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Entrainment is a phenomenon in which two oscillators interact with each
other, typically through physical or chemical means, to synchronize their
oscillations. This phenomenon occurs in biology to coordinate processes
from the molecular to organismal scale. Biological oscillators can be
entrained within a single cell, between cells or to an external input. Using
six illustrative examples of entrainable biological oscillators, we discuss
the distinctions between entrainment and synchrony and explore features
that contribute to a system’s propensity to entrain. Entrainment can either
enhance or reduce the heterogeneity of oscillations within a cell population,
and we provide examples and mechanisms of each case. Finally, we discuss
the known functions of entrainment and discuss potential functions from an
evolutionary perspective.
1. Introduction
Oscillating systems can interact with each other in various ways. They can
enhance or negate each other’s effects (constructive and destructive interfer-
ence, respectively) or synergize with each other to achieve amplitudes greater
than the sum of the two systems (resonance). When two oscillating systems
interact, one or both can experience an alteration in frequency to become
phase-locked, meaning that the phase difference between the two oscillating
systems remains constant in time and is robust to perturbations [1]. This
situation is called entrainment.

Entrainment was originally described as two pendulum clocks coupled
through a wooden structure [2] (figure 1a). Synchronization in this system
was achieved via mechanical vibrations through the wooden coupling bar.
Oscillations are also found in various biological systems and can operate at
the molecular level (e.g. cardiac cell beating) or at the organismal level (e.g.
sleep–wake cycles). Entrainment of these oscillations can occur through inter-
actions between single cells, within a single cell or between a cell and its
environment (figure 1b,d).

Biological oscillators can entrain in a variety of ways. Two biological oscil-
lators in neighbouring cells can interact and influence each other through their
extracellular environment (figure 1b). Entrainment between cells often occurs
through secreted factors and therefore becomes apparent as cell density
increases [3–6]. It allows coordination between cells in a tissue in order to per-
form a function: for example, cardiac cells synchronize their oscillations in order
to provide a strong single voltage that leads to heart contraction [7,8]. Two bio-
logical clocks can also entrain within a single cell, as observed between the
circadian and cell cycle oscillators (figure 1c). Entrainment of oscillators
within a single cell allows for synchronizing the processes controlled by the
two individual oscillators. Last, the frequency of a biological clock can entrain
to an environmental periodic rhythm (figure 1d ) that is itself unaffected by the
biological oscillator. The most prevailing example of such unidirectional
entrainment is the circadian clock, in which sleep–wake cycles entrain to
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Figure 1. Entrainment types and their directionality. (a) Entrainment as originally described between two physically connected oscillating pendulums. (b) Entrain-
ment of the same oscillator in two neighbouring single cells. (c) Entrainment of distinct oscillators within a single cell. (d ) Entrainment of an oscillator within a
single cell by an external periodic input.

Box 1. The coupling and uncoupling between the oscillator and external input can be summarized in an ‘Arnold tongue’ plot. The Arnold tongue plot can be
interpreted in the following way: with a fixed coupling strength ( y-axis), if the intrinsic frequency of one oscillator traverses horizontally across the Arnold
tongue plot, the coupled system will either stay not locked (case b) or be locked into distinct frequency modes featuring fixed p/q ratios (cases a and c).
Phase locking is defined by measuring ϕ(t) and Δϕ(t), with ϕ(t) being the phase of an oscillator relative to the start of the cycle, expressed as a fraction of
the period ϕ(t) ∈[0,2π], and Δϕ(t) being the difference in phase between two periodic signals at a given time Δϕ(t) = ϕoscillator1(t) − ϕoscillator2(t). When
the phase difference Δϕ(t) between two signals is constant in time, the two signals are considered to be phase-locked. Traversing vertically over the plot
(increasing coupling strength) illustrates how the coupled system becomes more robust against fluctuations (broadening of Arnold tongues) or can lead to
multi-stability (case d) or other irregular dynamics such as chaos. ‘Tongues’ associated with high-order entrainment modes (5/4, 3/2, etc.) are usually smaller
than that for the equal-frequency model (1/1) and therefore harder to observe experimentally ( figure 2, Other entrainment ratios). The amplitude during
entrainment remains unaltered as shown both theoretically [11] and experimentally [12].
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light–dark cycles [9,10]. Entrainment between a cell and its
environment allows organisms to keep their physiology in
synchrony with their surrounding rhythms.
2. Key principles of entrainment
Entrainment depends on two basic conditions: (i) the coup-
ling strength between the oscillator and external input and
(ii) the similarity between the intrinsic frequencies of the
internal oscillator and the external input in the absence of
interaction [1]. Generally, a stronger coupling strength and
closer intrinsic frequencies favour entrainment, though the
exact requirement varies in different systems. The entrained
state (or locked state) is represented by a rational number
p/q; after p periods of the internal oscillator and q periods
of the external oscillator, the system returns to the same
state. As the coupling strength increases, phase locking
becomes possible at a wider range of external periods
(depicted by a broadening of Arnold tongues, see box 1),
and the entrained mode is more robust against random fluc-
tuations. Further increasing coupling strength may result in
complex phenomena such as multi-stability, in which mul-
tiple entrainment modes coexist, and chaos. These are
depicted by the overlap of different ‘tongues’. The transition
between a robust locked state and a chaotic one has been
observed in a classic example of periodically stimulated car-
diac cells, in which a small variation of the period of the
electrical stimuli caused a transition between normal and
pathological behaviour of cardiac tissue (dysrhythmia) [13].
3. Examples of biological oscillators exhibiting
entrainment

