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Abstract

We previously reported that maternal PFBS, an emerging pollutant, exposure is positively 

associated with preeclampsia which can results from aberrant trophoblasts invasion and 

subsequent placental ischemia. In this study, we investigated the effects of PFBS on trophoblasts 

proliferation/invasion and signaling pathways. We exposed a human trophoblast line, HTR8/

SVneo, to PFBS. Cell viability, proliferation, and cell cycle were evaluated by the MTS assay, 

Ki-67 staining, and flow cytometry, respectively. We assessed cell migration and invasion with 

live cell imaging-based migration assay and matrigel invasion assay, respectively. Signaling 

pathways were examined by Western blot, RNA-seq, and qPCR. PFBS exposure interrupted cell 

proliferation and invasion in a dose-dependent manner. PFBS(100 μM) did not cause cell death 

but instead significant cell proliferation without cell cycle disruption. PFBS(10 and 100 μM) 

decreased cell migration and invasion, while PFBS (0.1 μM) significantly increased cell invasion 

but not migration. Further, RNA-seq analysis identified dysregulated HIF-1α target genes which 

are relevant to cell proliferation/invasion and preeclampsia, while Western Blot data showed the 

activation of HIF-1α, but not Notch, ERK1/2, (PI3K)AKT, and P38 pathways.

In conclusions, PBFS exposure altered trophoblast cell proliferation/invasion which might be 

mediated by preeclampsia-related genes, suggesting a possible association between prenatal PFBS 

exposure and adverse placentation.
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Introduction

Poly- and per-fluoroalkyl substances (PFAS) have attracted widespread attention in recent 

years due to their bioaccumulation, toxicity, and ubiquitous nature (1). PFAS are a group 

of compounds characterized by a hydrophobic poly-fluorinated alkyl chain and a polar 

hydrophilic terminal functional group. PFAS are used in a variety of industrial and consumer 

products such as surfactants for soil/stain resistance, textiles, paper and metals, firefighting 

foam, and pesticides (2, 3). Humans are exposed to PFAS through contaminated drinking 

water, food, outdoor air, indoor dust, and soil (4).

One of the most widely known PFAS is perfluorooctane sulfonic acid (PFOS), which 

has an eight-carbon backbone with a sulfonate. Due to strong carbon-fluorine bonds 

(C8), PFOS is extremely stable and persistent in the environment (USEPA, Document# 

822R14002) and is not readily eliminated from humans due to its half-life of 5.4 years 

(5, 6) (7–16). Data from human and animal studies demonstrate numerous health and 

ecological risks resulting from PFOS exposure including increased risk of thyroid disease, 

blood cholesterol levels, and preeclampsia and decreased body’s response to vaccine, 

fertility in women, and birth weight, liver and immune system damage (17–29). Thus, 

beginning in 2002, most manufacturing of PFOS in the United States was discontinued 

voluntarily by 3M and DuPont in favor of shorter chain PFAS (C4 or C6, Toni Krasnic, 

the U. S. Environmental Protection Agency, April, 2011, https://www.oecd.org/env/ehs/risk-

management/47643223.pdf) (30), such as perfluorobutane sulfonate (PFBS) (17, 31–35) 

(30).

PFBS, which has a four-carbon backbone (C4), has been used as an alternative to PFOS as it 

is less toxic (Toni Krasnic, the U. S. Environmental Protection Agency, April, 2011, https://

www.oecd.org/env/ehs/risk-management/47643223.pdf). There are no current restrictions 

on the production and use of PFBS. However, although less so than PFOS, PFBS is 1) 

very resistant to degradation (36) and 2) bio-accumulative (37, 38). In addition, PFBS is 

highly soluble in water (42 g/L) (17), giving it higher mobility in the environment than 

PFOS (solubility: 591 mg/L). Water treatment processes using granular activated carbon can 

efficiently reduce long-chain PFAS, including PFOS, but have little effect on short-chain 

PFAS such as PFBS (39). Therefore, due to the higher mobility and increased ongoing 

emissions, and the fact that the greatest source of exposure is through drinking water, 

PFBS is now increasingly released into the environment. The median concentration of PFBS 

(1.21 ng/L) in drinking water was consistently higher than that of PFOS (0.25 ng/L) and 

perfluorooctanoic acid (PFOA, 0.74 ng/L) in a survey of 79 cities in China (40). In another 

study, PFOA and PFBS were the two most dominant compounds (median concentrations: 

50.67 ng/L and 29.84 ng/L, respectively) identified in 39 surface water samples in Shanghai 

(30). Concentrations of PFOS were generally less than PFBS in these samples (30). In 

parallel, along with exposure via food and drinking water, humans are increasingly exposed 
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to PFBS through dust inhalation and possible dermal contact with consumer products (41–

43). With limited data about the health effects on humans, the public health impact of PFBS 

remains unclear and must be evaluated.

