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Abstract
Large, observational genetic studies are commonly used to identify genetic fac-
tors associated with diseases and disease-related traits. Such cohorts have not 
been commonly used to identify genetic predictors of drug dosing or concentra-
tions, perhaps because of the heterogeneity in drug dosing and formulation, and 
the random timing of blood sampling. We hypothesized that large sample sizes 
relative to traditional pharmacokinetic studies would compensate for this vari-
ability and enable the identification of pharmacogenetic predictors of drug con-
centrations. We performed a cross-sectional, proof-of-concept association study 
to replicate the well-established association between metoprolol concentrations 
and CYP2D6 genotype-inferred metabolizer phenotypes in participants from the 
Montreal Heart Institute Hospital Cohort undergoing metoprolol therapy. Plasma 
concentrations of metoprolol and α-hydroxymetoprolol (α-OH-metoprolol) were 
measured in samples collected randomly regarding the previous metoprolol dose. 
A total of 999 individuals were included. The metoprolol daily dose ranged from 
6.25 to 400  mg (mean 84.3  ±  57.1  mg). CYP2D6-inferred phenotype was sig-
nificantly associated with both metoprolol and α-OH-metoprolol in unadjusted 
and adjusted models (all p < 10−14). Models for metoprolol daily dose showed 
consistent results. Our study suggests that randomly drawn blood samples from 
biobanks can serve as a new approach to discover genetic associations related 
to drug concentrations and dosing, with potentially broader implications for 
genomewide association studies on the pharmacogenomics of drug metabolism.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Observational cohorts have been leveraged numerous times to identify genetic de-
terminants of disease-related traits. Whether biobanks can be utilized to identify 
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INTRODUCTION

The discovery of pharmacogenomic (PGx) determinants 
influencing drug concentrations, dosing, and overall 
pharmacokinetics (PKs) is critical to the emergence of 
precision medicine.1 Typical PGx-PK studies generally 
involve small to medium sample sizes (n  <  100) using 
“classic” PK study designs.2 Although classic PK stud-
ies are indispensable to determine the PK parameters of 
a drug, such as its half-life and clearance, they present 
several limitations to discover new PGx markers. First, 
these studies are generally limited to one drug and require 
multiple blood samples taken at specific intervals, which 
are not routinely performed outside this context.3 Thus, 
costly investigations necessitating the recruitment of new 
patients are generally required for each study. Second, be-
cause they usually include only a few patients, they are 
underpowered to identify common genetic determinants 
that have a modest effect on a drug’s concentrations, or 
rare genetic factors that could have a major impact on dos-
ing requirements.

Large, observational genetic studies have been used 
successfully to identify genetic factors associated with dis-
eases and traits.4–6 Most commonly, data are collected on 
multiple conditions or phenotypes and are being leveraged 

to conduct genetic association studies on multiple phe-
notypes. Because blood samples are frequently drawn at 
baseline in these studies, we hypothesized that such stud-
ies could also be used to identify new genetic predictors 
of drug concentrations. Although it could be argued that 
the random timing of blood sampling since the last dose 
taken, as well as the variability in drug dosing, formula-
tion, and manufacturer could instill too much heteroge-
neity for such an approach, we hypothesized that using 
a large sample size would compensate for this variability.

The cytochrome P450 (CYP) 2D6 is involved in the he-
patic metabolism of drugs.7 Over 140 genetic variants of 
CYP2D6 have been reported and their impacts range from 
null to increased metabolic activity.8 A harmonized classi-
fication of CYP2D6 genotype-inferred metabolizing phe-
notypes based on their cumulative impact was recently 
brought forward by major PGx consortia.8 Four pheno-
types are established, including poor metabolizers (PMs), 
intermediate metabolizers (IMs), normal metabolizers 
(NMs), and ultrarapid metabolizers (UMs).