We will explore entrainment focusing on six biological
examples of autonomous oscillators, which have been
shown to entrain experimentally (figure 2). For each example,



circadian clock cell cycle mitotic exit (Cdc14) cardiac pacemaker glycolysis cycle
inflammatory 

response (NF-kB)

entrainment
stimuli

network
internal/external

mRNA

protein

legend:

degradation

P phosphorilation

P

P

PER

TIM

TIM

PER

TIM TIM

PER PER

TIM

PER

P
P

P
P

PER

TIM

LIGHT

Plautz et al., 1997

other 
entrainment

ratios 

Matsuo et al., 2003 Lu and Cross 2020

Cdc14

Cdc5 Cdh1

Clb2 Cdc20

Cdk module 

anaphase

Cdc15

SPOC

Cdc14 oscillator 

Jalife, 1984

(a) (b) (c) (d) ( f )(e)

GFs

cytoplasm 

nucleus 

cytoplasm 

nucleus 

IkB
NFkB

IkBNFkB

TNF

TNFR

IkBNFkB

IkB

Cdk modules cell cycle

Cyclin D/Cdk4-6

Cyclin E/Cdk2

Cyclin A/Cdk2

Cyclin B/Cdk1

circadian clock

G1

G1/S

S
+

S/G2

G2
+

G2/MWee1 Cdc20

Cdh1

Cdh1, Skp2

p21

pRBp pRBpppRB

GF

E2F

drugs (forskolin or dexamethason)

light

Balsalobre et al., 1998

Bieler, 2014; Feillet 2014

serum (cAMP, protein kinase C, Ca2+) wee1 Cyclin B (Clb2) electric current glucose and cyanide solution
Bier et al., 2000

TNF-alpha
Kellogg and Tay, 2015

natural period

range of 1/1
entrainment

8 h to 16 h

3/2
Bieler, 2014

Laranjeiro et al., 2003

 24 h

(theoretical proof only)
Gerard and Goldbeter, 2012a

Goldbeter, 2012

1/2

20 h to 24 h 

 24 h

Lu & Cross 2020
40 to 100 min

90 min

Anumonwo et al., 1991
2/1, 1/2, 3/2, 5/4

180 to 240 ms
Anumonwo et al., 1991

200 ms

Gustavsson et al., 2015
40 s

 50 s

1/1, 2/1, 1/2, 3/1
Kellogg and Tay, 2015

bi-stability at inputs
around 150 mins

60 to120 min
Kellogg and Tay, 2015

90 min

glucose

cytosol

glycerol

ethanol
pyruvate/

acetaldehyde

pyruvate/
acetaldehydeex

glucose
ATP

ADP

NADH NAD+

ATP

ADP

NAD+
NADH

NADH NAD+

glyceraldehyde-3-P/
dihydroxyacetone-P

1,3-bisphospho-
glycerate

Ca2+ clock

cAMP

caMK-IIPKA

Ca 2+

If = Inward current
INCX = Inward Na+/Ca+ exchange current
ICal = L–type Ca2+ current 