Researchers have demonstrated that exposure to PFBS may result in endocrine disruption 

(3, 44–47), toxicity in human placental trophoblasts (3) and neuronotypic cells (48), 

immunotoxicity (49, 50), and transcriptional effects (51). Recent studies indicate that 

exposure to PFBS may increase the risk of human female infertility due to endometriosis 

(52), reduce egg production and brood number in C. elegans (53), and decrease sperm 

motility in humans (54). Maternal serum PFBS can pass through the placental barrier and 

reach the fetus, evidenced by its detection in the umbilical cord blood of human newborns 

(55–57) and in a mother-fetus pair of killer whales (58). Recently we reported that cord 

blood levels of PFBS is positively associated with gestational hypertension and preeclampsia 

(57).

Preeclampsia is a pregnancy-specific disease that affects 5–8% of pregnant women. 

Preeclampsia is characterized by a new-onset of hypertension after twenty weeks of 

gestation and remains one of the major cause of adverse pregnancy and birth outcomes 

worldwide (59). Preeclampsia can cause fetal growth restriction and stillbirth. It is also 

one of the leading causes of premature births and its ensuing complications, including 

learning disabilities, epilepsy, cerebral palsy, and hearing and vision problems. In mothers-

to-be, preeclampsia can cause serious complications that include stroke, seizure, pulmonary 

edema, heart failure, reversible blindness, bleeding from the liver, placental abruption, and 

hemorrhage. Despite the severe consequences of preeclampsia on maternal and fetal health, 

the pathogenesis is unclear. The syndrome is thought to begin with shallow trophoblastic 

invasion and abnormal placentation which leads to placental insufficiency and the release of 

various mediators into the maternal circulation (59). The processes of trophoblast invasion 

are highly controlled by numerous paracrine and autocrine factors which can be mediated 

through Mitogen-Activated Protein Kinases (MAPKs) (60), Phosphoinositide 3-Kinase 

(PI3K)/AKT (60), P38 (61, 62), Notch signaling pathways (63, 64), and cellular hypoxia 

conditions (65–67).

Within this context, the aim of this study is to determine the effects of PFBS exposure 

on the cytotoxicity and invasion of a human placental trophoblast cell line, HTR-8/SVneo. 

We hypothesize that PFBS impedes the invading trophoblast, which contributes to placental 

ischemia in preeclampsia. We will further explore PFBS-dysregulated signaling pathways 

governing trophoblast invasion by measuring the activation of key transcription factors of 

these pathways and performing RNA-seq analysis.

Materials and Methods

Chemicals

Potassium nonafluoro-1-butanesulfonate (K+PFBS, CAS No.: 29420–49-3, 98% purity) was 

purchased from Sigma-Aldrich (St. Louis, MO). Stock solutions of PFBS at 100, 10, 1, 0.1, 

0.01 mM were prepared by dissolving PFBS in ultrapure distilled water. These doses were 

chosen for cellular function studies based on LD10 (1000 μM). To ensure the effects on 
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cellular functions are not due to cytotoxicity, we used doses at least 10 times lower than 

LD10 (100, 10, 1, 0.1, and 0.01 μM).

Cell culture

An immortalized first-trimester human cytotrophoblast cell line (HTR-8/SVneo; a gift 

from Dr. C.H. Graham, Queen’s University, Kingston, Ontario, Canada)(68) was cultured 

in RPMI 1640 supplemented with 5% fetal bovine serum (FBS) and maintained in a 

humidified, 5% CO2 incubator at 37°C. The cells were sub-cultured using 0.05% trypsin-

EDTA (Gibco, Life Technologies, Carlsbad, California) for no more than five passages.

Cell viability assay (MTS assay)

HTR-8/SVneo cells were seeded at 2 × 104 cells/well in 48-well plates and incubated for 

24 h. The cells were then treated with K+PFBS (0, 0.01, 0.1, 1, 10, 100 μM or 0, 0.1, 1, 

2.5, 5, 10 mM) in quadruplicate for 24 h. Cell viability was measured using the CellTiter 

96® AQueous One Solution Cell Proliferation Assay kit per the manufacturer’s instructions 

(G5421; Promega, Madison, WI). Cell viability was compared between treatments by 

determining the optical density at 490 nm (OD490) after incubating the cells with MTS 

reagents for 4 h. These experiments were repeated five times (N=5).

