracy of the information accumulated. Any dissensions
were examined and resolved with a third reviewer
(SRNK). The main data elements and specifications of
selected papers are displayed in Figure 2.

2.5. Study Risk of Bias Assessment. The Joanna Briggs Insti-
tute (JBI) critical appraisal checklist for analytical cross-
sectional studies was used to assess the risk of bias of
studies. The purpose of this appraisal is to assess the
methodological quality of studies and has eight questions
in the following order:

(1) Were the criteria for inclusion in the sample clearly
defined

(2) Were the study subjects and the setting described in
detail

(3) Was the exposure measured in a valid and reliable
way

(4) Were objective, standard criteria used for measure-
ment of the condition

(5) Were confounding factors identified

(6) Were strategies to deal with confounding factors
stated

(7) Were the outcomes measured in a valid and reliable
way

(8) Was appropriate statistical analysis used

These questions can be answered with four options: (1)
yes; (2) no; (3) unclear; and (4) not applicable.

Each “yes” answer corresponds to one score, and if
70% of the questions answered “yes” in a study, the risk
of bias was considered “low.” If 50% -69% of the questions
were answered yes, the risk of bias was considered “mod-
erate,” and below 50% considered “high risk [16].” The
checklist was completed by two authors (SR and SS), and
in case of disagreement between the two authors, the
disagreement was resolved through discussion with the
third author (S.RNK).

2.6. Data Synthesis and Analyses. In our review, meta-
analysis was not performed as the methodology and
methods of reporting results in included studies were hetero-
geneous. The results of selected studies had been reported by
descriptive statistics.

2.7. Sensitivity Analyses Conducted to Assess Robustness of
the Synthesized Results. We reviewed studies on the effective-
ness of artificial intelligence techniques in personalized
medicine, and the performance of which must have been
quantitatively expressed. Studies with a low risk of bias were
also included in the analysis. Studies should also have used
cancer data to evaluate performance.

2.8. Assess Risk of Bias due to Missing Results in a Synthesis.
In this study, we had no missing results and no risk of bias
due to missing results.

2.9. Processes Used to Decide which Studies Were Eligible for
each Synthesis. In this systematic review, we compared and
synthesized the results of studies in which the perfor-
mance of artificial intelligence techniques was presented
quantitatively and in the form of accuracy, precision,
recall, specificity, sensitivity, AUC (area under the ROC-
curve), F-score, positive predictive value, negative predic-
tive value, Mean Average Error (MAE), and Mean Square
Error (MSE). Also, due to the complexity and a large
number of types of artificial intelligence techniques, we
classified them into several categories, which included the
following: linear model, nonlinear model, rule-based
system, NLP, deep neural network, neural network, and
the Bayesian model. After classifying the types of artificial
intelligence techniques in these categories, we performed
the syntheses. The various beforementioned indicators
are defined in the following as equations:
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TaBLE 1: Applied search strategy for Scopus database.

“TITITLE-ABS-KEY ((“Neoplasia” OR “Neoplasia” OR “Neoplasm” OR “Tumors” OR “Tumor” OR “Cancer” OR “Cancers” OR
“Malignancy” OR “Malignancies” OR “Malignant Neoplasms” OR “Malignant Neoplasm” OR “Neoplasm, Malignant” OR

“Neoplasms, Malignant” OR “Benign Neoplasms” OR “Neoplasms, Benign” OR “Benign Neoplasm” OR “Neoplasm Benign”)
AND (“Artificial Intelligence” OR “Computational intelligence” OR “machine intelligence” OR “Computer vision systems” OR

“Knowledge acquisition “OR “Knowledge representation “OR “Computer reasoning”) AND (“Precision Medicine” OR
“Personalized medicine” OR “ Individualized medicine”))

4
Scopus
TaBLE 2: The dates of coverage for each database.
Database Coverage
Scopus 2007-2021
PubMed 2008-2021
Embase Until 2020
ISI Web of Science 2014-2021
IEEE Xplore 2007-2021
Cochrane 2017-2021
TP
Sensitivity and Recall = ———,
TP + FN
TN
Specificity = ———,
Py = B IN
A TP + TN
racy = ,
Y = TP TN+ FP + FN
Precisi TP
recision = —,
TP + FP (1)

>

MAE = Yoy lyi-xil
n

Precision x Recall
F-score=2X ——— |
Precision + Recall
1& ~ .2
MSE= -3 (Y;-Y)",
nia

where y, = prediction, x;=truevalue, and n = total
number of data points.

Here, TP: true positive, TN: true negative, FP: false
positive, and FN: false negative [17].

