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Abstract

Cell death is a key feature of neurological diseases, including stroke and neurodegenerative 

disorders. Studies in a variety of ischemic/hypoxic mouse models demonstrate that poly(ADP-

ribose) polymerase 1 (PARP-1)-dependent cell death, also named PARthanatos, plays a pivotal 

role in ischemic neuronal cell death and disease progress. PARthanatos has its unique triggers, 

processors, and executors that convey a highly orchestrated and programmed signaling cascade. 

In addition to its role in gene transcription, DNA damage repair, and energy homeostasis through 

PARylation of its various targets, PARP-1 activation in neuron and glia attributes to brain damage 

following ischemia/reperfusion. Pharmacological inhibition or genetic deletion of PARP-1 reduces 

infarct volume, eliminates inflammation, and improves recovery of neurological functions in 

stroke. Here, we reviewed the role of PARP-1 and PARthanatos in stroke and their therapeutic 

potential.
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1 | INTRODUCTION

Stroke is an acute and lethal cerebrovascular disorder. As a leading cause of death 

worldwide, new attacks and recurrent stroke affect approximately 13.7 million people 

globally each year (Hasan et al., 2018; Virani et al., 2020). Ischemic stroke accounts for 

more than 80% of stroke cases. It is characterized by rapid disruption of cerebral arterial 

blood flow and lack of oxygen to the affected area leading to neuronal cell death. On the 

other hand, stroke has also been ranked the third leading cause of disability worldwide. 
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It may cause some long-term severe complications or sequelae including paralysis, speech 

problems, dementia as well as loss of advanced brain functions like learning and memory 

(Powers, 2020). Therefore, stroke interferes with patients’ daily life and sometimes even 

causes severe life threatening, which has brought a heavy economic burden to the society. 

So far, the most effective stroke therapeutic strategy is recanalization or reperfusion by 

either intravenous thrombolysis or endovascular thrombectomy. However, endovascular 

thrombectomy is usually restricted within a very narrow time window—6 hr from the first 

symptoms onset (Campbell et al., 2019)—, which has been recently extended to 24 hr 

(https://www.medpagetoday.com/meetingcoverage/isc/70735). Neuronal cell death is a key 

feature following ischemic stroke and contributes to the significant loss of brain functions.

Different types of cell death including apoptosis, necrosis, necroptosis, ferroptosis, 

pyroptosis, and autophagy have been implicated in neuron loss following stroke based 

on various studies from in vitro cell cultures as well as in vivo animal models (Li et 

al., 2020; Naito et al., 2020; Wang et al., 2018; Wang et al. 2016; Wang et al., 2009; 

Wang et al., 2011). However, the precise cell death mechanism in stroke remains obscure. 

Poly(ADP-ribose) polymerase 1 (PARP-1)-dependent cell death (PARthanatos) is a unique 

type of cell death program, which is different from apoptosis, necrosis and other types of 

cell death as we reviewed previously [Table 1 (Wang et al., 2009)]. Emerging evidence 

indicates that PARP-1 and PARthanatos play a pivotal role in ischemic stroke. Here, we 

reviewed the recent progress of PARP-1 and PARthanatos in stroke and their effects on 

neuronal cell death, inflammation and metabolic regulation.

2 | PARP-1-DEPENDENT CELL DEATH

PARP-1 is a well-characterized nuclear enzyme that belongs to the PARP superfamily 

containing 17 members (Gupte et al., 2017; Kim et al., 2020). It functions as a DNA 

damage sensor and accounts for about 90% of poly(ADP-ribose) (PAR) production in 

response to DNA damage or oxidative stress. Besides its role in DNA damage repair, 

PARP-1 is involved in multiple other biological processes including DNA replication, 

gene transcription, centromere and spindle assembly/disassembly, cell differentiation, 

inflammation, and chromatin structure regulation (Gupte et al., 2017; Kim et al., 2020; 

Wang et al., 2009, 2019). However, PARP-1 hyperactivation causes a unique type of cell 

death termed PARthanatos, which was named after PAR that is a product of PARP-1 

activation and Thanatos who is the Greek personification of death and mortality (Wang et 

al. 2016; Wang et al., 2009, 2011; Yu et al., 2002; Fatokun et al., 2014; Galluzzi et al., 

2018). PARthanatos is a type of programmed necrotic cell death but distinct from other 

forms of cell death, including apoptosis, necrosis, necroptosis, and autophagy. It has several 

key features: (1) PARP-1 is a central player in the process as its hyperactivation initiates 

this unique cell death pathway. Pharmacological inhibition or genetic deletion of PARP-1 

blocks PARthanatos (Eliasson et al., 1997; Kam et al., 2018; Zhang et al., 1994); (2) nuclear 

shrinkage and large DNA fragmentation (>10 kb) are observed in the cell undergoing 