Annexin V/PI flow cytometry

After the HTR-8/SVneo cells were treated with PFBS (0, 0.1, 10 mM) for 2, 6, and 18 

h, the floating cells from the supernatants were collected by centrifugation. Attached cells 

were collected by brief trypsinization with 0.05% Trypsin-EDTA. Floating and attached 

cells were combined. The apoptotic and/or necrotic cells were measured with the Annexin 

V-FITC Early Apoptosis Detection Kit (P08758, Cell Signaling Technology, Danvers, MA) 

according to the manufacturer’s protocol. Briefly, after washing the cells with ice-cold PBS, 

the cells were suspended in Annexin V Binding buffer. Cells were then incubated with 

Annexin V-FITC Conjugate and Propidium Iodide (PI) for 10 min in the dark. The cells 

were immediately analyzed by the BD FACS Calibur analyzer. Experiments were repeated 

three times (N=3).

Cell cycle analysis

The distribution of HTR-8/SVneo cells in various phases of the cell cycle (G0/G1, S, G2/M) 

was evaluated by flow cytometry. Briefly, PFBS (0, 0.01, 0.1, 1, 10, 100 μM)-treated HTR-8/

SVneo cells were harvested after 24 h of incubation and washed twice with cold PBS. The 

cells were then centrifuged at 3000 x g for 3 min at room temperature, followed by overnight 

fixation with 70% ethanol. Finally, the cells were incubated with staining solution which 

contained 50 μg/ml PI (Thermo Fisher Scientific, USA) and 0.1 mg/ml RNase A (Thermo 

Fisher Scientific, USA) at 37℃ for 30 min. The estimations of the percentage of cells in 

each phase of the cell cycle were analyzed using BD FACS Calibur analyzer and FlowJo 

software (FlowJo LLC, Ashland, OR). Experiments were repeated three times (N=3).
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Immunofluorescence staining

HTR-8/SVneo cells were seeded at 2 × 104 cells/well in glass chamber slides (ibidi 

GmbH, Germany) and incubated for 24 h. Cells were then treated with K+PFBS (0, 

0.01, 0.1, 1, 10, 100 μM) for 24 h. Cells were fixed with cold methanol (−20°C) for 

10 min and blocked with 1% BSA, 5% normal goat serum and 0.1% tween-20 in PBS 

for 60 min at room temperature. After blocking, the cells were incubated with primary 

antibodies overnight at 4°C in humidified chambers. Primary rabbit anti-human Ki-67 

antibody (Abcam, Cambridge, MA) was used at a 1:500 dilution. Anti-rabbit IgG antibodies 

were used as the negative control (R & D system, Minneapolis, MN). Goat anti-rabbit 

secondary antibodies and Alexa Fluo 594 (Life Technologies, Carlsbad, CA) were used 

at 1:500. Slides were mounted using mounting medium for fluorescence with DAPI 

(Vector Laboratories, Burlingame, CA) and examined with a Zeiss Axio Imager widefield 

fluorescence microscope. Images were taken from each quadrant per well, with an average 

of two images per quadrant (eight areas examined per treatment per repeat). The ratio of 

Ki-67 staining was determined by calculating the number of Ki-67 positive cells (red)/DAPI 

positive cells (blue). Experiments were repeated three times (N=3).

Cell migration assay

The cells were seeded at 1 × 106 cells/well in 6-well plates and grew into a 100% confluent 

monolayer in 24 h. The cell monolayer was then scraped in a straight line with a sterile P200 

pipette tip, thus creating a wound area. Cells were then treated with K+PFBS (0, 0.01, 0.1, 

1, 10, 100 μM). The wound area was filmed at three locations along the scratch using live 

imaging with the Zeiss Axio Observer microscope. Images were taken every 5 min for up to 

18 h, with 216 images taken per location. The wound area at the different time points was 

determined using ImageJ analysis software (National Institutes of Health, Bethesda, MD) 

and relative cell migration rate was calculated from the slope of wound area over time as 

previously described (69). Experiments were repeated five times (N=5).