Metoprolol is a lipophilic β1-adrenergic receptor 
antagonist used to treat various cardiovascular con-
ditions, including angina, atrial fibrillation, and hy-
pertension. It is primarily metabolized by CYP2D6 
into α-hydroxymetoprolol (α-OH-metoprolol), which 

pharmacogenomic (PGx) determinants affecting drug concentrations and other 
clinical parameters remains largely untested.
WHAT QUESTION DID THIS STUDY ADDRESS?
Using the Montreal Heart Institute (MHI) Hospital Cohort and its information 
comprised within the MHI Biobank, we investigated if pharmacogenetic associa-
tions could be observed with the level of statistical significance of genomewide 
association studies (GWAS). We sought to recreate a PGx association previously 
validated through traditional pharmacokinetic study design between metoprolol 
plasma concentrations and CYP2D6 genotype-inferred phenotypes.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
With a sample of ~ 1000 patients, we demonstrate that single, random blood sam-
plings can be used to identify PGx associations influencing average metoprolol 
plasma concentrations, along with those of its associated CYP2D6 metabolite. 
Even after correcting for cofactors through simple multivariable modeling, statis-
tical significance of GWAS magnitude persists. Additional associations regarding 
drug response, such as average daily dosage and heart rate, can be detected, even 
when analyzing a single CYP2D6 polymorphism.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
This study suggests that biorepositories can be leveraged to discover and vali-
date pharmacogenetic targets associated to variations in drug metabolism, and 
potentially clinical response. Biobanks represent a new resource by which PGx 
consortia could identify predictors of drug metabolism, overcoming methodologi-
cal limitations encountered in traditional pharmacokinetic studies and GWAS.
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exhibits ~ 10% of metoprolol’s potency.9 Previous in-
vestigations using classic PK designs have consistently 
found that metoprolol concentrations decrease across 
all four CYP2D6 genotype-inferred phenotypes, from 
PMs to UMs, and the opposite has been shown for 
α-OH-metoprolol.2,3,10

In order to test our hypothesis that randomly collected 
blood samples collected in observational studies could be 
used to identify genetic markers of drug concentrations, 
we performed a proof-of-concept association study to 
replicate the well-established association between metop-
rolol concentrations and CYP2D6 genotype-inferred me-
tabolizer phenotypes. We used plasma samples collected 
at random timepoints relative to the previous metoprolol 
dose in participants from the Montreal Heart Institute 
(MHI) Hospital Cohort.11,12

METHODS

Study design

We performed a cross-sectional study that included par-
ticipants from the MHI Hospital Cohort taking metopro-
lol at the baseline visit. The methods of the MHI Hospital 
Cohort, including its sample collection protocol, have 
been reported elsewhere.11,12

Study population

The study population included self-reported “White” 
men and women aged greater than or equal to 18 years, 
who reported being treated with oral metoprolol and 
who had plasma collected according to the standardized 
plasma collection protocol of the MHI Biobank. We put 
no restriction regarding the dose or formulation used. In 
Canada, only metoprolol tartrate is available. The only 
exclusion criterion was a history of liver transplant, as 
the genotypes from the donor and the recipient could 
differ.13 Given the exploratory nature of our approach, 
we sought to include a convenience sample of 1000 
individuals.

Study end points

The primary objective of this study was to replicate the as-
sociation between CYP2D6 genotype-inferred phenotypes 
and the primary study end point of plasma concentrations 
of racemic metoprolol. Association among CYP2D6 phe-
notype and α-OH-metoprolol, metoprolol daily dosing, 
and resting heart rate were also investigated.

Measurement of metoprolol and 
α-hydroxymetoprolol concentrations

The plasma samples of individuals included as part 
of this study was collected as previously described.11 
Briefly, blood samples were collected in ethylenediami-
netetraacetic acid vacutainer tubes on ice. Plasma was ob-
tained by centrifugation within 30 min (1900 g at 4°C for 
15 min). The plasma was then transferred to 1-ml micro-
tubes, rapidly frozen at −21°C, and then stored at −80°C 
on the same day. Blood sampling was performed randomly 
regarding the intake of metoprolol or other concomitant 
medications, time of day, or food intake. Metoprolol and 
α-OH-metoprolol measurements were conducted in the 
bioanalytical laboratory of the Platform of Biopharmacy 
at Université de Montréal. The analyses were conducted 
blinded to any information related to the samples, in-
cluding CYP2D6 genotypes and metoprolol doses. Lower 
limits of quantification (LLOQ) were set at 1  ng/ml for 
metoprolol and α-OH-metoprolol, with upper limits set 
at 1000 ng/ml. The complete bioanalytical method is de-
scribed in the Supplementary Material section, along with 
a schematic representation of sample preparation.

