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Abstract

Neuroimmunology plays a critical role in our understanding of the pathophysiological processes 

that underlie a variety of diseases treated by neurosurgeons including degenerative disc disease 

(DDD), glioblastoma multiforme (GBM), aneurysmal subarachnoid hemorrhage (aSAH), and 

others. Compared to traditional methods in neuroimmunology which would study one pathway or 

gene at a time, emerging multiomics methodologies allow for holistic interrogation of multiple 

immune signaling pathways to test hypotheses and the effects of therapeutics at a systems level. 

In this review, we summarize key concepts for gathering and analyzing multiomics data so that 

neurosurgeons can contribute to the emerging field of systems neuroimmunology. We describe 

three use cases based on original research published from our groups and others which utilize 

transcriptomic, metabolomic, and proteomic analyses to study immune signaling pathways in 

DDD, aSAH, and GBM. Additionally, through our use cases, we share techniques for performing 

machine learning and network-based analyses to generate new clinical insights from multiomics 

data. We hope that neurosurgeons may use our review as a summary of common tools and 

principles in systems immunology, so that they may better engage in creating the immunotherapies 

of tomorrow.
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1. Introduction

The cellular microenvironment of the nervous system is composed of a dynamic milieu 

of vascular, immune, and neural cell types which interact with one another in a way that 

produces complex physiological responses.1 Neuroimmune interactions in particular play 

a critical role in both normal physiology, as well as the pathophysiological processes that 

underlie cranial and spinal neurosurgical disease. In fact, the immune system has been found 

to have a key role in a variety of conditions treated by spine, tumor, and cerebrovascular 

neurosurgeons including (1) the immune-mediated progression of degenerative disc disease 

(DDD)2, (2) the susceptibility of brain tumors like glioblastoma (GBM)3–6 to novel 

immunotherapies, and (3) the response of brain tissue to extravasated blood products during 

aneurysmal subarachnoid hemorrhage (aSAH).7

Systems neuroimmunology is an emerging framework for interrogating neuroimmune 

interactions at a systems level, which can be used to study the immune processes that 

drive neurosurgical disease.8–10 Systems neuroimmunology leverages multiomics data from 

genomic, proteomic, metabolomic, and other sources in order to arrive at a systems 

level picture of which genes, proteins, and metabolites of the immune system are active 

during healthy and diseased states. The evolution of systems neuroimmunology into its 

modern form stems from advancements in molecular technologies, such as expression 

profiling, microchip array technology, immunological assay methods, and large-scale 

epitope screening.9 Neurosurgeons are particularly well poised to engage in systems 

neuroimmunology research, as their role is essential in gathering the tissue samples that 

generate multiomics data.

In this article, we hope to provide neurosurgeons with a practical guide for how 

they may use systems neuroimmunology in their practice to advance our collective 

understanding of neuroimmune interactions in neurosurgical disease. We have selected three 

use cases featuring original research from our laboratories and others that apply systems 

neuroimmunology to the study of immune interactions in spinal and cranial neurosurgical 

disease. These use cases each respectively demonstrate how multiomics data including (1) 

transcriptomic, (2) metabolomic, and (3) proteomic data may be used to generate insights 

about how the immune system drives the progression in a broad variety of neurosurgical 

diseases including DDD, aSAH, and GBM (Figure 1).

2. Multiomics technologies

Systems neuroimmunology has successfully matured as a discipline thanks to technological 

advances in (1) gathering multiomics data in a high-throughput fashion, as well as (2) robust 

analysis pipelines for identifying alterations in immune signaling. In this section, we present 

some general principles related to generating, analyzing, and interpreting multiomics data so 

that neurosurgeons can better engage in this line of research.

2.1 Generating multiomics data

Systems neuroimmunology as applied to the study of neurosurgical pathologies relies on 

robust multiomics datasets generated by carefully curating tissue samples from healthy and 
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diseased subjects. Neurosurgeons are essential to the process of collecting multiomics data 

for systems neuroimmunology research because they are directly involved in procedures 

that result in the excision of diseased tissue. For example, as described in Use Case 1, a 

standard lumbar discectomy and fusion can result in the excision of inflamed disc tissue 

which can be used for systems neuroimmunology research. Several enabling technologies 

such as microarrays, RNA sequencing, and mass spectrometry then allow for multiomics 

data to be gathered from direct tissue biopsies, cerebrospinal fluid, or blood (Table 1).