Invasion assay

Invasion of HTR-8/SVneo cytotrophoblast cells was measured in 24-well Matrigel invasion 

chamber plates (35–4480; Becton Dickinson Labware, Bedford, MA). The non-Matrigel-

coated controls used were polyethylene terephthalate membranes (with 8.0 µm pore size) 

cell culture inserts (35–4578; Becton Dickinson Labware). To reconstitute the Matrigel, 

the Matrigel-coated inserts were allowed to warm to room temperature. Then, 500 µL of 

serum-free RPMI 1640 media was added to the interior of the inserts and bottom wells, and 

inserts were allowed to hydrate in a humidified, 5% CO2 incubator at 37°C for two hours. 

After rehydration, the media in the top and bottom chambers were removed and the cells 

were seeded at 1 × 104 cells/well in the upper chamber of the Matrigel-coated insert and the 

non-Matrigel-coated control inserts with a total volume of 500 µL of serum-free RPMI 1640 

supplemented with 0.1 % fetal bovine serum (FBS). In the lower chamber, 750 µL of RMPI 

1640 supplemented with 5% FBS was added to act as a chemoattractant. Cells were treated 

with K+PFBS (0, 0.01, 0.1, 1, 10, 100 μM) and incubated for 24 h. Non-invasive cells on 

the upper surface of the chambers were wiped away with a sterile cotton-tipped applicator 

and any remaining cells were removed from the rim of the chamber with a sterile P200 
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pipette tip. The invasion chambers were then stained with the Hema-3-stain kit (22–122911; 

Thermo Fisher Scientific, Waltham, MA). The stained chambers were later viewed and 

imaged with a Nikon Diaphot microscope. Percentage invasion was calculated by dividing 

the number of invading cells through Matrigel-coated inserts by the number of invading 

cells through non-Matrigel-coated inserts. Invasion index was calculated by dividing percent 

invasion of treatment group by percent invasion of control group (considered as “1”). 

Experiments were repeated six times (N=6).

Western blot

HTR-8/SVneo cells were seeded at 5 × 105 cells/well in 6-well plates and grew into a 

70% confluent monolayer in 24 h. In the time course study, cells were treated with the 

K+PFBS (100 μM) for 0, 1, 3, and 6 h to examine the protein levels of HIF-1 α. In the 

dose response study, cells were treated with K+PFBS (0, 0.01, 0.1, 1, 10, 100 μM) for 1 

h to examine the protein levels of HIF-1 α. For screening experiments, cells were treated 

with PFBS (0, 0.1 mM[=100 μM], 10 mM) for 15 min to examine the activation of the 

ERK1/2, (PI3K)/AKT, and P38 signaling pathways as manifested by the phosphorylation of 

ERK1/2, AKT, and P38, respectively. The time points for these pathways were optimized in 

a previously performed pilot study. In parallel, we exposed these cells to PFBS for 2, 6, and 

18 h to investigate the activation of Notch signaling as manifested by the cleavage of Notch2 

or Notch3.

After treatments, cell lysates were harvested using RIPA buffer (Sigma Aldrich, St. Louis, 

MO) with the complete mini-protease inhibitor cocktail (Roche, Mannheim, Germany). 

Protein concentration was determined with the Bradford assay (Bio-Rad Laboratories, 

Hercules, CA). Total protein samples (25μg) were loaded onto 10% sodium dodecyl 

sulfate polyacrylamide gels, separated, and then transferred onto a polyvinylidene difluoride 

membrane. The membranes were blocked with 5% milk in Tris-Buffered Saline and Tween 

20 (TBST) buffer and probed in blocking buffer with primary antibodies overnight at 

4°C. Primary antibodies used in this study included: rabbit anti-human HIF-1α antibody 

(1:1000 dilution) rabbit anti-human phosphor- ERK1/2 antibody (1:1000 dilution), rabbit 

anti-human phosphor-AKT antibody (1:1000 dilution), rabbit anti-human phosphor-P38 

antibody (1:1000 dilution), rabbit anti-human Notch2 antibody (1:1000 dilution), rabbit anti-

human Notch3 (1:1000 dilution) antibody, rabbit anti-human GAPDH antibody (1:20,000 

dilution). The secondary antibody was used at a 1:2000 dilution. All antibodies were 

purchased from Cell Signaling Technology. The membranes were visualized and directly 

photographed using the ChemiDoc MP Imaging System with Image Lab Software (Bio-Rad, 

Berkeley, CA) and optimized to maintain bands within the linear range. Band intensity was 

measured using ImageJ analysis software (NIH, Bethesda, MD), and data are presented as 

ratios after being normalized to an internal control, GAPDH or actin. Experiments were 

repeated four times (N=4).