PARthanatos (Wang et al. 2016; Wang et al., 2009; Yu et al., 2002); and (3) caspase 

activation is dispensable for PARthanatos. PARthanatos cannot be blocked by pan-caspase 

inhibitors, such as z-VAD-fmk or boc-aspartyl-fmk (BAF) (Yu et al., 2002). Increasing 

evidences show that PARthanatos is involved in numerous neurological diseases including 
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Alzheimer’s disease (AD) (Abeti et al., 2011; Love et al., 1999), Parkinson’s disease (PD) 

(Kam et al., 2018), Huntington’s disease (HD) (Chidambaram et al., 2017; Paldino et al., 

2020), amyotrophic lateral sclerosis (ALS) (Rulten et al., 2014), traumatic brain injury 

(d’Avila et al., 2012) and stroke (Eliasson et al., 1997; Meng et al., 2018; Zhang et al., 

1994).

2.1 | PARP-1 and its activation in ischemic stroke

PARP-1 is the most extensively studied nuclear enzyme in the PARP superfamily (Gupte et 

al., 2017; Kim et al., 2020). It contains three major functional domains: (1) an N-terminal 

DNA-binding domain, containing three zinc-finger motifs and a nuclear localization 

sequence (NLS), which recognizes both DNA double- and single-strand breaks; (2) a 

central BRCA1 C terminus (BRCT) auto-modification domain that is a target of self-poly-

(ADP-ribosyl)ation; and (3) a C-terminal catalytic domain containing a tryptophan–glycine–

arginine-rich (WGR) motif and a PARP signature motif that is the nicotinamide adenine 

dinucleotide (NAD) binding site essential for PAR synthesis (Figure 1) (Clark et al., 

2012; Kameshita et al., 1984; Kraus & Lis, 2003; Luo & Kraus, 2012; Pinnola et al., 

2007; Thomas et al., 2014). PARP-1 is directly activated by DNA damage including 

DNA alkylation and strand nicks and breaks (Lautier et al., 1993; Wang et al., 2019). 

Oxidative stress is another trigger that induces excessive DNA damage, PARP-1 activation, 

and PARthanatos (Figure 2) (Park et al., 2020; Wang et al., 2009, 2019). In addition, 

a variety of environmental stimuli, including free radicals, hydrogen peroxide, hydroxyl 

radical, peroxynitrite, ionizing radiation, and alkylating chemotherapy drugs, also trigger 

DNA damage and PARP-1 activation (Wang et al., 2009, 2019).

Following ischemic stroke, massive excitatory neurotransmitter glutamate is released. 

Subsequently, N-methyl-D-aspartate (NMDA) receptor is activated leading to calcium 

influx, nitric oxide (NO) production, and reactive oxygen species (ROS) generation 

(Figure 2) (Wang et al., 2009). Previous studies showed that NO levels in the cortex are 

strikingly increased within minutes following middle cerebral artery occlusion (MCAO) and 

reperfusion (Malinski et al., 1993). NO then rapidly reacts with superoxide to generate 

excessive unstable oxidant peroxynitrite (ONOO−), which induces chromosomal DNA nicks 

and breaks to trigger PARP-1 activation (Endres et al., 1998). In line with this, formation of 

PAR is detected as early as 5 min after 2-hr MCAO, peaks at 1 hr after reperfusion, then 

decreases rapidly at 6 hr and back to the basal level at 24 hr after reperfusion in ischemic 

cortex (Endres et al., 1997, 1998). Moreover, PARP-1 activation and PAR production have 

been found mainly in human neurons within the ischemic infarct core area predominantly 

during initial 18–24 hrs, and a few PAR is detected in glia and infiltrated macrophages in 

the adjacent area after 24 hr (Love et al., 2000). These studies provide the direct evidence 

of PARP-1 activation in ischemic stroke. However, studies on quantification of PARP-1 

activation and its functional differences in the core and peri-core areas are still lacking.

2.2 | PARP-1 activation-impaired NAD+ metabolism in ischemic stroke

NAD+ is a cofactor and substrate of hundreds of enzymes that are involved in various 

fundamental metabolic and biological processes to sustain cell survival. It exists in different 

subcellular compartments including mitochondria, cytosol, and nucleus as either the 
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oxidized forms NAD+ and NADP+ or the reduced forms NADH and NADPH. Interestingly, 

NAD+ pools in these subcellular compartments have non-redundant functions (Cambronne 

& Kraus, 2020). In the cytosol, NAD+ is essential for glycolysis and the production 

of lactate from pyruvate, whereas NAD+ in the mitochondrial matrix is required for 

redox homeostasis, fatty acid catabolism, tricarboxylic acid (TCA) cycle, and oxidative 

phosphorylation. NAD+ can be consumed by sirtuins in mitochondria, cytosol, and nucleus, 

which have an impact on gene expression, genome stability, and metabolism (Covarrubias et 

al., 2021).