Generating genomic and transcriptomic data.—Genomic and transcriptomic data 

can be gathered from high throughput technologies that quickly survey global gene 

expression patterns. Through microarray technology, global gene expression in tissue 

samples can be measured in parallel by the thousands of genes and quantified to 

deduce signaling pathways and regulatory networks.11 The emergence of single cell 

RNA sequencing (scRNA-seq) technologies allows transcriptomic data to be gathered 

from individual cells.12,13 RNA-seq requires single-cell suspensions to be obtained, which 

is typically achieved with high yield through mechanical disaggregation and enzymatic 

dissociation. Several technologies, such as flow-cytometry, can be used to then isolate 

individual cells. After isolation, cells are lysed to extract RNA which is subsequently 

amplified by PCR.12 It is important to assess the quality of the extracted RNA by measuring 

its integrity number (RIN). Given that RNA molecules are susceptible to degradation, the 

RIN is an important measure of RNA integrity which can be used for quality control.14 

Before sequencing can be performed, the RNA must be converted into double stranded 

complementary DNA (cDNA), which can be achieved through poly-T oligo-attached 

magnetic beads. Sequencing can then be conducted, with reads mapped to a reference 

transcriptome or genome, and quantified to gene counts per gene or transcript.15 An 

analysis of differential gene expression (DGE) enables quantification through computational 

statistical models to distinguish overlapping transcripts between samples. In Use Case 1, we 

discuss our study that identified molecular regulators associated with DDD in an effort to 

identify promising candidates for therapeutic targets.12,16

Generating proteomic and metabolomic data.—Mass spectrometry is the 

foundational technology for generating proteomic data and allows for characterization of 

proteins through analyzing their mass-to-charge ratio.17 Studying proteins in this fashion 

is a formidable task, due to the fact that genes can generate multiple proteins through 

sequence polymorphisms, alternative splicing, and post-transcriptional modifications. These 

challenges have been overcome with several technological advances.17 For example, 

matrix-assisted laser desorption/ionization time of flight (MALDI-TOF), allows for the 

visualization of proteins in addition to its various proteoforms.18 To use this technology, 

a matrix is used to coat the tissue under study, which aids in desorption and ionization 

of endogenous biomolecules during laser irradiation. Then, individual mass spectra are 

collected to generate signal intensity maps and ion images across the sample area. As 

thousands of these ion images are created through a single MALDI-TOF experiment, 

researchers can use top-down protein identification methods to gain molecular contexts of 

the tissue sample under study.18 In Use Case 2, we discuss how mass spectrometry is used to 

generate metabolomic data from tumor cell lines.
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2.2 Analyzing multiomics data

Broadly, algorithms for analyzing multiomics data can be subdivided into clustering and 

network-based approaches.19

Clustering analysis.—Clustering algorithms are a type of unsupervised machine learning 

algorithm that can infer groups of similar samples based on a distance metric using a 

weighted sum of expression values in multiomics datasets derived from different samples.20 

Samples which have a distance apart from each other less than a given threshold are 

considered similar and are clustered into the same group. Common clustering algorithms 

used in neuroimmunology research include t-distributed stochastic neighbor embedding 

(t-SNE) and uniform manifold approximation and projection (UMAP).21 In Figure 2A, 

we demonstrate an example of hierarchical clustering that was used in Use Case 1 to 

assess tissue-to-tissue and patient-to-patient variation in musculoskeletal tissue samples 

from patients with DDD.

Network-based analysis.—Network-based approaches for analyzing multiomics datasets 

seek to identify dependent relationships and interactions between genes, RNA transcripts, 

and proteins. Such algorithms use metrics like pairwise correlation, mutual information, 

or weighted co-expression in order to assess genes that are closely dependent on one 

another in order to create a network.22 Some common network-based algorithms include 

NetDecoder to derive context specificity, along with visualization packages Cytoscape and 

NetworkX.21–23 In Figure 2B, we show how a network-based algorithm was used to infer 

immune signaling pathways that are active in patients with DDD from Use Case 1.

