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SUMMARY
Although the antibody response to COVID-19 vaccination has been studied extensively at the polyclonal level
using immune sera, little has been reported on the antibody response at the monoclonal level. Here, we
isolate a panel of 44 anti-SARS-CoV-2 monoclonal antibodies (mAbs) from an individual who received two
doses of the ChAdOx1 nCoV-19 (AZD1222) vaccine at a 12-week interval. We show that, despite a relatively
low serum neutralization titer, Spike-reactive IgG+ B cells are still detectable 9 months post-boost. Further-
more, mAbs with potent neutralizing activity against the current SARS-CoV-2 variants of concern (Alpha,
Gamma, Beta, Delta, and Omicron) are present. The vaccine-elicited neutralizing mAbs form eight distinct
competition groups and bind epitopes overlapping with neutralizing mAbs elicited following SARS-CoV-2
infection. AZD1222-elicited mAbs are more mutated than mAbs isolated from convalescent donors
1–2 months post-infection. These findings provide molecular insights into the AZD1222 vaccine-elicited anti-
body response.
INTRODUCTION

The SARS-CoV-2-encoded Spike glycoprotein is the key target

for neutralizing antibodies (nAbs) generated in response to natu-

ral infection. The Spike trimer consists of two subunits: S1, which

is required for interaction with the ACE2 receptor on target cells,

and S2, which orchestrates membrane fusion. Manymonoclonal

antibodies (mAbs) have been isolated from SARS-CoV-2-in-

fected individuals, allowing identification of key neutralizing

epitopes on Spike (Andreano et al., 2021a; Barnes et al., 2020;

Brouwer et al., 2020; Graham et al., 2021; Piccoli et al., 2020;

Robbiani et al., 2020; Rogers et al., 2020; Seydoux et al., 2020;

Tortorici et al., 2020). Neutralizing epitopes are present on the re-

ceptor-binding domain (RBD) and the N-terminal domain (NTD)

of Spike and S2. RBD-specific nAbs tend to be potently neutral-

izing and target four epitopes (Barnes et al., 2020; Dejnirattisai

et al., 2021; Yuan et al., 2020b), including the receptor-binding

motif (RBM), which interacts directly with the ACE2 receptor.

Furthermore, several non-overlapping neutralizing epitopes on

NTD have been identified that are susceptible to sequence vari-

ation in this region (Cerutti et al., 2021; Graham et al., 2021;
This is an open access article und
McCallum et al., 2021; Suryadevara et al., 2021). SARS-CoV-2

infection also generates a large proportion of non-neutralizing

antibodies of which the biological function is not fully understood

(Anderson et al., 2021; Beaudoin-Bussieres et al., 2022; Li et al.,

2021). Combined, studying the antibody response to SARS-

CoV-2 infection has generated an antigenic map of the Spike

surface (Corti et al., 2021; Dejnirattisai et al., 2021).

Following the emergence of SARS-CoV-2 in the human popu-

lation, vaccines against COVID-19 have been rapidly developed.

Most licenced vaccines use, or encode, a SARS-CoV-2 Spike

antigen to elicit both humoral and cellular responses, and

many have shown remarkable efficacy in Phase III trials (Baden

et al., 2021; Polack et al., 2020; Voysey et al., 2021). However,

there are concerns that vaccine efficacy could be reduced

against newly emerging SARS-CoV-2 variants of concern

(VOCs), in particular against the Alpha (B.1.1.7), Beta (B.1.351),

Gamma (P.1), Delta (B.1.617.2) and Omicron (B.1.1.529) vari-

ants, which harbor mutations throughout Spike. Serum-neutral-

izing activity against viral variants has been reported in many

double-vaccinated individuals, albeit at a reduced potency (Alter

et al., 2021; Collier et al., 2021; Edara et al., 2021; Monin et al.,
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2021; Supasa et al., 2021; Wang et al., 2021d; Zhou et al., 2021).

Despite this reduction, real-world data show that current COVID-

19 vaccines are still highly effective in preventing severe disease

and hospitalizations in locations where SARS-CoV-2 VOCs are

prevalent (Emary et al., 2021; Lopez Bernal et al., 2021; Madhi

et al., 2021).

Whereas the antibody response to COVID-19 vaccination has

been studied extensively at the polyclonal level using immune

sera (Alter et al., 2021; Collier et al., 2021; Dejnirattisai et al.,

2021; Edara et al., 2021; Emary et al., 2021; Monin et al., 2021;

Supasa et al., 2021; Wall et al., 2021; Wang et al., 2021d; Zhou

et al., 2021), little has been reported on the antibody response

at the monoclonal level (Amanat et al., 2021; Andreano et al.,

2021b; Cho et al., 2021; Turner et al., 2021; Wang et al.,

2021d). To address this paucity of information, we isolated a

panel of 44 anti-SARS-CoV-2 monoclonal antibodies (mAbs)

from an individual (VA14) who had received two doses of the

ChAdOx1 nCoV-19(AZD1222) vaccine at a 12-week interval (Fig-

ure 1A). The AZD1222 vaccine is a replication-defective chim-

panzee adenovirus-vectored vaccine expressing the full-length

Wuhan SARS-CoV-2 spike glycoprotein gene (Ramasamy

et al., 2021; Voysey et al., 2021). Even though low serum neutral-

ization titers (ID50 �100) were detected in VA14 at 4 months

post-vaccine booster, nAbs were isolated that displayed potent

cross-neutralizing activity against SARS-CoV-2 VOCs (IC50

values as low as 0.003 mg/mL), including the highly mutated Om-

icron VOC. The AZD1222 vaccine elicited NTD- and RBD-spe-

cific nAbs that bind epitopes overlapping with nAbs generated

following natural infection. Assessment at 9 months post-sec-

ond-vaccine dose revealed the presence of Spike-reactive

IgG+ B cells despite undetectable neutralization. These data

suggest that, although plasma neutralization may be sub-

optimal for protection from infection, memory B cells may be suf-

ficient to provide rapid-recall responses to protect from serious

illness/hospitalizations upon re-infection.

RESULTS

Serum-neutralizing activity following AZD1222
vaccination
Plasma and peripheral blood mononuclear cells (PBMCs) were

isolated from donor VA14 (23 years, white male) at 4 months

(time point 1, TP1) and 9 months (time point 2, TP2) after

receiving two doses of the AZD1222 vaccine at a 12-week inter-

val (Figure 1A). VA14 reported no previous SARS-CoV-2 infec-

tion (based on regular PCR testing), did not have N-specific

IgG in their plasma at the time of sampling, and was therefore

presumed to be SARS-CoV-2 naive. Presence of IgG to Spike

was determined by ELISA (Figure 1B), and a semi-quantitative

ELISA measured 0.39 and 0.17 mg/mL of Spike IgG at TP1 and

TP2, respectively.

Plasma-neutralizing activity wasmeasured using anHIV-1 (hu-

man immunodeficiency virus type 1)-based virus particles, pseu-

dotyped with the Spikes of SARS-CoV-2 VOCs, including

AZD1222-matched Spike (Wuhan-1, WT), and VOCs Alpha,

Gamma, Beta, and Delta, and a HeLa cell line stably expressing

the ACE2 receptor (Graham et al., 2021; Seow et al., 2020). Over-

all, neutralization titers at 4 months post-vaccine boost (TP1)
2 Cell Reports 39, 110757, May 3, 2022
were low. ID50s of�100 weremeasured against WT and Gamma

but were reduced against Alpha, Delta, and Beta (Figure 1C).

Although weak binding to Spike was observed at TP2, neutrali-

zation was not detected at a serum dilution of 1:20 (Figure 1D).