PARP-1 is another major consumer of cellular NAD+ in the nucleus. Upon PARP-1 

activation, it uses NAD+ as the substrate and transforms NAD+ into the different length 

of PAR, which are further transferred to a variety of nuclear proteins (PARylation), 

including histones, DNA polymerases, topoisomerases, DNA ligase-2, transcription factors, 

and PARP-1 itself (Lautier et al., 1993). Although the basal PAR levels are very low, 

hyperactivation of PARP-1 leads to 10–500-fold increase in PAR formation, which varies 

in lengths, branching frequencies, and complexity (Aberle et al., 2020). PARP-1-dependent 

PARylation plays the crucial roles in DNA damage sensing, repair and genome stability 

maintenance, as well as gene transcription (Izhar et al., 2015; Lanz et al., 2019; Wang et 

al., 2019). On the other hand, PARylation is energetically challenging and may result in 

cellular NAD+ depletion and energetic collapse (Figure 3). Multiple previous studies have 

shown that the ipsilateral cellular levels of NAD+ are significantly reduced as compared to 

its contralateral levels at 2–24 hrs following ischemic stroke (Endres et al., 1997; Hu et al., 

2017). It is no doubt that energy depletion plays an important role in ischemic cell death, 

although previous studies in primary cell cultures indicate that energy depletion may not be 

a primary factor in PARP-1-mediated cell death (Fossati et al., 2007). Recently, it was shown 

that PARP-1 activation is associated with mitochondrial dysfunction and causes energy 

depletion (Figure 3) (Andrabi et al., 2014). More specifically, PARP-dependent energy 

depletion occurs through inhibition of glycolysis but not NAD+ depletion as NAD+ depletion 

by a nicotinamide phosphoribosyltransferse inhibitor FK866 does not alter glycolysis or 

mitochondrial function (Andrabi et al., 2014). These studies indicate that energy depletion 

alone might not be sufficient to mediate PARthanatos, but it does not exclude that PARP-1-

dependent energy depletion is a part of ischemic cell death mechanisms. Further studies 

are required to investigate whether PARP-1-regulated alteration of NAD+ metabolism 

contributes to PARthanatos in stroke.

2.3 | Apoptosis-inducing factor (AIF)—a key mediator of PARthanatos in ischemic stroke

AIF is a mitochondrial flavoprotein with a vital function in bioenergetics and a lethal 

function when it moves to the nucleus (Wang et al., 2009, 2011). It mainly locates in the 

mitochondrial intermembrane space with its N-terminus attached to the inner membrane 

and another small portion of AIF is associated with the outer membrane (Yu et al., 2009). 

AIF is important for mitochondrial complex I assembly and contributes to the oxidative 

phosphorylation process under physiological conditions. AIF has also been implicated to 

function as a ROS scavenger (Polster, 2013; Wang et al., 2009). Apart from its vital 

function, AIF has been recognized as a key cell death mediator in PARthanatos (Figure 

2). Microinjection of AIF antibody protects against PARthanatos (Yu et al., 2002).
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During the process of PARthanatos, PARP-1 hyperactivation leads to the excessive 

accumulation of PAR. PAR itself functions as a death signal (Andrabi et al., 2006), and 

translocates from the nucleus to mitochondria, where it interacts with AIF on the conserved 

PAR binding motif and triggers AIF release from mitochondria (Wang et al., 2011; Yu et 

al., 2006). Mutation of PAR-binding domain on the C-terminus of AIF almost completely 

abolishes AIF nuclear translocation and PARthanatos (Wang et al., 2011). Therefore, both 

AIF and PAR are required for nucleus–mitochondria cross talk to mediate PARthanatos.