The ROC curve is constructed by plotting the true posi-
tive rate (TPR) versus the false positive rate (FPR) in diverse
threshold sets. It is ideal for maximizing the TPR while
minimizing the FPR. This means that the top left corner of
the plot is the ideal point (FPR =0 and TPR =1).

3. Results

3.1. Study Selection. A total of 1788 relevant articles resulted
from the search until December 29, 2021. After removing
the duplicates, 1101 articles remained. Hence, in the last
phase, only 63 papers that met the inclusion criteria were
reviewed. In Table 3, a summary of the main results and
characteristics of the papers is illustrated. Outcome mea-
surements including results and effectiveness are summa-
rized in Table 4. The main keywords used for selecting

the papers are displayed by a word cloud scheme.
Figure 3 presents the more weighted and frequent key
terms used in the search. In this figure, the notion of key-
words is demonstrated.

3.2. General Characteristics of the Included Studies. The
reviewed papers are presented in Figure 4 based on publica-
tion country. Forty percent of all papers were conducted in
the USA, and 22% in China. The other remained countries
had a relatively equal number of published articles. The fre-
quency of selected articles based on their publication type for
each year is displayed in Figure 5. The papers included in this
review had been published between 2007 and 2021. As it is
seen, a large number of papers had been published in 2020,
2019, and 2018. Meanwhile, the articles published in confer-
ences are less than these, which have been presented in differ-
ent scientific journals.

3.3. Source of Data and Sample Size. The selected papers had
mostly publicly available data. These sources included gene
expressions, gene sequencing data, phenotyping data, and
somatic and mutation data. However, the molecular interac-
tions, drug chemical data, radionics data, and pharmacoge-
nomics data were stored in the sources. Out of 63 articles,
in 19 papers, The Cancer Genome Atlas (TCGA) was used
as the source of datasets. However, in 14 articles, the Cancer
Cell Line Encyclopedia (CCLE) and Genomics of Drug Sen-
sitivity in Cancer (GDSC) sources were employed as the
source of datasets. In five papers, the required datasets were
extracted from medical and electronic health records, and in
six articles, the public websites and recruited data in papers
were applied as the source of datasets. Ultimately, some
other types of sources were applied in the remained papers.
These sources are illustrated in detail in Table 3. Out of 63
papers, in 38 papers, the sample size was reported as patient
samples, but in 16 reviewed papers, the sample size was
reported as biosamples like genes, molecular samples, and
cell lines. These types of samples have a large number of
sizes. The reported sample size in 32 papers ranged from
30 individuals to 26,000, and also in some papers, the sample
size was not mentioned.

3.4. The Distribution of Selected Papers Based on Applied
Software. Out of 63 citations, in 21 articles (33.3%), the soft-
ware or technical environment was not reported, whereas, in
12 papers (19.4%), the popular and frequently used software
was the R package. However, in nine of the reviewed articles,
MATLAB has been used alone or in combination with other
software for analysis. Also, in 10 citations (15.87%), the pop-
ular software used in the study included Weka, Python
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Eligibility
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FIGURE 1: The flow diagram of identifying, selecting, and screening of papers based on PRISMA.

Records identified by searching thedatabase

(n=1788)

ISI Web of science: 251
PubMed: 537
Scopus: 631
Cochrane: 2
Embase: 270

IEEE library: 97

!

Records after duplicates removal

(n=1101)

Records screened based on

A 4

titles and abstracts
(n=1101)

Full-text articles assessed for
eligibility
(n=147)

Excluded records
(n=954)

N

Studies included in
qualitative synthesis
(n=63)

Main classifications

Full-text articles excluded,
with reasons
(n=84)

Sample size

FIGURE 2: The main specifications of selected papers.

Outcomes
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TaBLE 4: Outcome measurements.

Reference

Effectiveness

Outcome

(45]

The mean of mPS = 24.22 (interquartile range [IQR] of 15.56 - 33.60)

(i) The MPS system is simple and cost-effective to apply
and yet can reveal previously unrecognized
heterogeneity among patient subpopulations in a
platform-independent manner.

[64]

Radiomics model: AUC = 0.956, specificity = 0.928, sensitivity =
0.896. transcriptomics model: AUC specificity and sensitivity 0.948,

1, and 0.676.

(i) The integrative nomogram incorporated CECT
radiomics, transcriptomics, and clinical features
improved the PFI prediction in BLCA patients and is a
feasible and practical reference for oncological precision
medicine.

(27]

AUC, 0.837, p<0.001; F1 score, 0.766.

(i) The radiomics signature model achieved a better
classification performance than radiologists, which
demonstrated the impressive prediction ability of
radiomics signature.