Genotyping and CYP2D6 metabolism

DNA isolation was performed under GLP conditions 
using the Gentra Autopure LS system, as previously de-
scribed.10,14 The targeted regions of genomic DNA were 
amplified through polymerase chain reaction before con-
ducting single-base extension using either Agena’s iPLEX 
ADME PGx Pro Panel 1.0 or MHI ADME Panel V3.0 (Agena 
Bioscience), as previously described.15 Subsequent condi-
tioning of the extension conditions was made using Clean 
Resin before being dispensed on a SpectroChipII Array using 
a MassARRAY Nanodispenser (Agena Bioscience). Data ac-
quisition was made on the MassARRAY Analyzer Compact 
(Agena Bioscience MALDI-TOF mass spectrometer; Agena 
Bioscience). CYP2D6 variant alleles genotyped were *1, *2, 
*3, *4, *6, *7, *8, *9, *10, *11, *12, *14, *15, *17, *19, *20, *29, 
*41, *69, and *109. CYP2D6 alleles were assigned accord-
ing to the PharmVar core alleles (https://www.pharm​var.
org/gene/CYP2D6). As for copy number variants (CNVs), 
seven probes were designed, with target sequences located 
on introns 4 and 6, and exon 9 of CYP2D6. For both vari-
ant alleles and CNVs, the different extended mass intensities 
were analyzed using the MassArray Typer software version 
4.1, including analysis application Typer Analyzer version 
4.1.0.83 with PGxReporter v3.51 software. Using allelic ac-
tivity scores, genotypes, and CNVs, we categorized partici-
pants into PM, IM, NM, and UM phenotypes according to 
the most recent CYP2D6 classification guidelines.8

https://www.pharmvar.org/gene/CYP2D6
https://www.pharmvar.org/gene/CYP2D6
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Statistical analyses

We performed descriptive statistics of clinical and ge-
netic variables for all included participants. Frequencies 
and proportions were reported for categorical variables, 
whereas means, SDs, and medians were used for con-
tinuous variables. Multiple linear regression analyses 
were conducted to investigate the relationship between 
CYP2D6 genotype-inferred phenotypes and the study 
end points. To do so, we considered a crude model and 
different adjusted models with an increasing number of 
covariables for each analysis. Candidate adjustment vari-
ables were age, sex, metoprolol dose, and weight for mod-
els of analyte concentrations and metoprolol dosing, with 
the addition of a history of atrial fibrillation/flutter and 
the use of heart rate lowering drugs for the end point of 
heart rate. In addition, for every fully adjusted model, we 
considered concomitant uses of CYP2D6 inhibitors. The 
complete list of all medications taken by the cohort were 
screened to identify CYP2D6 inhibitors. We referred to 
the US Food and Drug Administration (FDA) Table of 
Inhibitors to provide an objective list of such medications 
to consider.16 Furthermore, we also built models where 
patients’ phenotype was converted prior to multivariable 
adjustment by multiplying the patients’ CYP2D6 activity 
scores by factors of 0.5 and 0 for the concomitant intake 
of moderate and strong CYP2D6 inhibitors, respectively.17 
CYP2D6 genotype-inferred phenotype was treated as an 
ordinal variable and coded as 0, 1, 2, or 3 for PM, IM, 
NM, and UM, respectively. Although inferred phenotypes 
are widely used in PK association studies,18–20 as a sen-
sitivity analysis, we also assessed a single key variant of 
CYP2D6*4, rs3892097, which is prevalent within popula-
tions of European descent.21 When necessary, to satisfy 
the normality assumption, a regression model for each 
outcome and its natural logarithm transformation were 
fitted and the distributions of residuals were compared. In 
all analyses, the residuals of the models with transformed 
outcomes are more normal than the residuals of the mod-
els with original outcomes. Therefore, we kept the models 
with transformed outcomes. Samples with concentra-
tions lower than the LLOQ were attributed a value of 0. 
Statistical tests were two-tailed and a p value less than 0.05 
was considered statistically significant. All analyses were 
carried using SAS version 9.4 (SAS Institute).