Similar neutralization levels were observed against SARS-CoV-

2 live virus (England 02/2020/407,073) (Figure 1E).
Spike-reactive B cells detected up to 1 year following
AZD1222 vaccination
Next, we determined the percentage of RBD or Spike-reactive

IgG-expressing B cells at 4 and 9 months post-vaccine booster

using flow cytometry (Figures 1F and S1A–S1D). A total of 0.25%

of IgG+ B cells were Spike reactive, and 0.06% were RBD reac-

tive at 4 months post-vaccine booster. Despite the undetectable

neutralization by serum antibodies produced by plasma cells at

9 months post-vaccine booster, 0.27% of IgG + B cells were

Spike reactive.
AZD1222 vaccination elicits antibodies targeting
epitopes on NTD, RBD, S2, and Spike
RBD or Spike-reactive B cells at 4 months post-vaccine booster

were sorted into individual wells, and the antibody heavy- and

light-chain genes were rescued by reverse transcription followed

by nested PCR using gene-specific primers (Graham et al.,

2021). Variable regions were ligated into IgG1 heavy- and light-

chain expression vectors using Gibson assembly and directly

transfected into HEK293T/17 cells. Crude supernatants contain-

ing IgG were used to confirm specificity to Spike, and the vari-

able heavy and light chain regions of Spike-reactive mAbs

were sequenced. In total, 44 Spike-reactive mAbs were isolated

from VA14.

Binding to Spike, S1, RBD, NTD, and S2 was determined by

ELISA and used to identify the domain specificity of each mAb

(Figure 2A). Of the 40 mAbs isolated using the stabilized Spike-

sorting antigen, 45% (18/40) bound RBD, 35% (14/40) bound

NTD, 17.5% (7/40) bound S2, and 2.5% (1/40) bound Spike

only (Figure 2B). An additional four RBD-specific mAbs were

isolated using the RBD-sorting probe. A similar distribution be-

tween mAbs targeting RBD, NTD, and S2 was seen for mAbs

isolated from convalescent donors 6–8 weeks post-onset of

symptoms (POS) (Graham et al., 2021).
AZD1222 vaccination elicits neutralizing and non-
neutralizing antibodies against epitopes across the full
Spike
Neutralizing activity of mAbs was initially measured using HIV-1

virus particles pseudotyped with SARS-CoV-2 Spike encoded

by the AZD1222 vaccine. Twenty six of 44 mAbs (59.1%) dis-

played neutralizing activity of which 21/26 (80.8%) were RBD-

specific, 4/26 (15.5%) were NTD-specific and 1/26 (3.8%) only

bound Spike (Figure 2B) consistent with previous studies (Gra-

ham et al., 2021; McCallum et al., 2021). None of the S2-specific

nAbs showed neutralizing activity. 95.5% of RBD-specific mAbs

and 38.6% of NTD-specific mAbs had neutralizing activity (Fig-

ure 2B). Neutralization potency against wild-type Spike ranged

from 0.01–7.3 mg/mL. As previously reported for natural infec-

tion, RBD-specific nAbs had a lower geometric mean IC50
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Figure 1. VA14 plasma neutralization and Spike-reactive B cells

(A) Timeline of AZD1222 vaccination, and blood sampling for donor VA14.

(B–D) Plasma IgG binding to Spike at TP1 (4 months post-booster) and TP2 (9 months post-booster). Plasma-neutralizing activity against HIV-1-based virus

particles, pseudotyped with the Wuhan, B.1.1.7, P.1, B.1.351, or B.1.617.2 Spike at (C) TP1 and (D) TP2. Experiments were performed in duplicate and repeated

twice. A representative dataset is shown. Error bars represent the range of the value for experiments performed in duplicate (not shownwhen smaller than symbol

size).

(E) Plasma-neutralizing activity against neutralization of SARS-CoV-2 (England 02/2020/407,073) at TP1 and TP2. Experiments were performed in duplicate.

(F) Fluorescent-activated cell sorting (FACS) showing percentage of CD19+ IgG+ B cells binding to SARS-CoV-2 Spike at TP1 and TP2. A healthy control PBMC

sample collected prior to the COVID-19 pandemic was used to measure background binding to Spike. The full gating strategy and sorting of RBD-specific B cells

can be found in Figure S1.
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Figure 2. AZD1222 elicits neutralizing and

non-neutralizing antibodies targeting RBD,

NTD, S1, and S2 domains of Spike

(A) Heatmap showing IgG expression level and

binding to SARS-CoV-2 Spike domains, RBD,

NTD, S1, and S2. The figure reports OD values

from a single experiment (range 0–2.5) for undi-

luted supernatant from small-scale transfection of

44 cloned mAbs. Antigen binding was considered

positive when OD at 405 nm was >0.2 after

background was subtracted. SARS-CoV-2 Spike

domain specificity for each antibody is indicated.

Neutralization activity was measured against wild-

type (WT; Wuhan) pseudotyped virus using

either small-scale purified IgG or concentrated

supernatant.

(B) Frequency of neutralizing and non-neutralizing

antibodies targeting RBD, NTD, S-only, or S2.

Graph includes only mAbs isolated using Spike

as antigen bait for B cell sorting.

(C) Neutralization potency (IC50) against WT (Wu-

han) pseudotyped virus for mAbs targeting RBD,

NTD, or non-S1. The black line represents the geo-

metric mean IC50. Neutralization experiments were

performed in duplicate and carried out at least

twice. Related to Table S1.
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compared with NTD-specific nAbs (Figure 2C) (Graham et al.,

2021; Liu et al., 2020b).

AZD1222-elicited mAbs are more highly mutated than
mAbs from natural infection
The heavy and light chain variable regions of Spike-reactive

mAbs were sequenced, and the germline usage and level of so-

matic hypermutation (SHM) were determined using IMGT (Bro-

chet et al., 2008). Averages of 4.9% and 2.8% divergence from

VH and VL germlines, respectively, were observed at the nucleo-

tide level for AZD1222-elicited mAbs (Figure 3A), which is higher

than mAbs isolated in our previous study from convalescent in-

dividuals 3–8 weeks post-onset of symptoms (1.9% and 1.4%

for VH and VL, respectively) (Graham et al., 2021). Three pairs

of related clones were identified (Figure S2A).

Germline gene usage and divergence from germline of

both neutralizing and non-neutralizing AZD1222 mAbs were
4 Cell Reports 39, 110757, May 3, 2022
compared with a database of SARS-

CoV-2-specific mAbs isolated from

convalescent individuals (n = 1,292) (Ray-

bould et al., 2021) as well as paired heavy

and light chains of IgG B cell receptors

(BCRs) from blood of CD19+ B cells

from healthy individuals, representative

of circulating IgG-expressing B cell reper-

toire (n = 862) (Siu et al., 2022). Since the

SARS-CoV-2 mAb database included

amino acid sequences for only some

mAbs, divergence from germline was

determined at the amino acid level (which

correlated well with nucleotide diver-

gence [Figure S2B]). AZD1222-elicited
mAbs from donor VA14 had a statistically higher amino acid mu-

tation (VH 9.2% and VL 6.1%) compared with mAbs isolated from

SARS-CoV-2 convalescent donors (VH 4.2% and VL 3.0%) but

had a level similar to that of B cell receptors from healthy sub-

jects (VH 10.9% and VL 8.0%) (Figures 3B and 3C). Similar differ-

ences in mutation levels were observed for both neutralizing and

non-neutralizing antibodies (Figure S2C).

An enrichment in VH3-30 and VH3-53 germline gene usage

was observed for both SARS-CoV-2 infection and AZD1222-eli-

citedmAbs, similar to that seen for COVID-19mRNA vaccine-eli-

cited mAbs (Wang et al., 2021d) (Figure 3D). Three of 21 RBD-

specific nAbs used the VH3-53/3-66 germlines that are common

among nAbs that directly bind the ACE2-binding site on Spike

(Barnes et al., 2020; Graham et al., 2021; Kim et al., 2021; Rob-

biani et al., 2020; Yuan et al., 2020c). An enrichment of VH3-15,

VH3-48, VH4-34, and VH4-59 germline use was observed for

AZD1222-elicited mAbs compared with mAbs isolated from
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Figure 3. AZD1222-elicited monoclonal antibodies are more mutated than those elicited following SARS-CoV-2 infection

(A–C) Truncated violin plot showing the percentage of nucleotide mutation compared with germline for the VH and VL genes of Spike-reactive mAbs isolated

following AZD1222. Divergence from germline (based on amino acid alignments) for (B) VH and (C) VL genes for Spike-reactive mAbs from natural infection,

AZD1222 vaccination, and IgGBCRs fromSARS-CoV-2-naive individuals (Siu et al., 2022). D’Agostino and Pearson tests were performed to determine normality.