Accuracy of 81% and AUC of 0.896 for the ROC curves.

(i) The model exhibited good interstage prognosis
prediction performance. The genetic features could be
used as biomarkers for effective LUAD prognosis
prediction

Accuracy: decision tree:70.8%
Discriminant analysis (Linear): 66.9%
Linear SVM: 69.6%

Weighted KNN: 73.5% ensemble classified (Subspace discriminant):

70.0%.

(i) The proposed methods were able to distinguish the
metastatic sclerotic lesions with a complete response.

Accuracy = 0.9143.

(i) This synergy between liquid biopsy biotechnology
and XAI will surely lead to personalized interpretable
medicine, ensuring adequate and better diagnostic tools
and treatments.

AUC=0.97-0.98.

(i) A PLATYPUS model trained on the drug trial data
can predict drug response for this patient without
retraining.

Sensitivity = 97.1%, specificity = 98.8%, ROC curves = 0.99.

(i) This was concluded that this deep learning model
provides an accurate and reproducible method for the
prediction of BAPI expression in uveal melanoma.

Sensitivity: upper than 84% in the training set but below 77% in the

testing set.

(i) This study demonstrated that MRI-based radiomics
features hold potential in the pretreatment prediction of
response to NACT in LACC, which could be used to
identify rightful patients for receiving NACT avoiding
unnecessary treatment.

(59]

The specificity, sensitivity and accuracy respectively: 0.861, 0.641,

and 0.747.

(i) The TCPR model may benefit decision-making
regarding total laryngectomy or larynx-preserving
treatment. This TCPR model incorporating radiomics
signature and T category reported by radiologists has
good potential to be applied for individual accurate
preoperative T category.

(MAE) 4.112E-06,
(MSE) 4.318E-06.

(i) The proposed framework had demonstrated its
capability and potential for mapping the gene and tumor
status, it was effective for detecting association between
gen information and the tumor growth regions.

AUC=0.98.

(i) CDRscan is expected to allow the selection of the
most effective anticancer drugs for the genomic profile of
the individual patient.

The average correlation coefficient: 0.438-0.461.

(i) The result shows that GloNetDRP achieves
comparable performance on the two-omics data for
eight drugs collected from CCLE and GDSC.
GloNetDRP globally calculated the responses of untested
cell lines for the query drug by considering not only the
neighbors but also other drugs and cell lines.
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Reference Effectiveness Outcome
(i) Clinical or pathology notes alone or together
[26] Precision = 0.98, recall = 0.99, and F — score = 0.98. provided t}.le broadest cohort coverage and clinical notes
alone provided the most precise measure of receptor
status.
(i) WG showed comparable analytical results for clinical
genome sequencing. WfG demonstrated a significant
[58] Concordance rate = 94.5% (95% CI, 92.7-96.0%) for gene mutations. improvement in mutation assignment from ver. 27 and
33. WG may be useful in cases where large amounts of
genomic data are available
(i) The proposed was approach outperforms several
[55] Docetaxel and bortezomib with AUROCs of 0.74 and 0.71, state-of-the-art predictors in drug recommendation, if
respectively. the training dataset is sparse, and generalizes to patient
data.
Study1: the overall accuracies GEM 81.5%; 5-FU 81.7%; (@) ML-'based models with \'Iahdated. }.th positive
[77] study 2: overall accuracy: 82.6% predictive values may provide physicians with a useful
Y ¥e 027 alternative to the traditional trial-and-error strategies.
AUC scores of
RF: 0.66 (i) Our results demonstrate the potential of multiview
[75] XGB: 0.66 feature selection in integrative analyses and predictive
LR: 0.66 modeling from multiomics data.
MV:0.7
(i) The experiments show that the OFSSVM is an
Accuracy (%) 97.06 appeflling. compromise betw.een inte'rpretability and
[28] AUC = 0.9929 classification accuracy, and is superior to other
' traditional methods in the sense of comprehensive
evaluation.
[72] FPR for DNT and DMT p values at « = .05 for Scl: 0.04 and 0.208 M PANOPLY can be a tool to help clinicians in their
decision-making process.
[56] SCNN models median ¢ index 0.745, p = 0.307 GSCNN models: (i) The proposed approach surpasses the prognostic
0.754 to 0.801. accuracy of human experts for classifying brain tumors.
ROC curve of the Gemelli polyclinic’s data set = 0.759. ROC curve of (i) Experimental results indicate that the system can
[44] the Maastricht clinic = 0.881. ROC for the testing set was depicted generate a highly performant center-specific predictive
0.603 and 0.588 for each data set. model.
(i) GRAPE pathway scores provide researchers with a
Accuracy across all pathways was 0.96 for a single dataset and 0.72 unique perspective of patient transcription p rofiles that
[73] ) . may lead to improvements in the prediction
with multiple datasets . . -
performances of a wide range of personalized medicine
applications.
For CTRP panel, the median was calculated for GBGFA, ENET 0.05, l(irei:rirlinti;elel:llqtqsa:i}:;lwfgli g;;fﬁgg:n?sgi elﬁgﬁzlces
[54] and 0.04. For CCLE panel, the median was calculated for GBGFA sing 1t . 8
and ENET 0.06. 0.02 data which improves the predictive performance and
T feature selection as compared to Elastic Net and BGFA.
e o (i) The results suggested the effective therapies for the
(48] Sensitivity = 0.82 and specificity = 0.82. majority of cancer cells investigated in the dataset.
(i) This QA system can be effective for helping
[57] Recall, precision, and F2: 0.39, 0.21, and 0.33. physicians in relevant knowledge. So, precision oncology
can provide fewer toxic treatments in neoplasms.
(i) The analysis demonstrated that voting of the output
categorical values for a given patient across distinct
[78] More than 90% accuracy prognostic/classification methods could lead to a more
robust, accurate, reproducible, and cost-efficient
prognostic/ classification strategy for precision medicine.
(i) The proposed algorithm improves the cost efficiency
[52] The FNR and FPR values: 0.0512, 0.037. and accuracy of the screening process compared to