Ethics statement

The MHI Hospital Cohort protocol has been approved 
by the institution’s Scientific and Ethics Committees. 
All participants provided a signed, informed consent 
prior to their inclusion in the MHI Hospital Cohort. This 

investigation was approved by the Cohort Management 
Committee, as well as the MHI’s Scientific and Ethics 
Committees.

RESULTS

Study population

A total of 1007 participants from the MHI Cohort met 
our inclusion and exclusion criteria. Of these, complete 
CYP2D6 genotyping was unsuccessful for seven pa-
tients, whereas plasma volume was insufficient at the 
time of analysis for one patient. Thus, 999 patients were 
included in the analyses. At baseline, patients presented 
characteristics consistent with a population with car-
diovascular disorders treated with metoprolol (Table  1). 
Specifically, it was constituted mainly of males (73%), 
aged 66.5 ± 8.7 years with a weight of 84.4 ± 17.0 kg. As 
expected, patients were treated with multiple concomi-
tant cardiovascular medications (Table 1). Regarding me-
toprolol, the mean daily dose was 84.3  ±  57.1  mg, with 
total daily doses ranging from 6.25 to 400 mg. Frequencies 
of CYP2D6 diplotypes, genotypes, and inferred pheno-
types are listed in Table 1 and Supplementary Table S1. 
Of the 999 patients, phenotypes could not be determined 
in three patients because of triallelic genotyping results. 
In total, 4.4%, 34.3%, 54.4%, and 6.8% were PM, IM, NM, 
and UM, respectively. Only 36 patients (3.6%) used either 
one or more moderate and/or strong inhibitors, of which 
33 were reclassified with lower phenotypic activity. Since 
considering the use of CYP2D6 inhibitors gave very simi-
lar results either as a covariable or as a phenoconversion 
factor, we present only the models where it was used as a 
covariable.

CYP2D6 and plasma concentrations

The mean metoprolol and α-OH-metoprolol concentra-
tions in the cohort were 111.0  ±  141.4  ng/ml (median 
59.3) and 48.7 ± 52.5 ng/ml (median 35.1), respectively. 
Only 2% of patients presented metoprolol concentrations 
below the LLOQ, and 4% for α-OH-metoprolol. Those 
with values below the LLOQ for both analytes comprised 
1% of the population, indicating that few patients had not 
taken metoprolol recently.

Metoprolol concentrations decreased with higher me-
tabolizing capacity (Figure 1a). The association between 
CYP2D6 and metoprolol concentrations was highly signif-
icant across all models (all p < 10−14). Age, sex, metopr-
olol daily dose, and weight were significantly associated 
with metoprolol concentrations in the fully adjusted 
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T A B L E  1   Baseline cohort characteristics

Alla

999 (100%)
PM
44 (4%)

IM
342 (34%)

NM
542 (54%)

UM
68 (7%)

Socio-demographic variables

Age, n (%) 66.5 ± 8.7 68.4 ± 7.7 66.3 ± 8.8 66.6 ± 8.6 65.7 ± 9.9

Female, n (%) 269 (27) 11 (25) 90 (26) 142 (26) 26 (38)

Self-reported White ethnicity, 
n (%)

999 (100) 44 (100) 342 (100) 542 (100) 68 (100)

Lifestyle and physical measure

Smoking status, n (%)

Never-smoker 278 (28) 12 (27) 89 (26) 158 (29) 19 (28)

Past-smoker 638 (64) 29 (66) 227 (66) 336 (62) 43 (63)

Current-smoker 83 (8) 3 (7) 26 (8) 48 (9) 6 (9)

Weight, kg 84.4 ± 17.0 81.2 ± 13.9 85.0 ± 16.1 84.5 ± 17.9 82.1 ± 16.4

BMI 30.0 ± 5.4 30.0 ± 4.6 30.1 ± 5.2 30.0 ± 5.6 29.9 ± 5.4

Cardiovascular chronic conditions at baseline

Hypertension, n (%) 784 (78) 33 (75) 280 (82) 420 (77) 50 (74)

Diabetes, n (%)

Type 1 7 (1) 0 (0) 3 (1) 4 (1) 0 (0)

Type 2 296 (30) 16 (36) 113 (33) 140 (26) 26 (38)

Dyslipidemia, n (%) 847 (85) 41 (93) 295 (86) 455 (84) 53 (78)