Based on the result, a Kruskal-Wallis test with Dunn’smultiple comparison post hoc test was performed. *p < 0.0332, **p < 0.0021, ***p < 0.0002, and ****<0.0001.

(D and E) Graph showing the relative abundance of (D) VH and (E) VL genes in mAbs elicited from AZD1222 vaccination compared with SARS-CoV-2 infection

mAbs (Raybould et al., 2021) and IgG BCRs from SARS-CoV-2-naive individuals (Siu et al., 2022). A two-sided binomial test was used to compare the frequency

distributions. *p < 0.0332, **p < 0.0021, ***p < 0.0002, and ****<0.0001. Related to Figure S2.
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convalescent donors; 11/44 (25.0%) and 8/44 (18.2%) mAbs

used VK3-20 and VK1-39 light chains, respectively (Figure 3E).

AZD1222-elicited nAbs bind epitopes overlapping with
nAbs generated in response to SARS-CoV-2 infection
To gain insight into the epitopes targeted by the AZD1222-eli-

cited nAbs, competition ELISAs with trimeric Spike and previ-

ously characterized nAbs isolated from SARS-CoV-2-infected
individuals were performed. The panel of competing antibodies

encompassed four RBD-, twoNTD-, and one Spike-only compe-

tition groups (Graham et al., 2021) (Figures 4A and 4B). Addition-

ally, the ability of nAbs to inhibit the interaction between Spike

and the ACE2 receptor was determined by flow cytometry

(Figure 4D).

Four RBD-neutralizing antibody classes have been previously

identified and characterized (Figure 4E) (Barnes et al., 2020;
Cell Reports 39, 110757, May 3, 2022 5
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Figure 4. AZD1222 nAbs target epitopes overlapping with nAbs elicited following natural SARS-CoV-2 infection

(A and B) Competitive binding of AZD1222 and SARS-CoV-2 infection-elicited nAbs. Inhibition of IgG binding to SARS-CoV-2 Spike by F(ab)2’ fragments was

measured. The percentage of competition was calculated using the reduction in IgG binding in the presence of F(ab’)2 (at 100 molar excess of the IC80) as a per-

centage of themaximum IgG binding in the absence of F(ab’)2. Competition wasmeasured between (A) RBD-specific and (B) NTD-specific/S-only nAbs. Compe-

tition groups were determined according to binding epitopes. Experiments were performed in duplicate. Competition <25% is in white.

(C) Neutralization potency (IC50) of mAbs targeting RBD, NTD, or non-S1 and/or in competition groups 1–8 against SARS-CoV-2 WT pseudotyped virus.

Competition groups are color coded according to the key. The black lines represent the geometric mean IC50 for each group. Neutralization experiments were

performed in duplicate and carried out at least twice.

(D) Ability of nAbs to inhibit the interaction between cell surface ACE2 and soluble SARS-CoV-2 Spike. nAbs (at 600 nM) were pre-incubated with fluorescently

labeled Spike before addition to HeLa-ACE2 cells. The percentage reduction in mean fluorescence intensity is reported. Experiments were performed in

duplicate. Bars are color coded based on the antibody competition group.

(E) Mapping of previously determined neutralizing and non-neutralizing epitopes on SARS-CoV-2 Spike (PBD: 6XM0) (Zhou et al., 2020). Cartoon representation

of Spike showing antibody-binding footprint for nAbs used in competition ELISAs as colored spheres. Epitopes were previously determined using crystal struc-

tures or cryo-electron microscopy of RBD or Spike-Fab complexes; COVA2-04 (gold, group 2 [RBD Class 1], [(PBD: 7JMO] [Wu et al., 2020]), COVA2-39 (gray,

group 3 [RBD Class 2] [PBD: 7JMP] [Wu et al., 2020]), S309 (orange, group 4 [RBD Class 3] [PBD: 6WPS] [Pinto et al., 2020]), COVA1-16 and CR3022 (dark blue

[PBD: 7JMW] [Liu et al., 2020a] and turquoise [PBD: 6W41] [Yuan et al., 2020c], respectively, group 1 [RBD Class 4]), and P008_056 (green, NTD group 6 [Rosa

et al., 2021]). Structures were generated in Pymol using the referenced PBDs.
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Yuan et al., 2020b). nAbs that neutralize by binding to the recep-

tor-binding motif (RBM) (equivalent to RBD class 1) (Barnes

et al., 2020; Dejnirattisai et al., 2021; Yuan et al., 2020a)

commonly use the VH3-53 or VH3-66 germ lines. As expected,

the three VH3-53/VH3-66 VA14 nAbs competed with the group

3 (RBD class 1) infection nAbs as well as competing strongly

for ACE2 binding (Figure 4D). Group 3 nAbs were most potent

at neutralizing thematched vaccine strain (Wuhan-1) (Figure 4C).

The majority of RBD-specific nAbs isolated from VA14 (13/20)

competed with the group 4 (RBD class 3) RBD infection nAbs

(Figure 4A) and included both potent and modest neutralizing

Abs with varying degrees of ACE2 competition (Figures 4C and

4D). Five VA14 nAbs competed with group 1 (RBD class 4)

RBD infection nAbs and showed a wide range of neutralization

potencies and levels of ACE2 competition. Only one VA14 nAb

(VA14_26) competed with group 2 (RBD class 2) RBD infection

nAbs, which also competed strongly with ACE2.

NTD mAbs formed three competition groups (Figure 4B). Non-

neutralizing mAbs VA14_25 and VA14_58 competed with NTD

group 6 nAbs including P008_056, which has been shown to

bind NTD adjacent to the b-sandwich fold (Figure 4E) (Rosa

et al., 2021). These two nAbs did not inhibit Spike binding to

ACE2 (Figure 4D). nAbs VA14_21 and VA14_22 competed with

NTD group 5 nAbs and showed 51%–58% inhibition of Spike

binding to ACE2. Two NTD nAbs (group 8) did not compete with

any of the infection NTD-specific nAbs or prevent ACE2 binding.

The S-only-binding nAb VA14_47 competed with P008_060

(group 7) (Figure 4B), the only other S-only infection nAb, and

showed 59% inhibition of Spike binding to ACE2 (Figure 4D).

P008_060 has been shown to bind a neutralizing epitope on

the SD1 domain of Spike (manuscript in preparation).

AZD1222-elicited nAbs cross-neutralize SARS-CoV-2
variants of concern
Assessing the cross-neutralizing activity of nAbs isolated from

SARS-CoV-2 convalescent donors has revealed that Spike mu-

tations in VOCs selectively hinder neutralizing activity of specific

nAb classes (Graham et al., 2021; Wang et al., 2021a, 2021b,

2021c;Wibmer et al., 2021). Therefore, wemeasured the neutral-

ization potency of AZD1222-elicited nAbs against SARS-CoV-2

variants of concern, including B.1.1.7 (Alpha), B.1.351 (Beta),

B.1.617.2 (Delta), P.1 (Gamma), and B.1.1.529 (Omicron) and

compared this with nAbs isolated following natural infection

(Graham et al., 2021). Spike proteins from these VOCs encode

mutations in RBD, NTD, and S2 (Figure 5A). Some RBD muta-

tions are shared among multiple variants; e.g., Alpha, Gamma,
Figure 5. AZD1222 generates nAbs with cross-neutralizing activity aga

(A) Schematic showing mutations present in the Spike of SARS-CoV-2 viral varian

and B.1.1.529 [Omicron]).