The translocation of AIF from mitochondria to nucleus is considered a key step of 

PARthanatos. AIF is initially synthesized in the cytosol as a precursor of 67 kDa and 

processed into its mature form (62 kDa) after transporting into mitochondria. Calpain I has 

been shown to cleave AIF at L101/G102 into a soluble truncated AIF (tAIF) of 57 kDa 

following oxygen-glucose deprivation or transient global ischemia (Cao et al., 2007). Then, 

tAIF is disassociated from the inner membrane and translocated into the nucleus to mediate 

ischemic cell death. Over-expression of a calpain inhibitor calpastatin or knockdown of 

calpain I reduces tAIF nuclear translocation in CA1 neurons after global ischemia and 

suppresses ischemic cell death (Cao et al., 2007). Recently, another study also showed that 

calpain I-mediated AIF truncation and AIF nuclear translocation cause DNA fragmentation 

and myocyte cell death (Chelko et al., 2021). Therefore, calpain I may play a role in 

mitochondrial AIF cleavage and release in ischemic stroke. Future study is needed to 

determine whether calpain I-mediated release of AIF is a parallel pathway independent of 

PAR, or whether calpain I plays a role in PAR-mediated AIF release during PARthanatos.

2.4 | Macrophage migration inhibitory factor (MIF)-executor of PARthanatos in ischemic 
stroke

AIF nuclear translocation is often associated with nuclear shrinkage, chromatin 

condensation, and large DNA fragmentation in PARthanatos. However, AIF itself does 

not have the obvious nuclease activity. Studies from C. elegans models showed that 

AIF homolog wah-1 cooperates with mitochondrial endonuclease CPS-6/endonuclease G 

(EndoG) to promote DNA degradation and cell death (Wang et al., 2002). However, EndoG 

does not seem to be a primary contributor for large DNA fragmentation in PARthanatos 

in mammals since knockout of EndoG fails to block PARP-1 hyperactivation-induced 

large DNA fragmentation and cell death (Wang et al. 2016). Through two sequential high-

throughput screenings for AIF-interacting proteins critical for PARthanatos, we recently 

identified MIF as a PARP-1 activity-associated nuclease (PAAN) that requires Mg2+ or 

Ca2+ for its 3’ nuclease activity (Wang et al. 2016). MIF was previously known as a 

secreted protein involved in inflammation, immune response, and cancers and its expression 

is up-regulated following hypoxia and ischemic stroke (Bloom & Bennett, 1966; Bloom 

et al., 2016; Oda et al., 2008). Following PARP-1 hyperactivation, AIF is released from 

mitochondria and recruits MIF to the nucleus, where MIF cleaves DNA into 10-to 50-kb 

large DNA fragments (Wang et al. 2016). Moreover, depletion of MIF, disruption of AIF 

and MIF interaction, or suppression of MIF’s nuclease activity protects neurons from 

NMDA-induced cytotoxicity or ischemic cell death. It also has long-lasting histological 

and behavioral rescue in the transient focal ischemic model of stroke (Wang et al. 2016). 
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Thus, MIF functions as the executive nuclease in PARthanatos to chop genomic DNA into 

large fragmentation, and subsequently causes chromatinolysis and cell death (Figure 2).

3 | MITOCHONDRIAL OXIDATIVE STRESS AND METABOLIC ALTERATION: 

CAUSE OR CONSEQUENCE OF PARP-1 ACTIVATION IN ISCHEMIC 

STROKE?

Brain is highly dependent on aerobic respiration because of its high demand for energy and 

vulnerability to oxidative stress. Mitochondria produce ATP and maintain the homeostasis 

of ROS including superoxide and hydrogen peroxide under physiological conditions. Unlike 

the basal level of ROS that contributes to physiological regulation and modulation of cell 

signaling and can be cleared by intracellular scavengers, excessive ROS is accumulated as 

a result of insufficient oxygen in stroke and other neurological diseases and irreversibly 

oxidizes many critical cellular building blocks, including nucleic acids, lipids, and proteins, 

thereby altering their functions and cell viability (Crack & Taylor, 2005; Hernansanz-

Agustín et al., 2014, 2017; Khoshnam et al., 2017). Oxidative stress, no matter acute or 

chronic, remains to be the key causal factor in many neurological disorders including stroke 

and degenerative disorders, since oxidative molecules are endogenous inducer of DNA 

damage and PARP-1 activation leading to PARthanatos.

On the other hand, the notable disturbances in cerebral glucose metabolism in ischemic 

patients were uncovered a decade ago by tracing glucose uptake using 18F-FDG-PET 

(Bunevicius et al., 2013). Glucose utilization is dramatically decreased in the ischemic 

core, but elevated in the peri-ischemic area to support peri-ischemic cells for survival 