Myocardial infarction, n (%) 428 (43) 22 (50) 143 (42) 231 (43) 31 (46)

Atrial fibrillation or flutter, n (%) 358 (36) 15 (34) 120 (35) 190 (35) 31 (46)

Medications

Aspirin, n (%) 788 (79) 35 (80) 278 (81) 422 (78) 52 (76)

Other antiplatelet agents, n (%) 149 (15) 9 (20) 56 (16) 70 (13) 13 (19)

ACE inhibitors, n (%) 342 (34) 16 (36) 126 (37) 182 (34) 17 (25)

Angiotensin II receptor blockers, 
n (%)

281 (28) 13 (30) 101 (30) 149 (27) 18 (26)

Calcium channel blockers, n (%) 261 (26) 13 (30) 98 (29) 133 (25) 17 (25)

Warfarin, n (%) 199 (20) 13 (30) 71 (21) 100 (18) 14 (21)

Novel oral anticoagulants, n (%) 36 (4) 1 (2) 11 (3) 20 (4) 3 (4)

Digoxin, n (%) 43 (4) 2 (5) 11 (3) 25 (5) 5 (7)

Amiodarone, n (%) 36 (4) 0 (0) 16 (5) 18 (3) 2 (3)

Other antiarrhythmic agents, 
n (%)

14 (1) 0 (0) 2 (1) 10 (2) 2 (3)

Diuretics, n (%) 321 (32) 18 (41) 106 (31) 178 (33) 19 (28)

Statins, n (%) 818 (82) 37 (84) 287 (84) 438 (81) 53 (78)

Oral hypoglycemic agents, n (%) 255 (26) 12 (27) 100 (29) 121 (22) 21 (31)

Plasma concentrations

Mean metoprolol plasma 
concentrations, ng/ml

111 ± 141 270 ± 230 151 ± 153 101 ± 130 82.7 ± 117

Mean α-OH-metoprolol plasma 
concentrations, ng/ml

48.7 ± 52.5 2.4 ± 6.2 16.0 ± 15.9 52.2 ± 53.7 64.8 ± 50.8

Daily metoprolol dose

Mean daily dose, mg 84.3 ± 57.1 81.0 ± 56.2 75.5 ± 51.8 88.6 ± 59.0 95.8 ± 61.5

(Continues)
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model (Table 2). We observed that the association between 
CYP2D6 genotype-inferred phenotype and metoprolol 
concentrations increased when metoprolol daily dose was 
introduced in the multivariable model.

Concentrations of α-OH-metoprolol increased with 
higher CYP2D6 metabolizing capacity (Figure  1b). The 
association between CYP2D6-inferred phenotype and 
α-OH-metoprolol remained highly significant in the 
fully adjusted model (all p  <  10−57). Age, sex, metopro-
lol daily dose, but not weight, were also significantly as-
sociated with α-OH-metoprolol concentrations (Table 3). 
Finally, the concomitant use of CYP2D6 inhibitors was 
significantly associated with both metoprolol and α-OH-
metoprolol concentrations.

CYP2D6 and daily metoprolol dosing

We observed a significant, yet more modest, association 
between CYP2D6-inferred phenotype and metoprolol 
daily dose (all p < 0.0003). Other than CYP2D6-inferred 
phenotype, only weight was associated with metoprolol 
daily dose in the fully adjusted model (Table 4).

CYP2D6 and heart rate

Consistent with the observed decrease in metoprolol con-
centrations with greater metabolic capacity, we observed 
increasing heart rate with increases in CYP2D6 inferred 

Alla

999 (100%)
PM
44 (4%)

IM
342 (34%)

NM
542 (54%)

UM
68 (7%)

Daily metoprolol dose, by 
categories, n (%)

≤12.5 16 (2) 2 (5) 8 (2) 6 (1) 0 (0)

>12.5–25 144 (14) 5 (11) 65 (19) 65 (12) 8 (12)

>25–50 351 (35) 17 (39) 122 (36) 189 (35) 23 (34)

>50–100 318 (32) 13 (30) 107 (31) 177 (33) 21 (31)

>100–150 63 (6) 1 (2) 13 (4) 44 (8) 3 (4)