RNA-seq

HTR-8/SVneo cells were cultured in the absence (control) or presence of PFBS (0, 0.01, 1, 

100 μM) for 24 h. Total RNA was extracted using the RNeasy Mini Kit Qiagen, CA, USA) 

following the manufacturer’s instructions. Extracted total RNA quality and concentration 
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were assessed on a 2100 Bioanalyzer (Agilent Technologies) and Qubit 2.0 (ThermoFisher 

Scientific), respectively. Only extracts with RNA Integrity Number (RIN) greater than 7 

were processed for sequencing. RNA-seq libraries were prepared using the commercially 

available KAPA Stranded mRNA-Seq Kit following the manufacturer’s protocol. In brief, 

mRNA transcripts were first captured using magnetic oligo-dT beads, fragmented using 

heat and magnesium, and reverse transcribed using random priming. During the 2nd strand 

synthesis, the cDNA:RNA hybrid was converted into to double-stranded cDNA (dscDNA) 

and dUTP incorporated into the 2nd cDNA strand, effectively marking the second strand. 

Illumina sequencing adapters were then ligated to the dscDNA fragments and amplified 

to produce the final RNA-seq library. The strand marked with dUTP was not amplified, 

allowing strand-specificity sequencing. Libraries were indexed using a dual indexing 

approach allowing for multiple libraries to be pooled and sequenced on the same sequencing 

lane on a HiSeq 4000 Illumina sequencing platform. Before pooling and sequencing, 

fragment length distribution and library quality was assessed on a 2100 Bioanalyzer using 

the High Sensitivity DNA Kit (Agilent Technologies). All libraries were then pooled in 

equimolar ratio and sequenced on one lane of HiSeq 4000 at 50bp Single-Read. Once 

generated, sequence data was demultiplexed and Fastq files generated using Illumina’s 

Bcl2Fastq2 conversion software. Three sets of experiments were conducted (N=3).

RNA-seq data was processed using the TrimGalore toolkit (http://

www.bioinformatics.babraham.ac.uk/projects/trim_galore) which employs Cutadapt (70) to 

trim low quality bases and Illumina sequencing adapters from the 3’ end of the reads. Only 

reads that were 20nt or longer after trimming were kept for further analysis. Reads were 

mapped to the GRCh37v75 version of the human genome and transcriptome (71) using 

the STAR RNA-seq alignment tool (72). Reads were kept for subsequent analysis if they 

mapped to a single genomic location. Gene counts were compiled using the HTSeq tool 

(http://www-huber.embl.de/users/anders/HTSeq/). Only genes with at least 10 reads in any 

given library were used in subsequent analyses. Normalization and differential expression 

were carried out using the edgeR (73) Bioconductor (74) package with the R statistical 

programming environment (www.r-project.org). A linear negative binomial mixed model 

was used with batch as a random intercept and dose as a factor. The false discovery rate 

was calculated using the Benjamini-Hochberg method to control for multiple hypothesis 

testing. Gene set enrichment analysis (75) was performed to identify gene ontology terms 

and pathways associated with altered gene expression for the comparison performed.

Quantitative RT-PCR

Following RNA-seq analysis, differentially expressed genes were validated using 

quantitative RT-PCR.

The reverse transcription reaction for first-strand cDNA synthesis was performed 

using the Reverse Transcription Kit (Bio-Rad). Primers used for all genes are 

listed in Table S1. Primers used for internal control gene glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) were forward (CATGAGAAGTATGACAACAGCCT) and reverse 

(AGTCCTTCCACGATACCAAAGT).
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The PCR reaction was performed at 95°C for 3 min, followed by 40 cycles of 95°C for 30 

s and 60°C for 40 s. Quantitative RT-PCR analysis was performed with the CFX Connect 

Real-Time system (Bio-Rad). The gene expression levels for each individual sample were 

normalized to GAPDH. The relative expression was analyzed using the 2−ΔΔCt method. 

Experiments were repeated four times (N=4)

Statistical analysis

Data are presented as means ± SEMs. One-way ANOVA with the post-hoc Dunnett’s test 

was used for multiple comparisons. All treatments were compared to control (PFBS, 0 μM). 

Results for which P < 0.05 were considered statistically significant. Statistical analyses were 

performed using GraphPad Prism 6.0 (La Jolla, CA).

Results

The cytotoxicity of PFBS in HTR-8/SVneo cells

Treatment with PFBS (0, 0.01, 0.1, 1, 10, 100 μM) for 24 h did not result in cell death or 

disruption of the cell cycle in HTR-8/SVneo cells (Fig 1A and 1B). To evaluate the growth 

fraction of our cell population, we measured Ki-67. This protein, an excellent marker of cell 

proliferation, is present during all active phases of the cell cycle but absent in resting cells. 