For neurosurgeons first getting started with using such analytic approaches, there are several 

public multiomics data sources that may be applied to neuroimmunology (Table 2). We 

advise as a best practice to integrate different omics data sources which can serve to 

strengthen associations and reduce noise. In particular, similarity network fusion (SNF) is a 

commonly used method for integrating different omics data sources.23

2.3 Generating new insights from multiomics data

Clinical insight generation is a critical component of multiomics pipelines which 

neurosurgeons can actively participate in. Often, the networks derived from the network-

based analyses we described above can yield insights in and of themselves. For example, 

in Use Case 3, we describe how performing a network analysis on GBM multiomics data 

elucidated mechanisms of resistance to oncolytic viral therapies. Additionally, we describe 

how the same network analysis allowed us to postulate measles virus as a more effective 

oncolytic viral vector compared to herpes simplex virus for GBM with CCN1 resistance 

signatures (Figure 2C).

Additionally, once an interaction network has been derived from multiomics data, novel 

clinical insights can be gathered through performing in silico simulations of network 

behavior. Network simulator tools like BioNSi can estimate the behaviors of genes and 

proteins in a network once certain interactions are deleted or added.24
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3. Systems neuroimmunology and degenerative disc disease (DDD)

3.1 Immunology review in DDD

DDD is a degenerative process affecting the mechanical integrity of intervertebral discs 

(IVDs) in the spine which are composed of an inner nucleus pulposus (NP), outer annulus 

fibrosus (AF), and the bordering cartilaginous end plate (EP).25 DDD is thought to be an 

age-related phenomenon that includes inflammation and cell apoptosis leading to decreased 

proteoglycan synthesis with resultant disc dehydration and loss of disc height. Multiomics 

can facilitate translational research to identify key genetic networks with sufficiently high 

levels of expression to make practical targets for genetic molecular therapy directed at 

ameliorating DDD.

Several studies in the neuroimmunology literature have elucidated the immune pathways 

that drive the progression of DDD. Initially, cells from the NP and AF secrete 

proinflammatory molecules that recruit immune cells to the IVD.26 Cytokines such as 

tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, and IL-17 increase in concentration 

in the IVD, resulting in an inflammatory microenvironment.26 Such an environment 

reduces the structural integrity of the NP and AF, leading to herniation and annular tears. 

The degenerated IVDs subsequently amplify the inflammatory cascade through further 

production of TNF-α, IL-1, IL-6, IL-17, interferon (IFN)-γ, and inflammatory mediators 

such as nitric oxide and prostaglandin E2.27,28

It is imperative that neurosurgeons seeking therapeutic targets for DDD have a thorough 

understanding of the immunopathology for spine degeneration. In our first use case, we 

present work from our group that uses transcriptomic analysis to gain insight into DDD 

pathogenesis.

3.2 Use Case 1: Transcriptomics to characterize inflammatory pathways in DDD

Our group has published a study that aimed to identify immune signaling pathways distinct 

to DDD progression.2 DDD may lead to spinal stenosis, disc herniation (DH), and/or 

degenerative spondylolisthesis (DS) which may express as radiculopathy or myelopathy 

in the patient. To further enhance the understanding of DH and DS pathogenesis, the 

transcriptome data of IVD samples from lumbar degenerated discs were analyzed. Disc 

tissues were harvested intraoperatively and subsequently underwent RNA-seq.2

A total of 33 adult patients undergoing lumbar discectomy to treat DDD were enrolled in 

our study. During lumbar discectomy, NP samples from 33 adult patients were carefully 

dissected in the operating room by the primary surgeon. The harvested samples were then 

frozen in liquid nitrogen and stored until ready for processing. Of the 33 samples, only a 

total of 10 samples met our threshold RIN necessary for next generation sequencing.

The NP tissue biopsies were subsequently ground into powder and homogenized, then 

quantified with a spectrophotometer. Next-generation RNA sequencing was then performed 

to assess differential gene expression. Computational analysis compared NP RNA-seq to 

bone, cartilage, growth plate, and muscle tissue.2
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When we compared transcriptomic data from NP samples compared to other 

musculoskeletal tissues in patients with DDD, we were able to identify several immune 

signaling pathways that were upregulated. We found 702 genes demonstrating significant 

upregulation and 3,734 genes with significant downregulation when comparing the NP 

samples to other musculoskeletal tissues. To better understand the unique regulatory 

pathway for DH and DS, the differential gene expression profile revealed 1514 upregulated 

and 281 downregulated mRNA. Furthermore, STRING analysis demonstrated differentially 

expressed genes for each gene ontology (GO) term from different types of networks with 

distinct cellular functions for each biomedical condition. Specifically, we found several 

differentially expressed genes in chemotactic signaling (CXCL10, CXCL11, IL1RL2, 

and IL-6) and matrix-degrading pathways (MMP16, ADAMTSL1, 5, 8, 12, and 15). 