current clinical practice guidelines.
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Reference Effectiveness Outcome

(i) The proposed approach has the potential to enable
[50] The best area under the ROC =0.80 and the best PR the derivation of new hypotheses, improve drug

(precision — recall) curve = 0.83. selection, and lead to an improvement in patient

genomics-tailored therapeutics for cancer.

(i) Such studies are expected to contribute to precision
[71] Range of AUC 0.58-0.64 medicine and better guide treatment for these deadly

diseases

(i) This model could be applied to predict drug response
[74] (>0.80 % accuracy for 10 drugs, >75 % accuracy for 19 drugs for some certain drugs and potentially play a

complementary role in personalized medicine.

(i) This study opens the way to further development for
[29] Sensitivity from 90% to 95%, specificity 67% to 93%). identification of new biomarker combinations in other

applications such as prediction of treatment response.

Sensitivity = 43.8%,specificity = 100%, identical to qPCR on the same

(i) The ability of Afirma BRAF to accurately detect V60OE

[49] samples status may assist physicians in making these treatment
ples. decisions and potentially improve patient care.
(i) In this study, the CANScript platform was versatile in
[68] Sensitivity = 96.77% on the training set. The model achieved 91. its ability and capacity to predict the outcomes of both
Specificity = 91.67%sensitivity = 100%. Test cases. cytotoxic chemotherapy regimens and targeted
therapeutics.
(i) The findings suggested that decision trees and
[95] The accuracy of SMO, J48, RF, and CART was calculated respectively support vector machines are engaged approaches for
76.56%, 75%, 75%, and 73%. clinical decision support in the patient selection for
targeted therapy in advanced NSCLC.
(i) The results have shown that MEFS improve the
[53] Accuracy = 0.99, sensitivity = 0.98, Jaccard index (stability) = 0.80  robustness and the accuracy of the signature and
outperforms other methods in the literature
(i) The proposed RWRF model can improve the
(18] Accuracy = 0.84 prediction accuracy significantly. The method can
y=5 facilitate using molecular signatures to predict the clinical
outcomes of patients in prospective clinical studies.
(i) The proposed two-step Bayes classification
Average accuracy for leukemia: 92.90%; breast 84.67%; colon cancer framework was equal to ?nd’ 111 SOME CASES,
[67] 86.53%: outperformed other classification methods in terms of
2 prediction accuracy, the minimum number of
classification markers, and computational time.
(i) This model had been shown that the prediction of
(65] Pearson correlation Rp = 0.85; coefficient of determination R2 = 0.72, drug response and mode of action by transcriptional
RMSE =0.83 profiling is significantly and effectively enhanced when
paired with known a priori gene and protein networks.
The average training accuracy of 0.6995 and average testing accuracy (i) This investigation 1mp11c.ate'd XPD 751’.XPD 312,and
[47] of 0.6042 pack-years of smoking as significant predictors of
’ ’ bladder cancer susceptibility.
(46] This algorithm performed better than simple metrics for variation in (i) This approach performed better than simple metrics
individual and multiple genes (R* = 0.10; p < 0.05). for variation in individual and multiple genes
Average accuracy for SVM, NBC, and BCN was calculated (i) As this contribution, the experiments with lung
[62] respectivel 8’5 79 4’ > and 943 cancer data prove that RPPA data can be used to profile
P Yool IR " patients for drug sensitivity prediction.
The confident predictability (CP), error in CP, the total error was (@) T?e author b.eheved that this mthod can bea L}seful
[61] respectively 98%, 4.23%, and 4.17 %, for the GCM dataset tool for translating the gene expression signatures into
»T ’ ’ ’ clinical practice for personalized medicine.
(i) The C-T CERP algorithm appears to have a good
[66] Accuracy, sensitivity, specificity, PPV and NPV of respectively 0.872, potential and effective role for biomedical decision