Treatment with 100 μM PFBS significantly increased the proportion of Ki-67 staining in red 

to nuclei in blue vs. control cells. The ratio of Ki-67 staining to total nuclei staining was 

0.32±0.04 (or 32%±4%) in cells treated with 100 μM PFBS and 0.16±0.05 (or 16%±5%) in 

control cells (P =0.02). Representative immunofluorescent images are present in Fig 1C. Fig 

1D summarizes the comparison in numerical data.

To further evaluate the effects of PFBS on the cell growth, reproduction, and morphology 

of HTR-8/SVneo cells, we tested cytotoxic doses. At a concentration of 10 mM, PFBS 

significantly reduced the cell viability of HTR-8/SVneo to 27.2% relative to the controls 

(100%, N=5, P=0.0001, Supplementary Fig 1A). We identified both apoptotic and necrotic 

cell death induced by 10 mM PFBS in HTR-8/SVneo cells using Annexin V-FITC Early 

Apoptosis Detection Kit. This kit detects 1) the externalization of phosphatidylserine in 

apoptotic cells using recombinant annexin V conjugated to green-fluorescent FITC dye and 

2) dead cells using propidium iodide (PI), which stains necrotic cells with red fluorescence. 

After being labeled with both probes, HTR-8/SVneo cells were sorted by flow cytometry 

into viable (annexin V and PI negative), early apoptotic (annexin V positive and PI 

negative), necrotic (annexin negative and PI positive), and necrotic/late apoptotic (annexin 

V and PI positive) cells (Supplementary Fig 1B). Treatment with 10 mM PFBS for 18 

h consistently resulted in a decrease in viable cells. During the same incubation, there 

was a significant increase in the percentage of early and late apoptotic/necrotic cells. A 

representative dual-plot analysis of annexin V vs. PI staining at various times of treatment 

is shown in Supplementary Fig 1B. A live cell imaging (video) demonstrating apoptotic cell 

death morphology is presented in supplementary Fig 1C.
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The effects of PFBS on HTR-8/SVneo cell migration and invasion

The ability to migrate and invade the maternal compartment is an important function of first 

trimester trophoblast cells during placenta formation. Therefore, we used a wound healing 

assay to evaluate the effect of PFBS on the ability of HTR-8/SVneo cells to migrate. In 

parallel, we tested the effect of PFBS on cell invasion in a trans-well assay. This assay has 

been used extensively to measure the ability of cells to invade an extracellular matrix (ECM) 

(76) and recapitulates the two main features that cells require to invade: migration and 

matrix remodeling. No statistically significant differences in migration were found between 

control and 0.01, 0.1, or 1 μM PFBS-treated cells. There was a slight decrease in cell 

migration in 10 and 100 μM PFBS-treated cells compared to control cells, and this was 

statistically significant (10 μM PFBS vs control: 9.28±0.41 vs. 10.66±0.46 µm/h, P=0.03; 

100 μM PFBS vs. control: 9.36±0.46 vs. 10.66±0.46 µm/h, P=0.04, Fig 2B). Representative 

live cell imaging (video) is presented in Fig 2A. Accordantly, we showed that exposure 

to both 10 and 100 μM PFBS significantly reduced the invasiveness of HTR-8/SVneo 

cells. The invasion index of 10 and 100 μM PFBS-treated cells was remarkably lower 

compared to control cells (10 μM PFBS vs. control: 0.58±0.10 vs. 1±0, P=0.02; 100 μM 

PFBS vs. control: 0.50±0.14 vs. 1±0, P=0.04, Fig 3B). In contrast, treatment with 0.1 μM 

PFBS appeared to promote HTR-8/SVneo cell invasion. The invasion index of 0.1 μM 

PFBS-treated cells was significantly higher compared to control cells (0.1 μM PFBS vs. 

control: 2.38±0.46 vs. 1±0, P=0.04, Fig 3B). Representative images of invaded cells are 

presented in Fig 3A.