(Bunevicius et al., 2013). PARP-1 is activated excessively in the core area and inhibits 

hexokinase activity and glycolysis following ischemic injury (Figure 3). Hexokinase is 

a rate-limiting enzyme to initiate the first step of glycolysis by phosphorylating glucose 

to glucose-6-phosphate. It is attached to the outer mitochondrial membrane and contains 

a putative PAR-binding motif. Upon PARP-1 activation during ischemic stroke, PAR 

interacts with hexokinase and triggers the release of hexokinase from mitochondria, and 

subsequently, reduces hexokinase activity (Fouquerel et al., 2014). In addition, oxidative 

phosphorylation is impaired under hypoxia, leading to reduced ATP production but ROS 

generation. As such, the reduced glycolytic metabolic flux (basal glycolysis, glycolytic 

capacity, glycolytic reserve, and lactate production) in the ischemic core regions could be 

the downstream metabolic impact of PARP-1 activation. In addition, PARP-1 also directly 

modulates mitochondrial bioenergetics as determined by mitochondrial oxygen consumption 

rate and reserved respiratory capacity (Andrabi et al., 2014) and regulates the TCA cycle 

through affecting NAD+/NADH levels (Dölle et al., 2013). PAR also has a direct effect on 

mitochondrial membrane potential collapse (Cipriani et al., 2005). Thus, PARP-1 activation 

may inhibit glycolysis and cause energy depletion, leading to altered cellular metabolism.

Together, PARP-1 activation in the nucleus has a strong connection with the status of 

mitochondrial oxidative stress and cellular metabolic reprogramming. The crosstalk between 

nucleus and mitochondria seems to be critical for the cell fate following stroke. Future 
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studies are required to understand the deep layer of connections of PARP-1 activation with 

mitochondrial oxidative stress and cellular metabolic reprogramming in ischemic cell death.

4 | PARP-1 ACTIVATION IN NEUROINFLAMMATION AND ISCHEMIC 

STROKE

The inflammatory response in brain following stroke involves glial activation and migration, 

which contribute to cell death (Skaper, 2003). PARP-1 participates in the progression of 

the inflammatory response in brain (Figure 3). PARP-1 is activated by TNF-α treatment 

and, in turn, controls TNF-α-induced inflammatory responses in glial cells following 

ischemic stroke (Skaper, 2003). Genetic or pharmacological inhibition of PARP-1 blocks 

TNF-α-induced inflammatory response in microglia (Chang & Alvarez-Gonzalez, 2001; 

Chiarugi & Moskowitz, 2003; Kauppinen & Swanson, 2005; Madinier et al., 2009; Ullrich 

et al., 2001), indicating that PARP-1 is required for microglial activation. The underlying 

molecular signaling transduction involves TNF-α receptor 1, calcium entry, activation of 

phosphatidylcholine-specific phospholipase C, and activation of the MEK1/ERK2 protein 

kinase cascade (Kauppinen et al., 2013; Vuong et al., 2015). In addition, PARP-1 interacts 

with transcription factors including NF-κB, p53, and AP-1 and functions as a transcriptional 

co-activator to control transcription of genes involved in inflammatory response (Nakajima 

et al., 2004). PARP-1 PARylates NF-κB at its PAR-binding motif in vitro, although the 

significance of NF-κB PARylation remains unclear (Kameoka et al., 2000; Pleschke et al., 

2000). Various animal studies showed potential neuroprotective effects of PARP-1 inhibitor 

3-aminobenzamide (3-AB) on inhibition of neuroinflammation and neuronal cell death 

following ischemic stroke (Koh et al., 2004) and also traumatic brain injury (Lescot et 

al., 2010). Moreover, treatment of PARP-1 inhibitor JPI-289 decreases pro-inflammatory 

cytokines (IFN-γ, TNF-α, and IL-17) in stroke patients (Noh et al., 2018). Collectively, 

these studies support that targeting PARP-1 is protective under conditions of stroke.

The neurovascular unit, which consists of neurons, astrocytes, microglial cells, 

oligodendrocytes, endothelial cells, smooth muscular cells, pericytes, and basal membranes 

of the key structure of blood–brain barrier (BBB), plays an important role in inflammation 

following ischemic brain injury (Rom et al., 2016; Wang et al., 2020). Activation and 

migration of glial cells as well as infiltration of neutrophils and macrophages significantly 

contribute to the release of inflammatory factors and breakdown of basal lamina of the 

capillaries. Post-stroke inflammatory response prompts a vicious circle, which ultimately 

causes collapse of neurovascular unit functions and cell death. Thus, inhibition of 

inflammatory response and preservation of functions of neurovascular unit are critical 

for stroke recovery. Targeting PARP-1 as an approach to inhibit neuroinflammation and 

preserve the integrity of BBB has been explored recently (Rom et al., 2016; Wang et al., 