0.846, 0.882, 0.851 and 0.89.

making in the assignment of patients to treatment
therapies.
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Reference Effectiveness Outcome
The CECT-QC algorithm reached an overall accuracy of 79.4% M T}.us stgdy demonstrate.d tbat the CECT._ QC
[80] 8 Y algorithm is useful for radiomic-based precision
[95%CI = 75.2%, 82.9%]. oty P
diagnosis
The trained DL model classified patients into high-risk and low-risk (i) DL model can provide CT-based prognostic risk
[81] groups in training cohort (p value < 0.001, concordance index (C- scores related to the OS of GC patients, and the findings
index): 0.82, hazard ratio (HR): 9.79) and external validation cohort demonstrated higher prognostic value than clinical and
(p value < 0.001, C-index: 0.78, HR: 11.76). radiomics models.
P
(i) The results show quite a high prediction accuracy,
[82] Average accuracy of 85% and AUC is 93%. whigh1 proves the discriminative ability of the proposed
model.
(i) The proposed R-SNN maintains crucial features by
[83] Fl-measure of 0.8547 on TCGA dataset, precision of 0.8352, recall of using the residual connectivity from the encoder to the
0.8306, and F1-measure of 0.8329 on the TNBC dataset. decoder, and it also uses only a few layers, which reduces
the computational cost of the model.
The accuracies of training, validation, and test dataset were 93.5, 93.7 E:lf)fezg\erepiipOz?(i)gﬁzctsirintfﬁi?ct;??nsfgjﬁagt}; Oir(;::riss an
[84] and 98.1%, respectively; AUROC value of 0.98 was observed for both . 2 § cntl s
the classes diverse omics data types enabling estimation of
’ prognostic indicators.
(i) The decision tree exceptionally demonstrated high
The highest precision: 91% for true neutrals, 8% for false neutrals, claSS}ﬁcatlon precision with cancer data, producing .
[85] . . consistently relevant forecasts for the sample tests with
9% for false pathogenic, and 92% for true pathogenic. an accuracy close to the best ones achieved from
supervised ML algorithms.
(i) As the proposed model can guarantee good
[86] On the GDSC dataset, the AUCROC of RefDNN were 0.891; the  prediction of drug responses to untrained drugs for
AUCROC of RefDNN were 0.071 on the CCLE dataset. given gene expression patterns, it may be of potential
benefit in drug repositioning and personalized medicine
The median AUC value per target pathway ranges from 0.98 for (i) Appropriate feature selection strategies facilitate the
[87] hormone-related drugs to 0.73 for compounds targeting metabolism development of interpretable models that are indicative
pathways. for therapy design.
(i) The results demonstrate proposed framework
31] AUC value 0.98 and 0.99. improves the Pre‘zdlctlon .performan.ce in all three drug
response prediction applications with all three
prediction algorithms.
Average accuracy of ECF-W and ECF-S is 74.25% and 77.25%, (i) These two methqu recommend the H.IOSt su1'tab1e
[88] respectively. compounds and anticancer drugs for patients with
' NSCLC.
(i) The protocols developed as a result of these
The highest AUC of RF, ELNET and SVM are 99.9%, 99.8%, and COmparisons provide valuable guidance on choosing ML
[30] 85.0%, respectivel workflows and their tuning to generate well-calibrated
70 TESp Y CP estimates for precision diagnostics using DNA
methylation data.
(i) The empirical results indicated that AITL achieved a
. ] significantly better performance compared with the
(89] The highest AUROC: 0.74 baselines showing the benefits of addressing the
discrepancies in both the input and output spaces.
(i) REFINED-CNN improves the prediction
p p
[90] The highest performance: 0.71 performance as compared to the best single REFINED
CNN model.
(i) This method did not show ideal results when applied
[91] The highest performance: 0.84 to an external set but it provided a valid proof of
principle starting point, termed for future improvement.
Sensitivity: 95% (i) This method provided more quantitative metrics for
[92] Specificity: 83% better characterization and complete picture of breast

AUC: 0.89

lesions.
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Reference Effectiveness

Outcome

[19] Precision: 95%

(i) It might be very useful in new target recognition as
well and proposing a potent drug for the newly identified
target

[93] The highest R2: 0.84

(i) This model provides a new method for the prediction
of anticancer drugs in human tissues and can provide
some reference value for the screening of anticancer
drugs.