membrane clock

INCX ICalIf

cytoplasm 

G-proteins

Figure 2. Six biological cases of entrainment. For each oscillator, the internal minimal network (blue) and external nodes (red) are portrayed, along with the stimuli
used for entrainment and the observed entrainment ratios. (a) The fly circadian clock is regulated at the levels of transcription, protein stability and post-translational
modifications [14]. It responds to light and GFs, but it can oscillate freely in the dark [9]. (b) The mammalian cell cycle network contains four coupled modules each
centred around one cycle/Cdk complex which promotes progression or transition into the ordered succession of the cell cycle phases G1, S, G2 and M. The cell cycle
components Wee1, p21 and cyclin E are transcriptionally regulated by the circadian clock [15]. (c) The Cdc14 network module is a negative feedback loop controlling
cycles of nucleolar sequestration and release of Cdc14, which is essential for mitotic exit in budding yeast [16]. Each component of this loop (Cdc14, Cdc5, Cdh1) is
coupled to the cell cycle. (d ) Cardiomyocytes of the sinoatrial node (SAN) autonomously oscillate through action potentials that result from the opening and closing
of sodium, calcium and potassium channels in their membrane, creating depolarization and repolarization oscillations [17,18]. (e) Glycolysis consists of the step-by-
step breakdown of glucose and storage of the released Gibbs energy in the form of ATP. Oscillations correspond to changes in the concentration of glycolytic
metabolites nicotinamide adenine dinucleotide plus hydrogen (NADH) and ATP. The molecular mechanism for oscillations is based on the speed of enzymatic
reactions [12]. Sustained glycolytic oscillations require both glucose and cyanide to be present in the medium [19,20]. ( f ) The transcription factor NF-κB oscillates
between the cytoplasm and nucleus in response to the inflammatory signal TNF-alpha [21,22]. TNF-alpha signalling induces the dissociation of the IκB::NF-κB
complex in the cytoplasm, allowing NF-κB to enter the nucleus and activate transcription of its inhibitor IκB, which sequesters NF-κB in the cytoplasm [23].
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we present the simplest model that accounts for oscillatory
behaviour, along with the node(s) receiving the stimuli for
entrainment. Each example follows the basic principle of bio-
chemical oscillators but differs in terms of its network
architecture, the nature of the oscillations, their time-scale
and the number of entrainment modes. All examples have
a negative feedback loop within their core network (see
blue networks in figure 2) with additional positive feedback
loops providing robustness [24]. Other details of the net-
works vary with regard to the number of nodes, number of
positive and negative interactions and number of points of
coupling to external oscillators. In addition, the oscillating
factors differ between the various systems. For example, in
the circadian clock example, mRNA and protein levels oscil-
late [25], nuclear factor kappa B (NF-κB) and Cdc14 oscillate
in their nuclear–cytoplasmic localization [23,26] and the
glycolysis network oscillates in the products of enzymatic
reactions [27]. The time-scale of oscillations also varies
between these systems, with transcriptionally regulated sys-
tems exhibiting longer time-scales (hours for NF-κB and the
circadian clock) and oscillators relying on enzymatic reac-
tions operating on shorter time-scales (less than a minute
for glycolytic oscillations) (figure 2, Natural period). In this
review, we will not focus on systems that show irregular oscil-
lations, such as bursting dynamics of calcium ions [28],
nuclear translocation of Msn2 [29], insulin secretion by B-
cells [30] or neuron spiking [31].

The six biological examples covered here have been
extensively modelled using ordinary differential equations
(ODEs) to describe their regulatory networks [21,32–37].
Dynamical systems tools, such as ODEs, phase portraits
and bifurcation diagrams, are keys to understand how various
systems differ in their requirements for initiating and sus-
taining oscillations [38]. For example, a model of the cell
cycle [39] shows self-sustained oscillations only in the presence
of growth factor (GF), thus defining GFs as a trigger between
quiescence (non-oscillatory state) and proliferation (oscilla-
tory state). Glycolytic oscillations require both glucose and
cyanide to be sustained [19,20], with glucose alone leading
to dampened oscillations but the addition of cyanide
leading to sustained oscillations. GF and cyanide are thus
Hopf parameters that are responsible for a Hopf bifurcation
[20,36,39], meaning that they lead the system to transition
from steady state (non-oscillatory) to a limit cycle (self-
sustained oscillations). In most cases, oscillation triggers
(Hopf parameters) also serve as entrainment stimuli. For
example, entrainment of glycolytic oscillations by cyanide
[20], or entrainment of NF-κB by tumour necrosis factor
(TNF) [40], but that is not always the case, for example GFs
only initiate but cannot entrain the cell cycle [39].
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4. Distinguishing between entrainment and
other mechanisms leading to synchrony

Synchrony is the empirical observation of two systemsoscillating
in phase, which can result from either entrainment or other -
mechanisms such as gating [41,42]. During entrainment, all
phases of the follower oscillator must be affected by the leading
oscillator—in other words, the oscillatory curve of the follower
must be proportionately stretched out or compressed through
all phases. By contrast, during gating, the leading oscillator
defineswindowsof time inwhichdifferentphasesof the follower
oscillator can occur. As opposed to entrainment, a gating mech-
anism follows these three principles: (i) arresting the lead
oscillator at any constant level will arrest the follower oscillator;
(ii) only 1 : 1 ratioswill be observed; and (iii) the leadingoscillator
impacts only specific phases of the follower oscillator.