Neurosurgeons can leverage these identified gene regulatory networks, or conduct similar 

transcriptomic analysis, to strategically engineer novel pharmacological approaches for the 

treatment of lumbar DDD and other degenerative diseases.

4. Systems neuroimmunology and aneursymal subarachnoid hemorrhage

4.1 Immunology review in aSAH

Extravasated blood products that are released after intracerebral hemorrhage (ICH) or 

aneurysmal subarachnoid hemorrhage (aSAH) are known triggers of inflammation in the 

brain.29,30 While primary injury, which occurs within hours after ICH, is related to the 

mechanical distortion of brain tissue due to hematoma expansion, secondary injury, which 

occurs on a much longer time scale after initial insult, is often mediated by immune 

signaling. Red blood cell lysis occurs approximately 24 hours after initial ICH and has 

been demonstrated to activate resident microglia and astrocytes. These neuroglia in turn 

release cytokines such as TNF-α and IL-1β that recruit circulating immune cells, including 

neutrophils and macrophages.29 In aSAH, the pathway towards neutrophil recruitment is 

similar and cytokines like IL-6, IL-1α, IL-1β, IL-8, and TNF-α have been implicated as 

contributors to cerebral vasospasm.30

High-throughput methods from multiomics are enabling researchers to interrogate changes 

in the cerebrospinal fluid of patients with aSAH and ICH. Here we summarize recent work 

from Koch et al.7 that used metabolomics and machine learning to study biomarkers in the 

cerebrospinal fluid (CSF) of patients with aSAH.

4.2 Use Case 2: Metabolomics to evaluate outcomes after aneurysmal subarachnoid 
hemorrhage

In their study, Koch et al. used metabolomic data derived from the CSF samples of 81 

patients with aSAH to identify key metabolites in an immune signaling pathway that were 

predictive of poor outcomes after aSAH. CSF samples were obtained from unclamped 

external ventricular drains at three different time points (0–5 days, 6–10 days, and 11–

15 days after admission). CSF samples were additionally obtained in a control cohort of 

16 patients with nonruptured cerebral aneurysms either through lumbar drain or lumbar 

puncture.
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Several steps were taken to prepare CSF samples for metabolomic analysis. Samples were 

centrifuged to pellet out cellular material and the resulting supernatant was aliquoted and 

treated with cetonitrile/methanol (3:1) with citrulline-d8 in order to prepare the samples 

for processing through a high-performance liquid chromatography (HPLC) system. Mass 

spectrometry was then used to quantitatively measure the concentrations of a total of 138 

metabolites.

To process their metabolomic data, Koch et al. used machine learning models to identify 

which metabolites were most strongly associated with modified Rankin scale (mRS) 

scores at discharge and at 90 days after discharge. They identified that the concentrations 

of key metabolites that alter the nitric oxide signaling pathway including symmetric 

dimethylarginine (SDMA), dimethylguanidine valeric acid (DMVA), and ornithine are 

associated with poor mRS at discharge and at 90 days.

The methodology from Koch et al. provides an example of how multiomics can shed light 

into how key metabolites that regulate immune signaling pathways can also shape outcomes 

after neurosurgical disease. Their findings provide key biomarkers for predicting outcomes, 

as well as point to potential drug targets for modulating the immune response after aSAH. 

Neurosurgeons may use a similar multiomics workflow as Koch et al. to study immune 

signaling pathways that are upregulated in the CSF samples of patients with epilepsy, spinal 

cord injury, and other neurosurgical diseases.