[20] Accuracy: 96.9%

(i) Their results demonstrate the possibility of using
stem-loop expression data for accurate cancer
localization.

[94] The highest AUC: 0.942

(i) The results showed that the proposed algorithm
performed much better than the other two methods,
warranting further studies in individual cancer patients
to predict personalized cancer treatments.
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FIGURE 3: Word cloud of main keywords in selected papers.

libraries, and Tensor Flow. In the other reviewed articles,
software such as IBM Watson for Genomics version 27.87,
PLATYPUS version 1.0, Proteomics Performance Evalua-
tion Pipeline Software (PSPEP), and graph visualization
software were used.

3.5. The Characteristics of Selected Articles Based on Input,
Cancer Types. First of all, it can be said that the inputs of
applied Al methods and algorithms were categorized into
genomic data (gene expression, somatic mutation, pheno-
type data, sequencing data, and proteomic data), functional
data, and radiomics data (radiogenomic biomarkers and
histology of images). Based on literatures, the genomic data
include profile of DNA, proteomics, transcriptomics
measure transcripts, metabolomics, and radiomics. These
concepts have created multiomics new profiles. Radiomics
is an approach that extracts a large number of features and
critical characteristics from radiographic images. Hence,
detecting correlations with genome patterns is mining if
radiomic data is known as radiogenomics (59, 60). Out of
63 papers, in 34 articles (53.9%), genomic data like gene
expression, somatic mutation data, phenotype data, proteo-
mics with drug-response data was used as input in Al
methods; in 12 citations (19.4%), radiomic data (radio-
graphic with biomarkers) was applied by researchers for
managing neoplasm’ treatments. However, in 16 papers
(25.3%) drug response, functional data was applied in per-

sonalization of treatment. drug response which is functional
data. Concerning the type of cancer, in seven papers out of
63, the selected cancer for treatment (predicting, diagnosing,
and treating) was breast cancer, and the data of lung cancer
was used in seven reviewed papers. Also, in four citations,
the data of ovarian cancer was used by the researchers. In
some papers, the data of cancers such as bladder cancer,
thyroid cancer, colorectal cancer, brain tumor, laryngeal
carcinoma, leukemia, and neck cancer were utilized too.
The type of selected cancers and type of inputs (source of
omics data) are displayed in detail in Figure 6. However, in
Figure 7, the distribution of papers by the type of care and
input is depicted.

3.6. Distribution of Selected Papers by Effectiveness. The
effectiveness of selected AI methods in various reviewed
papers is shown in Table 5. The results showed that AT algo-
rithms have the potential and capacity to predict, diagnose,
and treat cancer (drug-chemotherapy evacuation, etc.).
These methods can classify or stage patients and provide bet-
ter therapy measures. The performance of applied methods
was validated and evaluated by different beforementioned cri-
teria, including accuracy, sensitivity, specificity, AUC of ROC,
Mean Average Error (MAE), and F-measure. Maximum
values of the assessment indicators such as accuracy, sensitiv-
ity, specificity, precision, recall, AUC, F-score were calculated
tobe 0.99, 1.00, 0.96, 0.98, 0.99, and 0.9929, 0.98, respectively.
These reported criteria showed that the performance of the
methods was at a significant level. Hence, many of the algo-
rithms proposed in reviewed studies have effectively
performed early detection of cancers, predicting response to
treatment, and screening through personalized medicine.

3.7. The Distribution of Citations Based on the Type of
Presented Care by Al Methods. Based on extracted results,
in 41% of studies, the main purpose of using genomic data
in artificial intelligence was to predict the response to drugs
in the treatment of cancer patients and in 12.7% of the
papers, correct diagnosing of neoplasms by Al approaches
was the critical care. The offered type of care in studies is
displayed in Figure 8.
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3.8. The Distribution of Artificial Intelligence Methods in
Selected Papers. The main objective of this review was to
determine the application of Al techniques in precision
medicine for cancer screening, diagnosis, and treatment.
In Table 4, an overview of the distribution of applied Al
algorithms, their categorizations in the selected papers,
and the frequent methods used in the reviewed papers are
presented. Out of 63 citations, the leading AI approaches
in 17 papers (26.9%) include linear and nonlinear models
(classification and regression trees, support vector machine,
Neural Networks, and etc.). In 15 articles (23.8%), unique
methods based on artificial intelligence were used, consid-
ered linear models (Random Forest or Decision Trees).
Totally, in 21 citations, rule-based systems and deep learn-
ing models were used too. Some other intelligent tech-
niques such as metaensemble feature selection, kernel
learning, natural language processing, and the least absolute
shrinkage and selection operator Cox regression were
employed by researchers to determine cancer characteristics
and input methods.