>150–200 91 (9) 6 (14) 22 (6) 51 (9) 12 (18)

>200 14 (1) 0 (0) 4 (1) 9 (2) 1 (1)

CYP2D6 inhibitors

Moderate 7 (0.7) 0 (0) 1 (0.3) 5 (0.9) 1 (1.5)

Strong 29 (2.9) 2 (4.6) 13 (3.8) 11 (2.0) 3 (4.4)

Note: Values are presented as means ± SD unless otherwise specified.
Abbreviations: ACE, angiotensin-converting enzyme; BMI, body mass index; IM, intermediate metabolizer; NM, normal metabolizer; PM, poor metabolizer; 
UM, ultrarapid metabolizer.
aMetabolizing phenotype could not be inferred in 3 participants due to triallelic variants.

T A B L E  1   (Continued)

F I G U R E  1   Plasma concentrations of metoprolol and α-OH-metoprolol. Concentrations of metoprolol (left) and α-OH-metoprolol (right) 
by CYP2D6-inferred phenotype. Data presented as untransformed values. IM, intermediate metabolizer; NM, normal metabolizer; PM, 
poor metabolizer; UM: ultrarapid metabolizer. Central bar of the box: median; lower bar of the box: first quartile; upper bar of the box: third 
quartile; diamond: mean; bar below the box: minimum (excluding outliers); bar above the box: maximum (excluding outliers)
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metabolizing capacity (Figure  2). This association was 
significant in the crude and the adjusted models (all 
p < 0.0004; Supplementary Table S2).

Sensitivity analyses: single-variant models

For sensitivity analyses, we also investigated whether sim-
ilar associations could be obtained using a single variant, 
rs3892097, which presented an allelic frequency of 15.94% 
in our cohort. As was found for the genotype-inferred phe-
notype classification, in all unadjusted and adjusted mod-
els, the presence of the rs3892097 variant was significantly 
associated with both plasma concentration levels of meto-
prolol (all p < 10−7) and α-OH-metoprolol (all p < 10−47; 
Supplementary Tables S3 and S4). For the secondary end 
points of daily metoprolol heart rate and dosing, again, 
rs3892097 was associated with these end points, albeit 
more modestly in all models (Tables S5 and S6).

DISCUSSION

As part of this study, we provide proof to the concept that 
using randomly collected plasma samples as part of ge-
netic cohort studies can be leveraged to identify predictors 
of drug concentrations. We observed highly significant 
associations between CYP2D6-inferred metabolizer phe-
notype, as well as the rs3892097 variant, and plasma con-
centrations of metoprolol and α-OH-metoprolol measured 
in samples randomly drawn since the previous metoprolol 
dose at the baseline visit of the MHI Hospital Cohort. Our 
investigation provides consistent results in the magnitude 
of these inferred phenotypes with those from a previous 
meta-analysis assessing the effect of CYP2D6-inferred 
metabolizer phenotype on the variability in PK profiles 
of metoprolol.2 Thus, the results of this study support the 
concept that random blood samples collected as part of 
large observational studies can be leveraged to conduct 
PGx association studies in unselected patients treated 
with a broad range of doses of a given medication to iden-
tify predictors of drug concentrations.

The most immediate implication of our study is the 
possibility that large observational genetic cohorts could 
be leveraged to identify PGx markers related to drug dos-
ing requirements and drug concentrations, either as a sin-
gle variant or using a complete phenotype classification, 
with the caveat that plasma or serum samples and infor-
mation regarding drug dosing have also been collected. 
Our approach may facilitate the emergence of collabo-
rative, multicohort, international consortia to conduct 
exploratory genomewide association studies (GWAS) of 
drug concentrations, beyond studies that initially focus T
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on one or a few selected drugs investigated as part of a 
clinical study or drug monitoring programs. Such collabo-
rations already represent a hallmark of genomic discovery 
for complex traits and diseases.4–6 The cumulative experi-
ence from investigations of common diseases has shown 
that initial single-cohort investigations generally allow the 
discovery of common variants with large effects that ex-
plain only a small proportion of genetic factors in complex 
diseases. For example, initial GWAS of hypertension that 
included only thousands of individuals led to few genetic 
discoveries,22 whereas recent initiatives have included an 
excess of one million participants and reported over 900 
loci associated with hypertension.23 Based on the expe-
rience and results of the aforementioned GWAS of com-
plex diseases,4–6,23 large prospective PGx endeavors using 
biorepositories not initially designed to study drug PKs, in 
addition to aforementioned existing resources, could pro-
vide sample sizes required for the discovery of new and 
unsuspected genes or signaling pathways.24–27 Moreover, 
such collaborative efforts could also incorporate clinical 
therapeutic drug monitoring PGx studies.28,29