Distinguishing between gating and entrainment mechan-
isms has met with varying degrees of success. Strong evidence
in favour of entrainment was obtained for the coordination
between the cell cycle and Cdc14 nucleolar sequestration and
release [43]. Blocking the cell cycle by maintaining cyclin B at
constant physiological levels did not block Cdc14 oscillations,
ruling out a gating mechanism. The mechanisms governing
other synchronized systems, such as the synchronization
between the cell cycle and circadian rhythm, have not reached
consensus. Among the studies in favour of entrainment
[15,33,44], Feillet et al. [44] reset the circadian clock using a
glucocorticoid agonist and observed a variety of coupled
states between the clock and the cell cycle (1 : 1, 1 : 2, 3 : 2),
supporting an entrainment mechanism and aligned with com-
putational studies [15]. Among the studies suggesting a gating
mechanism [45–47], Laranjeiro et al. [45] manipulated light–
dark cycles in zebrafish cells to vary the period of the circadian
clock and observed an exclusive effect on the length of G1 with
S/G2/M phases remaining relatively constant. As articulated
above, impact over specific phases of the follower oscillator is
characteristic of a gating mechanism.

Most studies in favour of entrainment between the
circadian and cell cycle oscillators consider unidirectional
entrainment with the circadian clock unidirectionally entrain-
ing the cell cycle (figure 1d ). Circadian rhythms persisted in
cells whose division was inhibited, initially suggesting uni-
directional entrainment [48]. However, the possibility of bi-
directional entrainment has not been ruled out [15]. It is
plausible that altered cell cycle dependent changes in tran-
scription or reduced protein concentrations after cell
division may affect the circadian phase [49–51]. Future
work using synthetic biology approaches to study isolated
or minimally coupled oscillators could help elucidate both
the mechanisms leading to synchrony in other systems
(entrainment versus gating) and the directionality of entrain-
ment (uni- versus bi-directionality).
5. Different biological oscillators vary in their
propensity for entrainment

The study of entrainment can be greatly simplified by studying
the response of an oscillator to a single pulse instead of to a per-
iodic input. Such single perturbation is often shorter than the
period of the oscillating system and can cause a shift in the orig-
inal phase, either advancing or retarding the oscillations
depending on its start time relative to the phase of the natural
oscillator. A common way to capture this dependency is
through phase response curves (PRCs) [52,53]. The features of
a PRC, such as its magnitude (amplitude in the y-axis), zero
points (intercept of the x-axis) and discontinuities (i.e. phase
singularities), impact the propensity for entrainment [1] (box 2).

A system’s PRCs can change by varying the amplitude or
duration of the external pulse [54]. Stable entrainment of NF-
κB oscillators (figure 2f ) requires aminimal duration andmini-
mal concentration of the synchronizing TNF pulse [55]. The
sensitivity of fly circadian clock has been tested by varying
the duration of light pulses, which mainly affect the degra-
dation of the clock gene TIM and can entrain the system in
all tissues (figure 2a) (both neuronal and non-neuronal tissues
in drosophila are photoreceptive) [9,10]. Short light pulses lead
to a PRC with a small magnitude and a continuous transition
between phase advance and phase delay (called ‘type 1’ reset-
ting) [56] (box 2b). As the duration of the light pulse increases,
the PRC’s magnitude increases (box 2c) and may show discon-
tinuity between phase advance and phase delay regions (called
‘type 0’ resetting) (box 2d ). Around this discontinuity, the new
phase after perturbation is highly sensitive to the old phase and
may lead to complex behaviours of the system, such as chaos
[57,58]. Similarly, the PRC of the circadian clock of cyanobac-
teria is continuous, i.e. lacks phase singularities, under a
short temperature pulse [59]. The phase shift increases with
the increase of pulse duration, while the transition between
phase advance and delay becomes sharper. Consequently,
the PRC exhibits a singularity point above a certain pulse dur-
ation. This phase singularity may cause population-level
arrhythmicity when certain perturbations cause stochastic
phases of oscillations in individual cells. In the case of cardiac
pacemaker, discontinuity of PRC has been suggested to lead to
cardiac arrhythmias [1,60,61].