3.9. Risk of Bias within Studies. Sixty included studies in this
review were considered low risk of bias. Only two citations
were evaluated with moderate risk of bias [18, 19] and one
with high risk of bias [20]. The questions “Were confound-
ing factors identified? and “Were strategies to deal with con-
founding factors" are not applicable in our included studies,
because our studies were not experimental researches.

4. Discussion

According to the results, the leading artificial intelligence
methods and applications are widespread and lead to
knowledge-based production or model development applied
widely in healthcare fields. The main objective of this review
was to analyze and identify the studies conducted on the
application of AI methods in precision or personalized
medicine for cancer prediction, diagnosis, and treatment.
To achieve this objective, we selected 63 papers based on
inclusion and exclusion criteria. The basic aim of reviewed
studies was to provide or propose Al-based approaches that
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can predict the outcomes of treatments such as drug therapy
or chemotherapy and patient screening/diagnosis. However,
it should be noted that the type of care in a large number of
selected citations was predicting the type of treatment based
on the stage of cancer and identifying the mutations and
sequencing in genomics.

Support vector machine is one of the most preferred
methods of machine learning that has high accuracy. This
algorithm is capable of handling a large volume of data
[21], and it is also a method of choice when dealing with
large and complex data as it can provide statistical analysis
and summarization [22]. Another algorithm employed in
the reviewed papers was the random forest algorithm, which
can be used widely in more applications, specifically with
large datasets.

Hence, based on effectiveness reports, in large numbers
of the selected papers, the SVM-based and RF methods
effectively predicted and diagnosed cancer with genomic
data. Another algorithm that was used in radiomic-
oriented papers was convolution neural network (CNN),
which is a deep learning technique that can take in an input
image and is designed to improve the accuracy of automatic

labeling and classification [23, 24]. In some reviewed papers,
the researchers used CNN to propose and predict cancer
patients based on radiogenomics and histology images.
Based on our results, the qualitative criteria such as ROC,
accuracy, sensitivity, specificity, precision, and F-score were
reported separately for reviewed papers. For example, in a
study in 2019 that examined the response of drug and che-
motherapy in patients with cervical cancer, the sensitivity
of SVM models was higher than 84% and AUC was 0.99
for testing the set [25]. In 2018, Brietenstein et al. proposed
a rule-based algorithm for diagnosing and treating patients
with breast cancer, which had the precision of 0.98, recall
0f 0.99, and F-score of 0.98 [26]. Meanwhile, Chen et al. pro-
posed a radiomic-based model for selecting proper surgical
approaches in papillary thyroid carcinoma; this model had
an AUC of 0.837 and F-score of 0.766 [27]. In another work,
an SVM-based classification model was proposed for cancer
prediction, which had an accuracy of 70% and AUC of
0.9929 [28]. Similarly, Kempowsky-Hamon et al. developed
a fuzzy logic algorithm for predicting breast cancer progno-
sis; the performance of this model was reported by sensitiv-
ity and specificity (0.95 and 0.93, respectively) [29]. Notably,
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in a study which is conducted in 2020, a novel technique was
developed as a result of comparisons providing practical
guidance on selecting machine learning workflows and their
tuning to generate well-calibrated CP estimates for precision
diagnostics operating DNA methylation data; the highest
AUC of RF, ELNET, and SVM, are 99.9%, 99.8%, and
85.0%, respectively [30]. In [31], the consequences demon-
strate offered ensemble transfer learning methods sweeten
the prediction performance in all three drug response pre-
diction applications with all three prediction algorithms.
According to the drug response data, AUC values (0.98,
0.99) are computed and abode as the drug response
measurements to be predicted through regression analysis.
Nevertheless, due to the heterogeneity of reports and our
results, we could not analyze them one by one. However,
the selected papers showed that their methods were influen-
tial in the precision medicine field.