(B) Neutralization by RBD-specific nAbs isolated following AZD1222 vaccination o

by competition group (groups 1–4).

(C) Neutralization by NTD-specific nAbs isolated following AZD1222 vaccination o

by competition group (groups 5, 6, and 8).

(D) Neutralization by S-only-specific nAbs isolated following AZD1222 vaccination

periments were performed in duplicate and carried out at least twice.

(E and F) Fold enhancement or reduction in neutralization IC50 against VOCs Alpha

AZD1222-elicited mAbs and (F) infection mAbs (Graham et al., 2021). The dotted

Figures S3 and S4, and Table S1.
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Beta, and Omicron all share an N501Y mutation, and Gamma,

Beta, and Omicron share a mutation at K417 and E484. In

contrast, NTD mutations vary considerably among VOCs and

include amino acid mutations as well as insertions and deletions.

Omicron encodes >30mutations in Spike and has been reported

to evade neutralization by sera from individuals receiving two

doses of a COVID-19 vaccine (Cele et al., 2021; Garcia-Beltran

et al., 2022; Gruell et al., 2022; Wu et al., 2022) as well as

many SARS-CoV-2-specific monoclonal antibodies (Cameroni

et al., 2021; Cao et al., 2021; Planas et al., 2021; VanBlargan

et al., 2022). Although a reduction in neutralization potency

was observed for some AZD1222 nAbs, RBD- and NTD-specific

nAbswith potent cross-neutralization against all VOCs, including

Omicron, were identified (Figures 5B and 5C).

All group 3, several group 4 (including VA14_33, VA14_36,

VA14R_38 and VA14_61), and one group 1 (VA14R_39) RBD-

specific nAbs potently neutralized WT, Alpha, Beta, Gamma,

and Delta variants at IC50s below 0.09 mg/mL (Figure 5B), and

all but two of these nAbs also neutralized Omicron at IC50s below

0.16 mg/mL. VA14R_37 was most potent against Omicron,

neutralizing with an IC50 of 0.002 mg/mL. Several nAbs showed

enhanced neutralization of VOCs compared with WT (Figure 5E).

When nAbs elicited following infection (Graham et al., 2021) and

vaccination were compared, infection nAbs showed a greater

sensitivity to Spikemutations in VOCs (Figure 5F). Cross-neutral-

ization of nAbs in RBD groups 1, 2, and 3 was observed for

AZD1222 nAbs, whereas some infection nAbs in these competi-

tion groups showed greatly reduced neutralization of VOCs

Gamma, Beta, and Omicron, which share RBD mutations at po-

sitions K417, E484, and N501Y (Figure 5A).

RBDgroup 4mAbs varied in their neutralization of VOCs. Six of

13 nAbs showed cross-neutralizing activity. The remaining seven

showed a >3-fold reduction in neutralization against at least one

VOC, with neutralizing activity against Beta, Delta, and Omicron

being most greatly reduced. Despite some RBD nAbs showing a

decreased neutralization against VOCs, binding to variant RBD

in ELISA was retained for most nAbs except group 4 nAbs

VA14_19 and VA14_50 (Figure S3A), indicating that binding to

RBD does not always correlate with neutralization activity.

Considering the geometric mean IC50 values, VA14 NTD-spe-

cific nAbs were most potent at neutralizing the Alpha VOC. How-

ever, the three NTD-competition groups showed differential sen-

sitivities toward the other four SARS-CoV-2 variants (Figure 5C).

For example, group 5 VA14 NTD nAbs had either reduced or

lacked neutralization toward Gamma and Delta, whereas group

8 NTD nAbs VA14_16 and VA14_68 maintained neutralizing
inst SARS-CoV-2 viral variants

ts of concern (B.1.1.7 [Alpha]), P.1 [Gamma], B.1.351 [Beta], B.1.617.2 [Delta],

r SARS-CoV-2 infection against main variants of concern. nAbs are separated

r SARS-CoV-2 infection against main variants of concern. nAbs are separated

or SARS-CoV-2 infection against main variants of concern. Neutralization ex-

, Gamma, Beta, Delta, and Omicron compared with the IC50 against WT for (E)

line indicates a 3-fold reduction or enhancement in neutralization. Related to
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Figure 6. Neutralization activity of reverted germline antibodies

(A) Binding of group 1 reverted mAbs to WT S1 by ELISA. Reverted mAbs (VA14_01_rev and VA14_04 rev) are shown in open symbols and dotted lines.

(B) Comparison of neutralization activity for VA14_04 and germline reverted mAb against WT, Alpha, Beta, Delta, and Omicron. The reverted mAb is shown with

open symbols and dotted line.

(C) Binding of group 3 reverted mAbs to WT Spike by ELISA. Reverted mAbs (VA14R_33_rev and VA14R_37 rev) are shown in open symbols and dotted lines.

(D) Neutralization of VA14R_33 and reverted mAb against WT, Alpha, Beta, Delta, and Omicron. The reverted mAb is shown with open symbols and dotted line.

(E) Comparison of neutralization of VA14R_37 and germline reverted mAb against WT, Alpha, Beta, Delta, and Omicron. The reverted mAb is shown with open

symbols and dotted line. VOCs are color coded according to the key. Experiments were performed in duplicate and repeated twice. A representative dataset is

shown. Error bars represent the range of the value for experiments performed in duplicate (not shown when smaller than symbol size). Related to Figure S5.
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activity against all variants. The NTD-specific nAb VA14_16

potently neutralized Gamma, Alpha, Delta, and Beta with an

IC50 < 0.22 mg/mL and Omicron with an IC50 1.59 mg/mL, and

is the only cross-neutralizing NTD-specific nAbs reported thus

far (McCallum et al., 2021). Interestingly, two group 6 NTD-spe-

cific mAbs that had shown no neutralizing activity against WT

pseudotyped virus neutralized both Alpha and Gamma VOCs

(Figure 5C). Despite the lack of neutralizing activity, VA14_21

maintained binding to S1 of Gamma, Alpha, Beta, and Delta (Fig-

ure S3B). Since the differences in neutralization of VOCs by

group 6 NTD-specific nAbs are not reflected in their binding to

S1 by ELISA, these data indicate that NTD binding alone is not

sufficient for neutralization by this class of mAbs. We have previ-

ously shown that Spike binding of the group 6 infection mAb

P008_056 is dependent on the heme metabolite biliverdin, and

although P008_056 does not neutralize WT pseudovirus, it can

potently neutralize live virus (Rosa et al., 2021). Similarly to

P008_056, VA14_21 and VA14_61 potently neutralized SARS-

CoV-2 live virus (Figure S4A) and binding to Spike was inhibited

by biliverdin (Figure S4B), strongly suggesting that these mAbs
bind the NTD-neutralizing epitope adjacent to the b-sandwich

fold (Rosa et al., 2021).

The S-only-reactive nAb elicited by vaccination (VA14_47)

weakly neutralized all SARS-CoV-2 variants except Gamma (Fig-

ure 5D), whereas infection mAb P008_060 had modest neutrali-

zation against all variants.

Overall, AZD1222 vaccine-elicited nAbs showed greater resis-

tance to Spike mutations in VOCs compared with infection-eli-

cited nAbs (Figure 5E).

Role of somatic hypermutation in neutralization breadth
To probe the role of increasing somatic hypermutation in neutral-

ization breadth, we selected four RBD-specific nAbs and ex-

pressed the reverted germline versions. Group 1 nAbs VA14_01

and VA014_04 both use VH3-13 (5.6% and 0.2% divergent from

germline, respectively) and VK1-39 (1.4% and 6.4% divergent

from germline, respectively) (Figures S5A and S5B). The reverted

germline of VA014_01 did not bind to WT Spike in ELISA (Fig-

ure 6A). In contrast, VA014_04 reverted germline bound very

weakly to WT Spike but did not neutralize WT or any VOCs, thus
Cell Reports 39, 110757, May 3, 2022 9
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demonstrating the importanceofSHMfor antigen recognition and

neutralization for these group 1 mAbs (Figure 6B).