5. Systems neuroimmunology and glioblastoma multiforme

5.1 Immunology review in GBM

GBM is an aggressive brain tumor characterized by significant cellular and molecular 

heterogeneity, as well as complex interactions with the host immune system.31 Recent work 

characterizing the GBM microenvironment has led to the discovery of functionally distinct 

immune cells in tumors including tumor-infiltrating dendritic cells, regulatory T cells, 

cytotoxic T cells and tumor associated macrophages which each uniquely shape response 

to immunotherapies.32 For example, regulatory T cells recruited by GBM cells can promote 

tumorigenesis by suppressing the cytotoxic effect of tumor-infiltrating dendritic cells and 

cytotoxic T cells.33 Given how complex these interactions between immune cells and GBM 

cells are, there has been an increasing appreciation of the need for systems-based approaches 

to develop new immunotherapies for GBM.34

Herein, we present our second use case based on original work that uses systems 

neuroimmunology approaches to better understand how the immune system interacts with 

GBM. Use Case 3, discusses work done by our team to determine potential therapeutic 

targets for HSV-1 derived oncolytic viruses (OVs) to treat GBM based on a proteomic 

analysis. This use case highlights how proteomic data can generate insights about GBM 

neuroimmunology.
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5.2 Use Case 3: Protein-protein interaction analysis to identify tumor susceptibility to 
immunotherapies

Immunotherapies use the host immune system to target GBM cells and are broadly divided 

into two categories: passive and active.37 Passive immunotherapies, such as monoclonal 

antibodies, require continuous administration over time as they produce short-lived, yet 

specific, immune responses. On the other hand, active immunotherapies, including OVs, are 

a direct stimulation of an immune response with long-term effects. OV immunotherapy for 

cancer dates back to the 1990s, when herpes simplex virus 1 (HSV-1) was engineered to 

selectively replicate and target tumor cells. Since then, active immunotherapies have made 

significant strides and are the focal point of many clinical trials.37

Our team has previously published a study3 that aimed to further understand HSV-1 OV 

resistance by investigating the role of cellular communication network factor 1 (CCN1) on 

GBM intracellular state. Found in most GBM microenvironments, CCN1 expression has 

shown to predict resistance to OV. This work builds on a study by Haseley et al.38, which 

found that CCN1 binds and activates cell surface integrin α6β1, promoting an antiviral and 

protumoral state. GBM with high concentrations of CCN1 (CCN1high) have demonstrated 

worse rates of overall and progression-free survival.3

To further understand the downstream effect of CCN1, transcriptomic data of LN229 GBM 

cell lines were mapped to known protein-protein interactions (PPIs) in the iRefIndex 

database. These PPIs were synthesized into networks and analyzed in NetDecoder to 

compare CCN1high to CCN1low GBM phenotypes to elucidate critical differences between 

the two states. High impact genes, network routers, key targets, and CCN1-specific edges 

were identified through information flow analysis. We further compared these cell states 

through network and motif modeling, overrepresentation analysis, and assessment of gene 

dependencies.3

After studying differential edge flows, we identified 39 nodes and 12 binary edges that may 

potentially determine susceptibility of CCN1high GBM to OV. Furthermore, CCN1high states 

were shown to exploit IDH1 and TP53 and increase dependency on RPL6, HUWE1, and 

COPS5. Our findings were reproduced in 65 other GBM cell lines and 174 clinical GBM 

patient sample datasets for validation.3

Our study identified novel pathways, proteins, and interactions critical to CCN1high GBM 

phenotype. Conducting a generalized network model and systems level analysis allowed us 

to identify several innate immune pathways in GBM that CCN1 leverages to disrupt HSV-1 

OV immunotherapy. Additionally, we found opportunities to strategically improve HSV-1 

OV design. For example, because measles virus is not present in the resistance signatures 

we identified through our overexpression analysis (Figure 2C), we postulated that measles 

virus may be a better vector than HSV-1 for GBM treatment.3 In a similar vein, other 

neurosurgeons can use this approach to design more effective immunotherapies for GBMs 

and other CNS malignancies.
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6. Conclusions

Recent evidence has demonstrated that neuroimmune mediated processes have an essential 

role in both the normal physiology of the nervous system, as well as the pathophysiological 

processes that drive neurosurgical disease. The study of the multiome, which integrates 

genomic, transcriptomic, proteomic, and other omics data sources, is driving new 

discoveries in neuroimmunology. Compared to traditional approaches in neuroimmunology, 

multiomics methods allow for holistic interrogation of multiple immune signaling pathways 

at a systems level. In this review, we described three use cases where multiomics 

approaches were used to investigate the neuroimmunology of different conditions treated 

by neurosurgeons including DDD, GBM, and aSAH. We hope that the methods outlined 

here may catalyze further research using systems immunology and empower neurosurgeons 

to generate future discoveries in neuroimmunology.
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GO gene ontology