Our results showed that the main type of cancer was
breast and lung cancer in most of the selected studies. Breast
cancer is cancer that forms in the cells of the breasts. After
skin cancer, breast cancer is the most common cancer in
women. Based on results, breast cancer survival rates have
increased, but the number of death associated with this
cancer is declining [32]. However, breast cancer is the most
invasive cancer in women and the second cause of death after
lung cancer [6, 7]. For this reason, a new personalized
approach was introduced with the name of precision medi-
cine used to diagnose, treat, and prevent the number of
cancers such as breast cancer by taking into account the
genes (genetic makeup) or other markers in the cancer cells
[33]. In other words, if the cancer treatment and diagnosis
in individuals are based on the formation of genome profiles,
personalized medicine is a more effective method that can be
used in the treatment process [34]. The blood or tumor tissue
in this method is collected for genetic analysis to determine
its genetic makeup, which may later help predict or diagnose
cancer or guide the treatment decisions. Other tests deter-
mine the genetic changes or variants (called mutations)
within the cancer cells. This information can help determine
which treatments are most likely to be beneficial or if any
treatment is needed at all. For example, cells from a breast
tumor may be tested to determine whether they produce
too much of a protein called HER2 [35]. Lung cancers differ
according to the type of cell in which they arise. In these can-
cers, specific molecular targets have been identified, and
which gene alterations produce mutations [36]. Therefore,
if the genetic abnormality is identified, it can be targeted by
a drug [37]. According to our results, genetic is very effective
in the onset of breast and lung cancer, which were the most
common types of cancer in the selected papers. The source of
our reviewed papers was publicly available. These sources
include gene expressions, gene sequencing data, phenotyping
data, and somatic and mutation data. However, the molecular
interactions and drug chemical data, radiomics data, and
pharmacogenomics data were stored in the sources. In most
of the selected papers, TCGA, CCLE, and GDSC sources were
used. These three sources have the main datasets on patients
or biosamples, and their data are publicly available with var-
ious types of genomics and radiomics data.



30

BioMed Research International

Cancer classification

Treatment

o]

Screening

10 @

Prognosis prediction

Preoperative prediction

Diagnosis

Diagnosis + treatment

oy 26

Predict drug response

Predict vaccine response

Predicting the clinical outcome
and survival prediction

-®- Total

FIGURE 8: The distribution of papers based on the type of care.

The results showed that most of the articles had been pub-
lished in the United States, and the number of articles pub-
lished in the field of precision medicine has increased
significantly in recent years. Various factors may have led to
an increase in publications of such articles in recent years,
especially in the United States. The term “precision medicine”
was first highlighted in a publication by the US National
Research Council, which sought to create a new taxonomy
for classifying diseases through a knowledge network [38,
39]. US National Human Genome Research Institute
(NHGRI) has developed a 20-year plan for translating
insights from genomics to medicine. This has led to an under-
standing of human biology and disease prevention, diagnosis,
and treatment [39, 40]. President Obama, on January 20,
2015, announced that “Tonight, I am launching a new Preci-
sion Medicine Initiative to bring us closer to curing diseases
like cancer and diabetes—and to give all of us access to the
personalized information we need to keep ourselves and our
families healthier.” This could have led to progress in preci-
sion medicine [41]. President Obama has allocated $215 mil-
lion for the initial launch of this initiative. He also donated
$130 million to the Cohort study, which involved at least
one million volunteers. This can lead to the collection of
genotypic, phenotypic, and lifestyle data and thus accelerate
the development in this scientific field [42].

All of the mentioned items can be the reason for the
advancement of precision medicine in the United States,
especially in recent years. It seems that other countries
should take a step in this direction and keep pace with the
United States in developing this area by allocating sufficient
budget and time.

This study had several strengths. One of the strengths of
this study was searching in critical databases including Med-

line (through PubMed), Scopus, Cochrane Central Register
of Controlled Trials, Embase, IEEE Xplore Digital Library,
and IST Web of Science, which enabled us to cover all the
articles published in this field as much as possible. Another
strength of this study was the inclusion of papers presented
at the conferences. We also did not impose any time limit
on the search.

In this study, we faced some limitations, one of which
was the noninclusion of studies presented at conferences,
that we did not have access to their full texts. We also used
only English papers, so there is the probability of missing
several related studies and papers with effective results.
However, we could not update Embase search due to lack
of access to Embase database from our country.

5. Conclusion

This review was conducted to examine the applications of
artificial intelligence in personalized medicine. To achieve
this goal, we investigated five important databases to retrieve
published scientific papers without time limitation. Hence,
applying appropriate Al-based solutions could improve the
treatment and management of cancers and the application
of intelligent approaches is recommended in many areas
such as in personalized medicine. However, further studies
are needed to investigate the real effects of these algorithms
and their effectiveness.
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