PFBS dysregulates transcription factor HIF-1α but not AKT, ERK1/2, P38, or NOTCH

We first examined the time course of HIF-1α protein regulation in HTR-8/SVneo 

cells exposed to 100 μM PFBS. Treatment with PFBS for 1 h, but not 3 h or 6 h, 

significantly reduced HIF-1α protein levels (P=0.028 Fig 4A). We then examined the dose-

responsiveness of HIF-1α protein regulation to 1 h exposure of PFBS at concentrations 

ranging from 0.01 μM to 100 μM PFBS. HIF-1α protein levels were mildly up-regulated 

by 0.1 μM PFBS exposure but not significant and significantly down-regulated by 100 

μM PFBS exposure, as expected (P=0.04, Fig 4B). PFBS-induced regulation of HIF-1α 
appeared to correlate with the cell invasion activity. Specifically, 0.1 μM PFBS exposure 

increased HIF-1α production and invasion while 100 μM PFBS exposure decreased HIF-1α 
production and invasion.

We then investigated the effects of PFBS exposure on the activation of AKT, ERK1/2, 

and P38 pathways, all of which have been previously reported to be related to trophoblast 

cell survival and cell invasion. In HTR-8/SVneo cells, phosphorylation of AKT, ERK1/2, 

and P38 usually reaches a maximum 5–15 min after stimulation. Treatment for 15 min 

with PFBS did not stimulate phosphorylation of AKT (P=0.9 for PFBS 0.1 mM [=100 

μM]), P=0.09 for PFBS 10 mM, Supplementary Fig 2A and B); PFBS exposure did 

not induce phosphorylation of ERK1/2 (P=1.0 for PFBS 100 μM, P=0.9 for PFBS 10 

mM, Supplementary Fig 2A and C). Exposure of cells to PFBS at 100 μM did not 

affect the phosphorylation of P38, but 10 mM PFBS treatment resulted in a significant 

activation (phosphorylation) of P38 (P=0.04, Supplementary Fig 2A and 2D). There were no 

differences in cleavage of Notch2 or Notch3 between the control and 100 μM PFBS-treated 
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cells (P>0.1, Supplementary Fig 2E, 2F, and 2G). However, treatment with 10 mM PFBS 

resulted in a significant difference in Notch2 and Notch3 cleavage. We observed that the 

levels of cleaved-Notch2 and -Notch3 increased from 6 h to 18 h in both control and 100 

μM PFBS-treated cells. This increased cleavage of Notch2 and Notch3 was diminished in 10 

mM PFBS treated groups (P=0.05 for Notch2, P=0.005 for Notch3, Supplementary Fig 2E, 

2F, and 2G).

Gene expression profiles in PFBS-treated cells

To further study the mechanisms affected by PFBS exposure, we performed a genome-wide 

mRNA-seq analysis of HTR-8/SVneo cells cultured in the absence (control) or presence 

of PFBS (100 μM) using a HiSeq 4000 Illumina sequencing platform. RNA-seq analysis 

identified seventy two significantly down-regulated genes and three overexpressed genes 

following PFBS treatment comparing to control cells (Table S2), the heatmap was presented 

in Fig 5. In particular, among the 72 genes, PFBS dysregulated the expression of 16 genes 

previously reported to be associated with preeclampsia. The functions of these genes are 

listed in Table 1.

To confirm the gene chip data, we used quantitative real-time PCR to analyze transcripts 

of the 15 selected genes that are associated with preeclampsia. The expression patterns 

correlated with the RNA-seq profiling data (Fig 6). Eleven genes were confirmed 

to be significantly dysregulated by PFBS including Disintegrin and Metalloprotease 

Domains with Thrombospondins motifs (ADAMTS)1, Adrenomedullin (ADM), Snail 

Family Transcriptional Repressor 2 (SNAI2), Motif Chemokine Ligand 12 (CXCL12), 

DEAD-Box Helicase 10 (DDX10), Insulin Like Growth Factor Binding Protein 5 (IGFBP5), 

Pappalysin 1 (PAPPA), Interleukin 7 Receptor (IL7R), Potassium Channel Tetramerization 

Domain Containing 11 (KCTD11), Pregnancy Specific Beta-1-Glycoprotein 4 (PSG4), and 

Angiopoietin Like 4 (ANGPTL4). These genes are tightly linked to placental development 

and preeclampsia by regulating angiogenesis, cell proliferation and migration/invasion. In 

addition, these genes are HIF-1α targeted genes except PAPPA and PSG4.

Discussion

Using a first trimester cell line, HTR-8/SVneo, we discovered that PFBS, an emerging 

environmental contaminant, can either promote cell growth or exert no influence on cell 

survival in a nM to μM dose range. PFBS exposure caused necrotic and apoptotic cell 

death at a concentration of 10 mM. These results demonstrate a low cytotoxic effect 

of PFBS on trophoblast cells. However, PFBS exposure in a μM dose range interrupted 

cell migration and invasion, a major cytotrophoblast cell function during early human 

placentation. We further demonstrated by Western blot that PFBS exposure in a μM dose 

range dysregulated HIF-1α expression, and RNA-seq analysis revealed genes relevant to 

angiogenesis, cell growth, and cell motility. Many of these genes are HIF-1α target genes. 