Absence of phase shift, i.e. flat curve (box 2a), indicates no
possibility for entrainment. PRCs with low (box 2b) or high
(box 2c) magnitude on phase shift indicate lower or higher
propensity for entrainment. A PRC may have multiple zero
points, with well-known examples in the circadian system
[48,57,59,62], meaning that a perturbation administrated
when the system’s phase is at these points will not cause
phase change [1]. A PRC may have multiple zeros corre-
sponding to distinct entrainment modes. The slope at a
zero point of a PRC dictates the stability of this entrainment
state: a negative or positive slope predicts stable or unstable
(i.e. further from or closer to uncoupling regions) entrain-
ment, respectively. Last, PRCs can exhibit phase
singularities (marked by a vertical line in box 2d ), at which
the phase resetting is very sensitive to the phase at stimulus.
6. The impact of entrainment on heterogeneity
between individual cells

During entrainment, each single-cell oscillator locks to the
external input (figure 1d ). If the population of cells is initially
heterogeneous in its oscillations, phase locking results in a
loss of heterogeneity. For example, the glycolytic oscillations
of isolated yeast cells (figure 2e) display a broad distribution
of frequencies around half a minute [63]. Periodic cyanide
input can entrain this heterogeneous population through
phase shifting (see section above). All cells’ oscillations
become synchronized after the first cyanide pulse [12]



Box 2. The inclination of a system to be entrained depends on its sensitivity to the perturbation and can be interpreted from the shape and properties of the
phase response curves (PRCs). A PRC describes the magnitude of phase changes (also called phase shift) by plotting how much the oscillation is shifted in
time (i.e. new phase ϕnew minus unperturbed old phase ϕold on the y-axis) as a function of the phase at which it is received (x-axis).
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reducing population heterogeneity. Furthermore, both robust
and weak (or non-) oscillating cells entrain to the periodic
input, further reducing population heterogeneity.

Entrainment through intercellular communication
(figure 1c) can also decrease cell-to-cell variability. During
glycolysis in yeast cultures, acetaldehyde secreted by cells
induces synchronization of metabolic oscillations (even con-
verting non-oscillating cells to an oscillatory state) [64]; this
effect occurs only above a minimal cell density [3,19,63,65].
Similarly, dissociated cells of many organs show high hetero-
geneity of their oscillations. Isolated individual sinoatrial
node cardiac pacemaker cells have varying periods [66–69],
but at high density, they exhibit the stereotypical 80 beats
per minute [61,70]. Dispersed cultures of suprachiasmatic
nucleus (SCN) neurons behave as non-synchronous single-
cell oscillators and fire with widely varying circadian periods
distinct from 24 h [71,72]. When neurons are maintained at
high density, either in explants or dispersals, their periods
synchronize [5,73] to achieve tissue-level synchrony, in
which all cells oscillate at the stereotypical 24 h period. The
secreted factor synchronizing circadian oscillations of SCN
neurons is less clear than that for glycolysis. Separation of
the dorsal and ventral SCN resulted in a loss of synchrony
of the neural rhythms of the dorsal (but not ventral) SCN,
suggesting that a neurotransmitter released by the ventral
SCN maintains synchrony throughout the SCN [74].
Indeed, some of the candidate synchronizing factors (neuro-
transmitters γ-aminobutyric acid, vasoactive intestinal
peptide and gastrin-releasing peptide) changed the firing
rate of dorsal SCN neurons [73,75,76].

When an initially heterogeneous cell population entrains
through intercellular communication to become more homo-
geneous, it is not clear which cells will dominate the final
behaviour of the population. When two cell suspensions of
yeast oscillating out of phase were mixed, synchronization
was dominated by the culture whose NADH levels were
decreasing [77,78]. A different mechanism operated when
non-synchronized oscillating cardiomyocytes were placed
into physical contact through a connected agarose micro-
chamber [79,80] to synchronize their beating. The cells
synchronized to the one showing smaller fluctuations in beat-
ing. Thus, it appears that different mechanisms can be
employed to determine which of two functionally equivalent
oscillators dominates during entrainment.