Germline-reverted versions of two group 3 mAbs, VA14R_33

and VA14R_37, were also generated (Figures S5C and S5D).

VA14R_33 is encoded by VH3-66 (8.4% mutated) and VK1-33

(3.9% mutated), and VA14R_37 is encoded by VH3-53 (2.4%

mutated) and VK3-20 (6.0% mutated). VH3-53/VH3-66 are

commonly used by RBM-targeted nAbs, and these germlines

have been reported to have amino acid motifs that are pre-

configured to recognize RBM (Clark et al., 2021; Yuan et al.,

2020a), in particular Asn32-Tyr33 and Ser53-Gly54-Gly55-

Ser56. The reverted germlines of both VA14R_33 and VA14_37

retained binding to WT Spike (Figure 6C). Reversion of

VA14R_33 to germline reduced the neutralization potency

against Alpha, Beta and Omicron (Figure 6D), but neutralization

of WT and Delta was largely unaffected. The reverted germline

of VA14R_37 was unable to neutralize Omicron (Figure 6E) and

had reduced potency against Beta. Interestingly, neutralization

potency of germline-reverted VA14R_37 was increased against

WT and Delta. Overall, these results highlight the importance of

SHM for neutralization breadth and potency against VOCs.

DISCUSSION

Efficacy of COVID-19 vaccines in the face of SARS-CoV-2

emerging viral variants will be critical for control of the current

pandemic. Here, we studied the antibody response to two doses

of the AZD1222 vaccine administered with a 12-week interval at

themonoclonal antibody level. Themajority of studies examining

immune sera from AZD1222-vaccinated individuals have re-

vealed a lower potency against Alpha (range 2.2- to 9.0-fold)

(Dejnirattisai et al., 2021; Emary et al., 2021; Wall et al., 2021),

Gamma (2.9-fold) (Dejnirattisai et al., 2021), Beta (range 4.0- to

9.0-fold) (Dejnirattisai et al., 2021; Madhi et al., 2021; Zhou

et al., 2021) and Delta (range 4.3- to 9.0-fold) (Liu et al., 2021;

Wall et al., 2021) compared with neutralization of Wuhan or

D614G variants, and very limited neutralization against Omicron

(Wu et al., 2022). Although VA14 had a low plasma-neutralizing

activity (ID50 �1:100) at 4 months post-vaccine booster, 59.1%

of Spike-reactive mAbs isolated from antigen-reactive B cells

had neutralizing activity against the matched vaccine strain,

andmany of thesemAbs displayed potent cross-neutralizing ac-

tivity against current SARS-CoV-2 VOCs. Similar to previous

studies, RBD and NTD were the predominant targets for neutral-

izing antibodies (80.8% and 15.5% of nAbs, respectively) (Gra-

ham et al., 2021; McCallum et al., 2021). Importantly, we identi-

fied RBD-specific nAbs from competition groups 1, 3, and 4, as

well as NTD-specific nAbs, that cross-neutralized all five VOCs,

including the highly divergent Omicron. Therefore, the polyclonal

nature of the nAb response elicited by AZD1222 vaccination will

likely help limit full vaccine escape in the face of emerging Spike

mutations.

Competition ELISAs revealed that nAbs elicited by AZD1222

vaccination target overlapping epitopes of nAbs elicited from

natural SARS-CoV-2 infection. However, despite similar anti-

body footprints, vaccine-elicited nAbs from RBD competition

groups 1 to 4 showed greater neutralization breadth than those

elicited from natural infection. This was also apparent for some
10 Cell Reports 39, 110757, May 3, 2022
NTD-specific nAbs. This increased neutralization breadth is

likely due to the increased divergence from germline in

AZD1222-elicited nAbs (isolated 4 months post-booster)

compared with nAbs isolated following natural infection (isolated

2–8 weeks post-onset of symptoms) leading to better tolerance

of Spike mutations in VOCs. Somatic hypermutation was shown

to be critical for antigen recognition by group 1 RBD mAbs

VA14_01 and VA14_04, whose reverted germlines had low or un-

detectable Spike binding by ELISA and lacked neutralization ac-

tivity. In contrast, the reverted germline of VA14R_37 and

VA14R_33 retained Spike reactivity but had a reduced neutrali-

zation breadth against Omicron and Beta VOCs. Previous struc-

tural analysis of RBM nAbs CC12.1 and CC12.3 (also encoded

by VH3-53) revealed that germline encoded amino acid motifs

Asn32-Tyr33 and Ser53-Gly54-Gly55-Ser56 are critical for anti-

gen recognition (Yuan et al., 2020a). A germline-reverted version

RBMmAb CV30, also encoded by VH3-53, retained Spike-bind-

ing activity but had reduced neutralization potency (Hurlburt

et al., 2020). The observation that mutation of the VA14R_37

germline VH and VK genes leads to potent neutralization of

Beta and Omicron variants demonstrates the importance of so-

matic hypermutation for enhancing neutralization breadth.

Indeed, several other studies have shown that increased somatic

hypermutation enhances neutralization breadth against VOCs

(Chen et al., 2021; de Mattos Barbosa et al., 2021; Gaebler

et al., 2021; Goel et al., 2021; Muecksch et al., 2021). Analysis

of the antibody-antigen interaction at the molecular level will

give further insight into the specific mechanisms of increased

neutralization breadth for AZD1222-elicited nAbs.

Although Spike-reactive mAbs generated following AZD1222

have not previously been reported, several studies report

mAbs isolated following mRNA COVID-19 vaccination (Amanat

et al., 2021; Andreano et al., 2021b; Cho et al., 2021; Turner

et al., 2021; Wang et al., 2021d). Comparison between epitopes

targeted bymRNA- and AZD1222-elicited nAbs showed a higher

proportion of RBM-targeted nAbs following mRNA vaccination

(Gaebler et al., 2021; Hurlburt et al., 2020). A similar enrichment

in VH3-53 and VH3-30 germline usage was also observed (An-

dreano et al., 2021b; Wang et al., 2021d). Despite differences

in the timing of mAb isolation across reported studies, the

AZD1222 mAbs identified had a higher level of SHM compared

with mRNA-elicited mAbs and showed greater cross-neutral-

izing activity (Scheid et al., 2009; Seydoux et al., 2020). Possible

reasons for these differences include (1) timing of mAb isolation

following vaccine booster, (2) timing of vaccine boosters

(3 weeks for mRNA studies versus 12 weeks in this study), (3) a

prolonged antigen persistence for ChAdOx1 vectored Spike

(which may also be relevant to the Ad26 vectored Ad26.COV2.S

vaccine [Sadoff et al., 2021]), or (4) differences in Spike antigen

encoded by each vaccine (in particular, mRNA-1273 [Moderna]

and BNT162b2 [Pfizer] vaccines encode Spike with stabilizing

mutations and a mutation that prevents S1/S2 cleavage [Jack-

son et al., 2020;Walsh et al., 2020]). Understanding these factors

will be important for optimizing vaccine strategies aimed at elic-

iting the broadest nAb response against both known and newly

emerging VOCs.

Plasma was not available to determine the peak neutralizing

response in VA14 and therefore the relative decline in
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neutralization following AZD1222 vaccination. The neutralizing

antibody titer was low 4 months post-vaccine boost, and it is

not known whether this level would be sufficient to provide ster-

ilizing or near-sterilizing immunity. However, the identification of

B cells producing antibodies with potent cross-neutralizing ac-

tivity against non-overlapping epitopes and the presence of

Spike+ IgG+ B cells at �1 year post-vaccine prime suggests

that a rapid recall response will likely occur, which could be suf-

ficient to protect against severe disease and/or hospitalization in

the face of VOCs.

In summary, we show that AZD1222 vaccine administered at a

12-week interval can elicit nAbs with potent cross-neutralizing

activity against current SARS-CoV-2 VOCs, including Omicron,

that target non-overlapping epitopes on RBD and NTD. Despite

undetectable plasma-neutralizing activity, Spike-reactive IgG+B

cells are detected up to 1 year following initial vaccine priming.