A noteworthy observation is that CYP2D6 phenotypes 
were more significantly associated to concentration lev-
els of metoprolol and α-OH-metoprolol compared to me-
toprolol dosing. This is partly because doses used in the 
clinic are dependent on the prescriber’s preferences.30 
Therefore, drug doses by themselves may not be a suitable 
proxy to evaluate genetic determinants of dosing require-
ments or PK parameters and show that drug concentration 

measurements are critical. This is emphasized by drugs 
with only a single dosing regimen in clinical practice, 
such as clopidogrel, despite the presence of interindivid-
ual variability and genetic determinants of PK profiles and 
efficacy.31,32

Interestingly, our models highlighted increases in rest-
ing heart rate relative associated higher CYP2D6 metabolic 
capacity. It is important to highlight that this observation 
should be made with caution. Due to the cross-sectional 
nature of this analysis, it does not in fact reflect “response” 
to metoprolol. Thus, despite this observation in previous 
smaller prospective studies,33 bias and chance cannot be 
excluded. Given the association between higher heart rate 
and worse outcomes in cardiovascular disease,34 studies 
investigating the impact of CYP2D6 metabolizer status on 
the clinical outcomes of patients undergoing metoprolol 
therapy appear warranted.

Strengths and limitations

A strength of our investigation is that we validated our 
concept using two PGx associations between CYP2D6 and 
two analytes of metoprolol metabolism which have been 
repeatedly validated. Moreover, the associations observed 
regarding the plasma concentrations of both analytes 
were consistent with those previously reported.2

Another strength from this study is that it was con-
ducted in a “real-life,” polymedicated population present-
ing multiple morbidities. This represents a strength for 
two reasons. As most previous studies investigating the as-
sociation between CYP2D6 and metoprolol’s PKs focused 
exclusively on healthy individuals, the current study val-
idates that it can be extended to “real-life” populations. 
Ultimately, these are the populations in which PGx and 
precision medicine are expected to improve drug efficacy 
and safety. Regarding the concept and hypothesis tested 
here, this makes our findings more widely generalizable 
and applicable to other unselected populations which 
constitute most large cohorts used in genetic research.

One limitation is that the exact formulation of metop-
rolol was not routinely collected. Despite this limitation, 
which would have added heterogeneity to our analyses, 
we were able to convincingly validate the drug-gene pair 
association. Furthermore, a caveat to our finding is that, 
considering that metoprolol’s half-life ranges between 3 
and 7 h from NM to PM,2 whether our approach can be ex-
tended to drugs with shorter half-lives warrants confirma-
tion. Finally, the usefulness to identify rare factors, genetic 
or other, that can influence the concentrations of metopr-
olol requires further studies. Expanding the size of collab-
orative PGx investigations to sufficient sizes to explore the 
contribution of rare variants, as well as sex-specific PGx 

F I G U R E  2   Resting heart rate across CYP2D6 genotype-
inferred phenotypes. Data presented as untransformed values. 
IM, intermediate metabolizer; NM, normal metabolizer; PM, 
poor metabolizer; UM, ultrarapid metabolizer. Central bar of the 
box: median; lower bar of the box: first quartile; upper bar of the 
box: third quartile; diamond: mean; bar below the box: minimum 
(excluding outliers); bar above the box: maximum (excluding 
outliers)
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associations, could help explain part of the “missing her-
itability” in PGx.

In conclusion, our results provide supporting evidence 
that randomly drawn blood samples from biorepositories 
could be leveraged to identify genetic determinants asso-
ciated with drug concentrations and dosing. New methods 
or uses for already existing databases may be exploited to 
discover PGx associations related to drug metabolism and 
response without the limitations associated with current 
approaches like GWAS and traditional PK studies.
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