In some cases, entrainment can increase population
heterogeneity, for example when it involves bi-stable
responses. This phenomenon has been observed following
periodic stimulation of the NF-κB pathway by the cytokine
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TNF-alpha (figure 2f ) [40]. A single pulse of TNF-alpha leads
to NF-κB oscillations with a period of 90 min. When the TNF-
alpha signal was provided in an oscillatory manner, cells
entrained at multiple ratios for a given TNF periodic input.
The multi-stability in entrainment ratios depended on the
input frequency. When the stimulation period corresponded
to the original unaltered period, 90 min, the population
entrained nearly homogeneously with a 90 min phase-
locked oscillation (1 : 1 ratio). By contrast, during a 150 min
stimulation period cells showed a mixture of cellular
responses including 150 min oscillation (1 : 1), 75 min oscil-
lation (1 : 2), or without phase locking. Multi-stability rose
from extrinsic noise (variation in signalling parameters
between cells) that caused a significant broadening of the
entrainment Arnold tongues regions (see box 1), revealing
an important function of noise in allowing for a hetero-
geneous response to a periodic stimulus [40].
 us

12:20210088
7. Plausible functions of entrainment
Entrainment is a ubiquitous phenomenon in biology, found
across species and in diverse systems. In some cases, the func-
tion of entertainment is clear. For example, systems in which a
population of cells synchronizes to achieve a specific coordi-
nated task, such as the synchronization of SCN neurons to
light–dark cycles provides further synchronization in down-
stream organs [81]. In the cardiac rhythms, synchronization
of pacemaker cells provides blood circulation [61]. In systems
in which cellular information is encoded in frequency, such as
the frequency modulation of the transcription factor Crz1 by
extracellular calcium concentration ensuring appropriate
downstream expression [82] or frequency of motor protein-
based oscillations in neurons is a read-out for axonal length
[83]; a potential function for entrainment is to strengthen
such a modality of signalling. However, in many other sys-
tems, the biological function for entrainment remains
unclear. For example, despite its ubiquity, the physiological
function of glycolytic oscillations and their entrainment
are still uncertain [63]. In addition, while entrainment of
NF-κB was shown to coordinate the transcriptional response
downstream of NF-κB [40], entrainment in this system
was achieved artificially through period stimulation by
TNF-alpha, which is not known to oscillate in vivo.

Entrainment of biological clocks may also play an impor-
tant role during evolution. As one example, the oscillation of
cyclin-dependent kinase (CDK) activity drives other periodic
events, such as DNA replication and chromosome separation,
during the cell cycle. Interestingly, CDKs seem to have
appeared late during evolution [84], raising the question as
to how cells synchronize the series of events required for pro-
liferation prior to CDK emergence. Recent studies in yeast
identified several processes that show periodic behaviours
even in the absence of CDK oscillator. These CDK-indepen-
dent oscillators include budding, DNA replication,
centrosome duplication, transcription and Cdc14 release
[85–89]. Intriguingly, their intrinsic periods are close to the
normal cell cycle duration. It has been speculated that cell
cycle processes may be intrinsically oscillatory before the
emergence of CDK, and these oscillators entrain each other
to create an aggregate rhythm [43]. The master CDK oscillator
may have evolved to regulate other oscillators in order to
yield a stable entrainment structure. This satisfies the evol-
utionary requirement of utility of intermediate forms [90].
Entrainment of autonomous oscillators could have been
important in early cell cycle evolution, raising the possibility
that it plays a role in promoting a stable cell cycle rhythm in
modern eukaryotes.
8. Future perspectives
Many aspects of entrainment remain unexplored mainly due
to the complex network interactions controlling and connect-
ing oscillations in biology. One approach that can be useful in
disentangling interconnected oscillatory systems is synthetic
biology. Synthetic biology allows precise control of entrain-
ment networks and has been used to study extremely
complex systems such as a built-in circadian clock [81,91] or
quorum sensing [4]. In the future, building synthetic oscil-
lators that are heavily intertwined in nature (such as the
cell cycle or the Cdc14 oscillators) could elucidate the mech-
anisms behind their coupling and avoid the use of genetic
manipulation in their original natural systems. Finally, the
potential of an oscillatory system to be entrained has not
been explored in many networks, even in well studied oscil-
latory systems such as p53 or Msn2 [29,92,93], both having
the potential to be entrained using distinct combinations of
drugs.

Advances in technologies such as microfluidic devices,
microscopy and optical traps allow precise spatial and tem-
poral control of a cell’s environment and facilitate single-cell
measurements of oscillatory behaviours. Synthetic biology
approaches along with technological advances will be essen-
tial to explore fundamental questions of entrainment such as
the molecular determinants of the entrainment capability of
a system and the functional consequences of entrainment.
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