These data provide important insights into long-term immunity

and protection against SARS-CoV-2 emerging viral variants.

Limitations of the study
Themain limitation of this study is that it examinesmAbs isolated

from only one AZD1222-vaccinated individual. How representa-

tive these mAbs are of the humoral immune response arising

from AZD1222 needs to be investigated further by isolating

mAbs from other AZD1222 vaccine recipients. We have not

determined how neutralization breadth against VOCs is achieved

by the reported mAbs. Further studies examining the epitopes

recognized by neutralizing antibodies with broad and potent ac-

tivity, particularly against Omicron, will be important for opti-

mizing immunogens that elicit mAbs with broad activity. Finally,

we have not studied the protective activity of these mAbs in vivo

or the amount required to achieve sterilizing immunity.
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SARS-CoV-2 Strain England 2 (England 02/

2020/407073)

Public Health England (PHE) N/A
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This manuscript N/A

Chemicals, peptides, and recombinant proteins

Polyethylenimine, Linear, MW 25000 (PEI

Max)

Polysciences, Inc Cat#: 23966

Polyethylenimine Hydrochloride, Linear,

MW 4,000

Polysciences, Inc Cat#: 24885

Recombinant S1 (WT, B.1.1.7, B.1.351,

B.1.617.2)

Peter Cherepanov (Crick) (Rosa et al., 2021)

and this manuscript

N/A

Recombinant NTD Peter Cherepanov (Crick) (Rosa et al., 2021) N/A

Recombinant SARS-CoV-2 RBD ((WT,

B.1.1.7, B.1.351, B.1.617.2)

(Seow et al., 2020) and this manuscript N/A

Recombinant Stabilized SARS-CoV-2

Spike

Marit van Gils (Amsterdam)

(Brouwer et al., 2020)

N/A
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Recombinant SARS-CoV-2 Spike

(biotinylated)

This manuscript N/A

IdeS Max Crispin (University of Southampton)

(Dixon, 2014)

N/A

Recombinant S2 protein SinoBiological Cat#: 40590-V08B

Protein G agarose GE Healthcare Cat#: Cytiva 17-0618-02

HiTrap IMAC columns GE Healthcare Cat#: Cytiva 17-0921-04

HILOAD 16/600 SUPERDEX 200 PG GE Healthcare Cat#: 28989335

Strep-TactinXT Superflow 50%Suspension IBA Cat#: 2-4010-002

BioLock blocking solution IBA Cat#: 2-0205-050

Ni Sepharose� 6 Fast Flow Cytiva Cat#: GE17-5318-06

Bright-Glo Luciferase Assay System Promega Cat#: E2610

Critical commercial assays

Q5� Site-Directed Mutagenesis Kit New England Biolabs Cat#: E0554
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SuperScript III RT Thermofisher Scientific Cat#: 18080085

LIVE/DEAD Fixable Aqua Dead Cell Stain

Kit

Thermofisher Scientific Cat#: L34957

1-StepTM Ultra TMB-ELISA Substrate

Solution

Thermofisher Scientific Cat#: 34028

Phosphatase substrate Sigma Aldrich Cat#: S0942-200TAB

Deposited data

mAb sequence data This manuscript Accession numbers Genbank:

ON088359–ON088446

Experimental models: Cell lines

FreeStyleTM 293F Cells Thermofisher Scientific Cat#: R79007
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HeLa-ACE2 James Voss (Scripps),

(Rogers et al., 2020)
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Oligonucleotides
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N/A

Spike mutagenesis primers This manuscript N/A

Recombinant DNA

Biotinylated Spike (pHLSec) This manuscript N/A

Pre-fusion, stabilized and uncleaved

SARS-CoV-2 Spike (pcDNA3.1+)

Marit van Gils (Amsterdam)

(Brouwer et al., 2020)
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(Rees-Spear et al., 2021)

N/A

Full length P.1 variant Spike (pcDNA3.1+) (Dupont et al., 2021) N/A
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(Dupont et al., 2021) N/A
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Wendy Barclay and

(Dupont et al., 2021)
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Full length B.1.1.529 variant Spike

(pcDNA3.1+)

Wendy Barclay N/A

BirA Addgene (Howarth et al., 2008) Cat#: 20856

pHIV-Luc (constructed by replacing GFP in

pHR’SIN-SEW (PMID: 11975847) with

HA-luciferase)

Luis Apolonia (KCL) N/A

HIV 8.91 gag/pol packaging construct p8.91 (Zufferey et al., 1997) N/A

Heavy/Kappa/Lambda human IgG1

expression vectors

M. Nussenzweig (Rockefeller University)

von Boehmer et al., 2016)

N/A

Software and algorithms

FlowJo Tree Star https://www.flowjo.com

Prism Graphpad https://www.graphpad.com/

scientific-software/prism/

Tableau TABLEAU SOFTWARE, LLC https://www.tableau.com/

IMGT/V-QUEST IMGT (Lefranc et al., 1999) http://www.imgt.org/IMGT_vquest/vquest

R statistical programming environment R Foundation for Statistical Computing https://www.r-project.org

R studio RStudio https://www.rstudio.com/

ggplot2 (Wickham, 2016) https://ggplot2.tidyverse.org

PyMol The PyMOL Molecular Graphics System,

Version 2.0 Schrödinger, LLC

https://www.pymol.org/

Other

FACS Melody BD Biosciences N/A

VictorTM X3 multilabel reader Perkin Elmer N/A
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Katie J

Doores (katie.doores@kcl.ac.uk).

Materials availability
Reagents generated in this study are available from the lead contact with a completed Materials Transfer Agreement.

Data and code availability
The antibody sequences generated during this study are available at GenBank (accession numbers Genbank: ON088359–

ON088446).

This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics
This study used human samples from one donor collected as part of a study entitled ‘‘Antibody responses following COVID-19 vacci-

nation’’. Ethical approval was obtained from the King’s College London Infectious Diseases Biobank (IBD) (KDJF-110121) under the

terms of the IDB’s ethics permission (REC reference: 19/SC/0232) granted by the South Central – Hampshire B Research Ethics

Committee in 2019. VA14 is male and 23 aged years.

Bacterial strains and cell culture
SARS-CoV-2 pseudotypes were produced by transfection of HEK293T/17 cells and neutralization activity assayed using HeLa cells

stably expressing ACE2 (kind gift James E Voss). Small and large scale expression of monoclonal antibodies was performed in

HEK293T/17 (ATCC; ATCC�CRL-11268TM) and 293 Freestyle cells (Thermofisher Scientific), respectively. Bacterial transformations

were performed with NEB� Stable Competent E. coli.
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Protein expression and purification
Recombinant Spike and RBD for ELISA were expressed and purified as previously described (Pickering et al., 2020; Seow et al.,

2020). Recombinant S1 (residues 1-530) and NTD (residues 1-310) expression and purification was described in Rosa et al. (Rosa

et al., 2021). S2 protein was obtained from SinoBiological (Cat number: 40590-V08B).

For antigen-specific B cell sorting, Spike glycoprotein consisted of the pre-fusion S ectodomain (residues 1–1138) with a GGGG

substitution at the furin cleavage site (amino acids 682–685), proline substitutions at amino acid positions 986 and 987, and an N-ter-

minal T4 trimerization domain. RBD consisted of amino acids 331-533. Spike and RBD were cloned into a pHLsec vector containing

Avi and 6xHis tags (Aricescu et al., 2006). Biotinylated Spike or RBDwere expressed in 1L of HEK293F cells (Invitrogen) at a density of

1.5 3 106 cells/mL. To achieve in vivo biotinylation, 480mg of each plasmid was co-transfected with 120mg of BirA (Howarth et al.,

2008) and 12mg PEI-Max (1 mg/mL solution, Polysciences) in the presence of 200 mM biotin (final concentration). The supernatant

was harvested after 7 days and purified using immobilized metal affinity chromatography and size-exclusion chromatography. Com-

plete biotinylation was confirmed via depletion of protein using avidin beads.