2020). PARP-1 deletion substantially eliminates TNF-α-induced inflammatory responses in 

brain microvasculature and reduces BBB permeability through suppressing protein levels of 

adhesion molecules and activity of GTPases (Rom et al., 2016; Wang et al., 2020). These 

studies indicate that PARP-1 may also play an important role in neurovascular unit and 

neuroinflammation in ischemic stroke.
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5 | PARP-1 REGULATES ION INFLUX IN ISCHEMIC/HYPOXIC BRAIN 

INJURY

TRPM2 is a non-selective cation channel highly expressed in brain and involved in influx 

of extracellular Ca2+. It has been reported that PARP-1 activation is required for TRPM2 

channel opening in response to oxidative stress (Fonfria et al., 2004). Poly(ADP-ribose) 

glycohydrolase (PARG) is a known enzyme responsible for the degradation of PAR into free 

ADP-ribose and also regulates TRPM2-mediated Ca2+ flux, leading to cell death (Blenn et 

al., 2011). These studies indicate that ADP-ribose as the main metabolite of PARP-1/PARG 

system might be the key driver regulating TRPM2 and Ca2+ influx. In addition, another 

study showed that PARP-1 hyperactivation induced by an alkylating agent N-methyl-N′-
nitro-N-nitrosoguanidine (MNNG) increases the expression of Ca2+-permeable AMPA 

receptors and causes pyramidal cell death in the hippocampal CA1 region (Gerace et al., 

2014). These studies indicate that PARP-1 and ADP-ribose may play a role in regulation of 

ion influx during oxidative stress (Figure 3).

6 | PARP-1 AND HYPOXIA-INDUCIBLE FACTOR (HIF) IN ISCHEMIC/

HYPOXIC BRAIN INJURY

HIF is a master regulator of hypoxia response (Luo & Wang, 2018). It consists of 

an inducible α-subunit and a constitutively expressed β-subunit (Luo & Wang, 2018). 

Expression of HIF-1α is increased in the penumbra tissues and ischemic core regions 

following stroke (Bergeron et al., 1999; Demougeot et al., 2004). HIF induces hundreds 

of genes whose proteins are involved in angiogenesis, epigenetics, and metabolism (Luo 

& Wang, 2018) and has also been implicated to play a role in ischemic stroke, although 

its precise role still remains debating (Shi, 2009). Both detrimental and beneficial effects 

of HIF-1 were previously reported in ischemic stroke, indicating that HIF may contribute 

to cell death after a severe and prolonged ischemia but promote cell survival following 

mild ischemic injury (Shi, 2009). Similar to HIF’s highly context-dependent functions in 

ischemic stroke, PARP-1 has been known to promote DNA repair and cell survival in 

response to mild DNA damage and triggers cell death following severe DNA damage and 

brain injury (Wang et al. 2016; Wang et al., 2009, 2019). Despite the importance and 

similarity of PARP-1 and HIF in ischemic stroke, little is known whether PARP-1 and HIF 

cooperate to regulate neuronal cell fate decision-making following the brain injury, except 

that PARP-1 has been shown to regulate HIF-1 expression following hypoxia in mouse brain 

(Martinez-Romero et al., 2009). In addition, previous studies showed that PARP-1 interacts 

and forms a complex with HIF-1α, thereby regulating HIF-1 transcriptional activation in 

myelogenous leukemia cells as well as B cells upon hypoxic stress (Elser et al., 2008; Hulse 

et al., 2018). It would be interesting to study how PARP-1 and HIF directly cooperate and 

impact on ischemic stroke outcome in the future.

7 | POTENTIAL THERAPIES BY TARGETING PARP-1 AND PARTHANATOS

Given the importance of PARP-1 in PARthanatos, metabolism and neuroinflammation in 

ischemic stroke (Figure 3), PARP-1 becomes a potential therapeutic target to prevent 

Liu et al. Page 8

J Neurochem. Author manuscript; available in PMC 2022 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ischemic brain injury. So far, four PARP-1 inhibitors including olaparib, veliparib, niraparib, 

and rucaparib have been approved by FDA to treat BRCA1/2-mutant ovarian cancer and 

metastatic breast and prostate cancers by suppressing PARP-1 functions in DNA damage 

repair and increasing synthetic lethality (Ledermann et al., 2012; Mirza et al., 2016; Swisher 

et al., 2017). Although the application of PARP inhibitors in the clinical trials for stroke 

treatment is far behind as compared to their application in cancer therapy, increasing number 

of preclinical studies showed great enthusiasm to use PARP inhibitors to treat acute ischemic 

brain injury and chronic neurological and systematic disorders (Table 1). For example, 

Dawson laboratory recently showed that PARP inhibitors including veliparib, rucaparib, and 

talazoparib suppress pathologic α-synuclein aggregation and increase cell viability in PD 

models (Kam et al., 2018). Moreover, PARP inhibitor olaparib has been shown to attenuate 

TDP-43-induced motor neuron cell death in models of ALS (Duan et al., 2019). Currently, 

multiple clinical trials of PARP-1 inhibitors are underway to treat acute ischemic stroke 

(JPI-289, phase2, NCT03062397) (Kim et al., 2018a), ischemic acute kidney injury (Jang 

et al., 2020), myocardial ischemia, diabetes, diabetes-associated cardiovascular dysfunction, 

shock, and traumatic central nervous system injury.