HIV-1 human immunodeficiency virus 1
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HSV-1 herpes simplex virus 1

IFN interferon

IL interleukin

IPA Ingenuity Pathway Analysis

IVD intervertebral disc

MALDI-TOF matrix-assisted laser desorption/ionization time of flight

NP nucleus pulposus

OV oncolytic virus

PPI protein-protein interaction

RIN RNA integrity number

RNA-seq RNA sequencing

scRNA-seq single cell RNA sequencing

SNF similarity network fusion

SpA spondyloarthritis

TNF tumor necrosis factor

t-SNE t-distributed stochastic neighbor embedding

UMAP uniform manifold approximation and projection

aSAH aneurysmal subarachnoid hemorrhage
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Figure 1. 
A summary of multiomics approaches to characterize neuroimmune interactions in 

degenerative disc disease and glioblastoma multiforme. (1A) Proteomics can be used 

to identify susceptibilities of GBM to immunotherapy based on protein-protein network 

analysis, (1B) Metabolomics can identify metabolites that modulate immune interactions 

after aSAH, and (1C) Transcriptomics can identify differentially expressed genes in immune 

signaling pathways that drive DDD progression. Figure 1 created using BioRender.com.
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Figure 2. 
Examples of different approaches to analyzing multiomics data. (2A) Clustering methods 

can be used to assess patient-to-patient and tissue-to-tissue variation in musculoskeletal 

tissue samples from patients with DDD, (2B) Network methods can be used to assess 

immune signaling pathways that are active in patients with DDD, (2C) Overrepresentation 

analyses can be used to detect signatures of resistance to OV therapy in GBM. Figure 2A 

and 2B used with permission form Bydon et al, 20202.
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Table 1.

A summary of multiomics studies including data source, enabling technologies, and insights created for 

neuroimmunologys.

Study -Omic Approach Data Source Enabling Technologies Application in Neuroimmunology

Costantino et al, 
201739

Genomics Genes DNA microarray Genome-wide association study from 906 subjects, 
including 486 with spondyloarthritis (SpA), 

revealed an association of SpA with MAPK14

Bydon et al, 
20202

Transcriptomics RNA 
transcripts

RNA sequencing (RNA-
seq)

Transcriptomics data from intervertebral disc 
samples showed immune signaling pathways were 

upregulated in DDD

Ma et al, 20214 Proteomics Proteins Matrix-assisted laser 
desorption/ionization time 
of flight (MALDI-TOF)

A computational analysis of protein-protein 
interactions in GBM cell lines identified 

opportunities to strategically improve 
immunotherapy design

Valentin-
Guillama et al, 

20185

Metabolomics Small 
molecules and 

metabolites

Mass spectrometry, 
high performance liquid 
chromatography (HPLC)

Metabolomic data from gp120 treated glioma cells 
shows that HIV-1 can promote proliferation and 
activation of glycolysis, resulting in increased 

protein synthesis
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Table 2.

Resources for public multiomic datasets.

Study Data Source Multiomics Type Description

Edgar et al, 200240 Gene Expression 
Omnibus (GEO)

Genomics A public curated repository of microarray experiment data

Darmanis et al, 201741 GBMseq Transcriptomics A public repository of scRNA-seq on 3,589 cells from GBM samples 
in a cohort of 4 patients

Xie et al, 201542 HGCC Transcriptomics An open resource useful to both basic and translational GBM 
research, containing a biobank of 48 GBM cell (GC) lines and an 

associated database containing high-resolution molecular data

Samaras et al, 202043 ProteomicsDB Proteomics A public, curated repository of proteomics datasets from a variety of 
host organisms

Joshi, 201944 TcellSubC Proteomics A public proteomic dataset of 6,572 proteins in the human CD4+ T 
cells proteome

Sud et al, 201645 Metabolomics 
Workbench

Metabolomics A public international repository for metabolomics data
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