ELISA (S, RBD, NTD, S2 or S1)
96-well plates (Corning, 3690) were coated with S, S1, NTD, S2 or RBD at 3 mg/mL overnight at 4�C. The plates were washed (5 times

with PBS/0.05% Tween-20, PBS-T), blocked with blocking buffer (5% skimmed milk in PBS-T) for 1 h at room temperature. Serial

dilutions of plasma, mAb or supernatant in blocking buffer were added and incubated for 2 hr at room temperature. Plates were

washed (5 times with PBS-T) and secondary antibody was added and incubated for 1 hr at room temperature. IgM was detected

using Goat-anti-human-IgM-HRP (horseradish peroxidase) (1:1,000) (Sigma: A6907) and IgG was detected using Goat-anti-

human-Fc-AP (alkaline phosphatase) (1:1,000) (Jackson: 109-055-098). Plates were washed (5 times with PBS-T) and developed

with either AP substrate (Sigma) and read at 405 nm (AP) or 1-step TMB (3,30,5,50-Tetramethylbenzidine) substrate (ThermoScientific)

and quenched with 0.5 M H2S04 before reading at 450 nm (HRP).

Biliverdin competition ELISA
ELISA plates were coated with 3 mg/ml (25 ml per well) SARS-CoV2 WT S1 antigen in PBS overnight at 4�C. Wells were blocked with

100 ml 2% casein in PBS for 1 h at room temperature. The wells were emptied and 25 ml of 2%casein in PBSwas added per well. This

solution was supplemented with biliverdin at 10 mMwhere indicated. Serial dilutions of IgGs were prepared in separate 96-well plate

in 2% casein, and then 25 ml of each serial dilution added to the ELISA assay plates and incubated for 2 h at room temperature. Wells

were washed with PBS-T. IgG binding was detected using goat-anti-human-Fc conjugated to alkaline phosphatase (1:1,000; Jack-

son, product code 109-055-098). Wells were washed with PBS-T and alkaline phosphatase substrate (Sigma-Aldrich) was added

and read at 405 nm.

Fab/Fc ELISA
96-well plates (Corning, 3690) were coated with goat anti-human Fc IgG antibody at 3 mg/mL overnight at 4�C. The above protocol

was followed. The presence of IgG in supernatants was detected using Goat-anti-human-Fc-AP (alkaline phosphatase) (1:1,000)

(Jackson: 109-055-098).

IgG digestion to generate F(ab’)2
IgG were incubated with IdeS (Dixon, 2014) (4 mg of IdeS per 1 mg of IgG) in PBS for 1 hour at 37�C. The Fc and IdeS A were removed

using a mix of Protein A Sepharose� Fast Flow (250 mL per 1 mg digested mAb; GE Healthcare Life Sciences) and Ni SepharoseTM 6

Fast Flow (50 mL per 1 mg digested mAb; GE Healthcare Life Sciences) which were washed twice with PBS before adding to the re-

action mixture. After exactly 10 minutes the beads were removed from the F(ab’)2-dilution by filtration in Spin-X tube filters (Costar�)

and the filtrate was concentrated in Amicon� Ultra Filters (10k, Millipore). Purified F(ab’)2 fragments were analysed by SDS-PAGE.

F(ab’)2 and IgG competition ELISA
96-well half area high bind microplates (Corning�) were coated with S-protein at 3 mg/mL in PBS overnight at 4�C. Plates were

washed (5 times with PBS/0.05% Tween-20, PBS-T) and blocked with 5%milk in PBS/T for 2 hr at room temperature. Serial dilutions

(5-fold) of F(ab’)2, starting at 100-molar excess of the IC80 of S binding, were added to the plates and incubated for 1 hr at room tem-

perature. Plates were washed (5 times with PBS-T) before competing IgGwas added at their IC80 of S binding and incubated at room

temperature for 1 hr. Plates were washed (5 times with PBS-T) and Goat-anti-human-Fc-AP (alkaline phosphatase) (1:1,000) (Jack-

son: 109-055-098) was added and incubated for 45 minutes at room temperature. The plates were washed (5 times with PBS-T) and

AP substrate (Sigma) was added. Optical density was measured at 405 nm in 5-minute intervals. The percentage competition was

calculated as the reduction in IgG binding in the presence of F(ab’)2 (at 100-molar excess of the IC80) as a percentage of themaximum

IgG binding in the absence of F(ab’)2. Competition groups were determined using Ward2 clustering (R, Complex Heatmap package

(Gu et al., 2016)) for initial analysis and Groups were then arranged by hand according to binding epitopes.
e4 Cell Reports 39, 110757, May 3, 2022
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Semi-quantitative ELISA
In 96-well plates (Corning, 3690), 10 columns were coated with SARS-CoV-2 Spike at 3 mg/mL in PBS, with the remaining 2 columns

coated with Goat anti-Human IgG F(ab’)2 at 1:1000 dilution, and incubated overnight at 4�C. The plates were washed (5 times with

PBS/0.05% Tween-20, PBS-T) and blocked with blocking buffer (5% skimmed milk in PBS-T) for 1 h at room temperature. Serial

dilutions of serum and a known concentrations of IgG standard (in blocking buffer) were added to the Spike coated and standard

curve columns, respectively. After 2 h incubation at room temperature, plates were washed 5 timeswith PBS-T. Secondary antibody,

goat-anti-human-Fc-AP, was added at 1:1000 dilution in blocking buffer and incubated for 1 h at room temperature. Plates were

washed 5 timeswith PBS-T and developedwith AP substrate (Sigma). Absorbance wasmeasured at 405 nm. Antigen-specific serum

IgG was quantified by averaging values interpolated from a standard curve of IgG standard using four-parameter logistic regression

curve fitting (Rees-Spear et al., 2021).

SARS-CoV-2 pseudotyped virus preparation
Pseudotyped HIV-1 virus incorporating either the SARS-Cov-2 Wuhan, B.1.1.7, P.1, B.1.351, B.1.617.2, B.1.1.529 full-length Spike

were produced in a 10 cm dish seeded the day prior with 5x106 HEK293T/17 cells in 10 mL of complete Dulbecco’s Modified Eagle’s

Medium (DMEM-C, 10% fetal bovine serum (FBS) and 1%Pen/Strep (100 IU/mL penicillin and 100mg/mL streptomycin)). Cells were

transfected using 90mg of PEI-Max (1mg/mL, Polysciences) with: 15 mg of HIV-luciferase plasmid, 10 mg of HIV 8.91 gag/pol plasmid

(Zufferey et al., 1997) and 5 mg of SARS-CoV-2 spike protein plasmid (Grehan et al., 2015; Thompson et al., 2020). Pseudotyped virus

was harvested after 72 hours, filtered through a 0.45mm filter and stored at -80�C until required.

Neutralization assay with SARS-CoV-2 pseudotyped virus
Neutralization assays were conducted as previously described (Carter et al., 2020; Monin et al., 2021; Seow et al., 2020). Serial di-

lutions of serum samples (heat inactivated at 56�C for 30mins) ormAbswere preparedwith DMEM-Cmedia and incubatedwith pseu-

dotyped virus for 1-hour at 37�C in 96-well plates. Next, HeLa cells stably expressing the ACE2 receptor (provided by Dr James Voss,

Scripps Research, La Jolla, CA) were added (12,500 cells/50mL per well) and the plates were left for 72 hours. The amount of infection

was assessed in lysed cells with the Bright-Glo luciferase kit (Promega), using a VictorTM X3 multilabel reader (Perkin Elmer). Mea-

surements were performed in duplicate and duplicates used to calculate the ID50.