One possible limitation of PARP-1 inhibitors on treating stroke might be sexual dimorphism, 

although it is still under debating. Inhibition of PARP-1 hyperactivation has been proven 

to reduce ischemia-induced PAR formation and AIF nuclear translocation in both sexes 

(Yuan et al., 2009). However, the detrimental effect of PARP-1 activation on ischemic cell 

death in both sexes remains different. Several studies reported that PARP-1 inhibitors reduce 

stroke-induced lesion volume and improve behavior mainly in male but not female animals 

(Charriaut-Marlangue et al., 2018; Liu et al., 2011), which may be partially caused by 

impaired PARthanatos in females (Sharma et al. 2011) or different levels of estrogen and 

androgen in female and male mice (Dang et al., 2011; Vagnerova et al., 2010). 17β-estradiol 

and progesterone treatment have been shown to be protective and improve behavioral 

function in both males and ovariectomized females (Dang et al., 2011). It has also been 

reported that estrogen does not directly inhibit the enzymatic activity of PARP (Mabley et 

al., 2005). However, androgen–androgen receptor signaling is required for PARthanatos in 

male MCAO mouse models as the reduction in infarction caused by PJ-34 in wild-type mice 

is lost after removal of testicular androgens, which could be reversed by androgen treatment 

(Vagnerova et al., 2010). Meanwhile, XX and XY neurons exhibit differential vulnerability 

independent of sex hormone effects, in response to various cytotoxic agents (Du et al., 

2004). Another study showed that delayed treatment of PARP-1 inhibitor PJ34 reduces 

microglial activation and neuroinflammation to similar levels in both male and female 

mice, but inhibition of inflammatory cytokines (iNOS, IL-1β, and MMP-9) by PARP-1 

inhibitor is more profound in male MCAO mice, and PARP-1 inhibitor-caused improvement 

of neurological performance is also more prominent in males (Chen et al., 2020). Future 

studies are required to further investigate the role of PARP-1 and its inhibitors in ischemic 

brain injury in both sexes and underlying deep mechanisms.

Besides PARP-1 itself, its downstream signaling factors in PARthanatos are also attractive 

therapeutic targets. Iduna is a PARylation-dependent E3 ligase (Kang et al., 2011). It 

ubiquitinates and degrades PARylated substrates and protects against NMDA-induced 

excitotoxicity and ischemic stroke-induced neuronal cell death in mice (Andrabi et al., 
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2011). Thus, Iduna could be one of the potential target to reduce ischemic brain injury 

(Figure 2). Harlequin mice with about 80% of AIF reduction display resistance to NMDA-

induced neurotoxicity (Wang et al., 2011). We have shown that preventing AIF nuclear 

translocation, interfering AIF-MIF interaction, or inhibiting MIF nuclease activity may 

potentially block or reduce PARthanatos in the model of ischemic stroke (Wang et al. 2016).

Melatonin (N-acetyl-5-methoxytrptamine), a natural hormone with antioxidative and anti-

inflammatory properties, has a neuroprotective effect in various models of injury including 

stroke, traumatic brain injury, and spinal cord injury (Andrabi et al., 2015). Melatonin may 

suppress PARP-1 activation and inhibit PARthanatos following ischemic stroke as it inhibits 

the upstream factors of PARthanatos including Ca2+ elavation and mitochondrial oxidative 

damage (Andrabi et al., 2015). Similarly, propofol (2, 6-diisopropylphenol), a widely used 

intravenous anesthetic agent, inhibits PARthanatos in vitro and in vivo via suppressing ROS 

production, Ca2+ releasing, and mitochondrial depolarization. Melatonin and propofol may 

offer alternative therapeutic approaches to prevent ischemic cell death (Zhong et al., 2018).