Infectious virus strain and propagation
Vero-E6 TMPRSS2 cells (Winstone et al., 2021) (Cercopithecus aethiops derived epithelial kidney cells) cells were grown in Dulbec-

co’s modified Eagle’s medium (DMEM, Gibco) supplemented with GlutaMAX, 10% fetal bovine serum (FBS), 20 mg/mL gentamicin,

and incubated at 37�Cwith 5% CO2. SARS-CoV-2 Strain England 2 (England 02/2020/407073) was obtained from Public Health En-

gland. The virus was propagated by infecting 60-70% confluent Vero-E6 TMPRSS2 cells in T75 flasks, at an MOI of 0.005 in 3 mL of

DMEM supplemented with GlutaMAX and 10% FBS. Cells were incubated for 1 hr at 37�C before adding 15mL of the samemedium.

Supernatant was harvested 72h post-infection following visible cytopathic effect (CPE), and filtered through a 0.22 mm filter to elim-

inate debris, aliquoted and stored at -80C. The infectious virus titre was determined by plaque assay using Vero-E6 TMPRSS2 cells.

Infectious virus neutralization assay
Vero-E6 TMPRSS2 cells (Winstone et al., 2021) were seeded at a concentration of 20,000 cells/100uL per well in 96-well plates in

DMEM media (10% FBS and 1% Pen/Strep) and allowed to adhere overnight. Serial dilutions of mAbs were prepared with DMEM

media (2% FBS and 1% Pen/Strep) and incubated with replication competent live SARS-CoV-2 for 1 hour at 37�C. The media

was removed from the pre-plated Vero-E6 TMPRSS2 cells and the serum-virus mixtures were added to the cells and incubated

at 37�C for 24 h. The virus/serum mixture was aspirated, and each well was fixed with 150mL of 4% formalin at 4�C overnight and

then topped up to 300mL using PBS. The cells were washed once with PBS and permeabilized with 0.1% Triton-X in PBS at room

temperature for 15 min. The cells were washed twice with PBS and blocked using 3% milk in PBS at room temperature for

15 min. The blocking solution was removed and an N-specific mAb (murinized-CR3009 (van den Brink et al., 2005)) was added at

2 mg/mL (diluted using 1% milk in PBS) at room temperature for 45 min. The cells were washed twice with PBS and goat-anti-

mouse-IgG-conjugated to HRP was added (1:2000 in 1% milk in PBS, A2554-1mL, Sigma-Aldrich) at room temperature for 1

hour. The cells were washed twice with PBS, developed using TMB substrate for 30 min and quenched using 2M H2SO4 prior to

reading at 450 nm. Measurements were performed in duplicate and the duplicates used to calculate the ID50.

Antigen-specific B cell sorting
Fluorescence-activated cell sorting of cryopreserved PBMCs was performed on a BD FACS Melody as previously described (Gra-

ham et al., 2021). Sorting baits (SARS-CoV-2 Spike and RBD) was pre-complexed with the streptavidin fluorophore at a 1:4 molar

ratio prior to addition to cells. PBMCswere stainedwith live/dead (fixable AquaDead, Thermofisher), anti-CD3-APC/Cy7 (Biolegend),

anti-CD8-APC-Cy7 (Biolegend), anti-CD14-BV510 (Biolegend), anti-CD19-PerCP-Cy5.5 (Biolegend), anti-IgM-PE (Biolegend), anti-

IgD-Pacific Blue (Biolegend) and anti-IgG-PeCy7 (BD) and Spike-Alexa488 (Thermofisher Scientific, S32354) and Spike-APC (Ther-

mofisher Scientific, S32362) or RBD-Alexa488 and RBD-APC. Live CD3/CD8-CD14-CD19+IgM-IgD-IgG+Spike+Spike+ or CD3/

CD8-CD14-CD19+IgM-IgD-IgG+RBD+RBD+ cells were sorted using a BD FACS Melody into individual wells containing RNase
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OUT (Invitrogen), First Strand SuperScript III buffer, DTT and H2O (Invitrogen) and RNA was converted into cDNA (SuperScript III

Reverse Transcriptase, Invitrogen) using random hexamers (Bioline Reagents Ltd) following the manufacturer’s protocol.

Full-length antibody cloning and expression
The human Ab variable regions of heavy and kappa/lambda chains were PCR amplified using previously described primers and PCR

conditions (Scheid et al., 2009; Tiller et al., 2008; von Boehmer et al., 2016). PCR products were purified and cloned into human-IgG

(Heavy, Kappa or Lambda) expression plasmids(von Boehmer et al., 2016) using the Gibson Assembly Master Mix (NEB) following

the manufacturer’s protocol. Gibson assembly products were directly transfected into HEK-293T cells and transformed under ampi-

cillin selection. Ab supernatants were harvested 3 days after transfection and IgG expression and Spike-reactivity determined using

ELISA. Ab variable regions of heavy-light chain pairs that generated Spike reactive IgG were sequenced by Sanger sequencing.

IgG expression and purification
Ab heavy and light plasmids were co-transfected at a 1:1 ratio into HEK-293F cells (Thermofisher) using PEI Max (1 mg/mL, Poly-

sciences, Inc.) at a 3:1 ratio (PEI Max:DNA). Ab supernatants were harvested five days following transfection, filtered and purified

using protein G affinity chromatography following the manufacturer’s protocol (GE Healthcare).

ACE2 competition measured by flow cytometry
To prepare the fluorescent probe, Streptavidin-APC (Thermofisher Scientific, S32362) was added to biotinylated SARS-CoV-2 Spike

(3.5 times molar excess of Spike) on ice. Additions were staggered over 5 steps with 30 min incubation times between each addition.

Purified mAbs were mixed with PE conjugated SARS-CoV-2 S in a molar ratio of 4:1 in FACS buffer (2% FBS in PBS) on ice for 1 h.

HeLa-ACE2 and HeLa cells were washed once with PBS and detached using PBS containing 5mM EDTA. Detached cells were

washed and resuspended in FACS buffer. 0.5 million HeLa-ACE2 cells were added to each mAb-Spike complex and incubated

on ice for 30 m. The cells were washed with PBS and resuspended in 1 mL FACS buffer with 1 mL of LIVE/DEAD Fixable Aqua

DeadCell Stain Kit (Invitrogen). HeLa-ACE2 cells alone andwith SARS-CoV-2 Spike only were used as background and positive con-

trols, respectively. The geometric mean fluorescence for PE was measured from the gate of singlet and live cells. The ACE2 binding

inhibition percentage was calculated as described previously (Graham et al., 2021; Rogers et al., 2020).

Monoclonal antibody sequence analysis
The heavy and light chain sequences of SARS-CoV-2 specific mAbs were examined using IMGT/V-QUEST (http://www.imgt.org/

IMGT_vquest/vquest) to identify the germline usages, percentage of SHM and CDR region lengths. To remove variation introduced

through cloning using mixture of forward primers, 5 amino acids or 15 nucleotides were trimmed from the start and end of the trans-

lated variable genes. D’Agostino & Pearson normality test, Kruskal-Wallis test with Dunn’s multiple comparisons post hoc test,

Ordinary one-way ANOVA with Tukey’s multiple comparisons post hoc test and two-sided binomial tests) were performed using

GraphPad Prism software. Significance defined as p < 0.0332 (*), 0.0021 (**), 0.0002 (***) and >0.0001 (****).

QUANTIFICATION AND STATISTICAL ANALYSIS

All neutralization and ELISA experiments were performed in duplicate. The 50% inhibitory concentrations/dilutions (IC/ID50) were

calculated using GraphPad Prism software. Statistical analysis in Figures 3 and S2 (D’Agostino & Pearson tests was performed to

determine normality and Kruskal-Wallis with Dunn’s multiple comparison test post hoc test or an ordinary one-way ANOVA with Tur-

key’s multiple comparison post hoc) were performed using GraphPad Prism software, significance defined as p<0.05. Linear corre-

lations (Figure S2, Spearman correlation) were also calculated using GraphPad Prism. The fold decrease in mAb IC50 was calculated

by dividing the average IC50 value for a given mAb against the indicated VOC by the IC50 value for that mAb against theWT (Figure 6).
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