Ischemic pre-conditioning via exposure to a non-lethal ischemic stress renders cells less 

susceptible to severe insults, which could be another strategy protecting neurons from 

ischemic stroke (Kitagawa et al., 1997; Wang et al., 2015). The mechanisms of ischemic pre-

conditioning are complicated, involving changes in gene expression, activation of protein 

kinase C, post-translational modification, and metabolic regulation (Stenzel-Poore et al., 

2003; Wang et al., 2015; Zhang et al., 2011). Mild activation of PARP-1 also contributes 

to the neuroprotective effects of ischemic pre-conditioning. Ischemic pre-conditioning 

increases the enzymatic activity of PARP-1 as well as its product PAR. Application of 

PARP inhibitor before ischemic pre-conditioning abolishes its protective effects (Gerace et 

al., 2012). The beneficial effect of mild PARP-1 activation is likely related to its DNA 

repair functions during ischemic preconditioning; however, clear evidence remains limited 

and insufficient and requires further investigation.

8 | CONCLUSION

PARthanatos is a unique cell death program distinct from many other known cell deaths 

like apoptosis, necrosis, and necroptosis, and attributes to ischemic stroke and degenerative 

disorders (Figure 2). Under conditions of stroke, PARP-1 is hyperactivated upon oxidative 

insults. PAR then functions as a death signal and triggers AIF release from mitochondria 

to the nucleus. Subsequently, AIF recruits MIF to the nucleus where MIF cleaves 

genomic DNA into large fragments and causes neuronal cell death. Genetic deletion or 

pharmacological inhibition of PARP-1, AIF, or MIF reduces NMDA-induced cytotoxicity 

and ischemic neuronal cell death. Further studies are required to fully understand 

PARthanatos, which may help develop inhibitors to specifically block PARthanatos in stroke 

as well as other neurological diseases.
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PD Parkinson’s disease
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ROS reactive oxygen species

tAIF truncated AIF

TCA tricarboxylic acid

WGR tryptophan–glycine–arginine-rich motif
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FIGURE 1. 
The functional domains of human PARP-1. Human PARP-1 contains a DNA-binding 

domain consisting of three zinc-binding motifs (Zn1, Zn2, and Zn3) and a nuclear 

localization signal (NLS) at its N-terminus, an auto-modification domain with BRCA1 C 

terminus (BRCT) motif in the center, and a catalytic domain with a WGR (tryptophan–

glycine–arginine-rich) motif and a PARP signature motif at its C-terminus
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FIGURE 2. 
PARthanatos signaling pathway following ischemia and reperfusion. Following ischemia 

and reperfusion injury, the excess release of glutamate activates NMDA receptor (NMDAR) 

and causes extracellular calcium influx, which leads to nitric oxide (NO) production and 

reactive oxygen species (ROS, e.g., superoxide, hydrogen peroxide, and peroxynitrite 

(ONOO−)) generation. Peroxynitrite can directly damage DNA and causes PAPR-1 

hyperactivation. PARP-1 uses NAD+ as the substrate to generate poly-ADP-ribose (PAR) 

and catalyzes the addition of PAR to different accept proteins (AC) including PARP-1 itself, 

which might lead to energy depletion. Then, free PAR and/or PARylated accept proteins 

are translocated from nucleus to mitochondria and trigger AIF release from mitochondria. 

AIF recruits MIF to the nucleus where MIF functions as a nuclease and cuts DNA 

into a large fragmentation leading to chromatinolysis and subsequent cell death. TRPM2 

receptor (TRPM2R) is regulated by free intracellular PAR and may amplify PARthanatos 

signaling by increasing calcium influx. In contrast, poly(ADP-ribose) glycohydrolase 

(PARG) dynamically cleaves PAR into mono ADP-ribose, which suppresses PAR death 

signal. In addition, Iduna is a PAR-dependent E3 ligase and interferes with PARthanatos by 

blocking PAR-AIF cross talk
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FIGURE 3. 
Multifaceted effects of PARP-1 activation on neuron and microglia following ischemia/

hypoxia. PARP-1 has multifaceted effects on neuron and glial cells and causes neuronal 

cell death following ischemic/hypoxic injury. First, PARP-1 hyperactivation leads to PAR 

accumulation, which enables nuclear-mitochondria cross talk and triggers AIF release and 

subsequent PARthanatos. Second, PARP-1 hyperactivation causes NAD+ depletion and 

regulates metabolic reprogramming, including inhibition of intracellular glucose uptake and 

hexokinase activity, ROS increase, and TCA cycle inhibition. Third, PARP-1 activation 

participates in regulation of ion homeostasis during oxidative stress by generation of PAR, 

which aggravates calcium influx through TRPM2 and AMPA receptors leading to a vicious 

cycle of more calcium influx and more excitotoxicity. Fourth, PARP-1 activation plays a role 

in microglial activation and neuroinflammation by activating transcription factors (such as 

NF-κB, p53, and AP-1) and their downstream gene expression
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