The expression of HIF-1α and the relevant genes are associated with preeclampsia (77, 78) 

and hypertension (79, 80). Taken together, these findings demonstrated that PBFS exposure 

interrupted trophoblast cell proliferation and invasion. The altered HIF-1α activation and 

gene expressions may provide a clue for the underlying mechanism.
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Two major cell lineages of trophoblasts that arise during the early stages of human placental 

development are villous cytotrophoblasts (CTBs) and extravillous cytotrophoblasts (EVTs) 

(81). CTBs, trophoblast progenitor cells, follow one of the two existing differentiation 

pathways to form syncytiotrophoblasts (STBs) or EVTs. Endovascular and interstitial EVTs 

undergo epithelial–mesenchymal transition (EMT) to become motile and highly invasive 

cells (82, 83). Although primary cultures may be ideal for the study of trophoblast invasion, 

the limitations of these systems include the scarcity of first trimester placental tissue and 

low cell yield. Hence, trophoblastic cell lines have been widely used as surrogates to 

study EVT proliferation, invasion, and migration. Currently, two choriocarcinoma cell lines 

(JEG-3 and BeWo) and one EVT-derived cell line (HTR-8/SVneo) are commonly used. In 

the present study, we used HTR-8/SVneo cells, a standard in vitro model for early human 

placentation that has already been used to characterize the toxicity of diverse compounds 

such as Bisphenol A (BPA) (84), Methylmercury (85), atrazine, diethylstilbestrol (DES), and 

resveratrol (RES) (86) during gestation.

We investigated whether PFBS affects cytotrophoblast cell proliferation, migration, and 

invasion in vitro. We did not observe a cytotoxic effect of PFBS on HTR-8/SVneo cells 

until the 10 mM concentration was tested. This result is in agreement with reports by 

Gorrochategui (3) and Zhang (87), which suggest that in cytotrophoblast cells, shorter chain 

PFBS is less cytotoxic than the longer chain PFOS. The differences in chemical structures of 

PFOS and PFBS determine the differences in their water solubilities, which may affect their 

respective absorption by cells and hence cytotoxicity profile. PFBS is minimally absorbed 

by cytotrophoblast cells when compared to PFOS, which showed the highest intracellular 

concentration among eight PFASs tested in Gorrochategui’s study. It will be of scientific 

interest to further elucidate the cytotoxic mechanism of action of PFBS in HTR-8/SVneo 

cells; however, this is not relevant to public health as humans are unlikely to be exposed to 

high doses (10 mM).

Treatment of cells with PFBS at 10 or 100 μM decreased the HTR-8/SVneo cell migration 

and invasion, indicating that PFBS exposure resulted in the differentiation of HTR-8/SVneo 

cells from an invasive to a proliferative phenotype. A recent study using single-cell 

sequencing clearly demonstrated the upregulation of receptors, which are involved in 

invasion, in the process of CTBs differentiation into EVTs. In contrast, the expression of 

cell cycle genes decreased along the path from CTBs to EVTs and were no longer expressed 

towards the end of the trajectory that leads towards EVT differentiation nor where the 

EVT from the decidua are located (88). The simultaneous observations of increased cell 

proliferation and decreased cell invasion is in accordance with a previous study in BeWo 

and JAR cells (64). BeWo cell proliferation was dramatically increased, while migration 

and invasion were significantly inhibited, when Notch2 was downregulated. Similarly, JAR 

cell proliferation was significantly enhanced, but migration and invasion were suppressed, 

after Notch3 expression was silenced. Since these results mirrored our findings, we tested 

whether Notch signaling mediated the increased proliferation and decreased invasion 

following exposure of HTR-8/SVneo cells to 100 μM PFBS. Surprisingly, 100 μM PFBS 

exposure did not stimulate the Notch pathway in these cells. These results indicate that 

Notch signaling might not be involved in PFBS-induced inhibition of cell invasion.
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In addition to the Notch pathway, hypoxia has been reported to regulate the phenotypes 

of EVTs in a similar fashion. Previous reports indicate that persistent hypoxia or failure 

to downregulate transforming growth factor β3 (TGF-β3) expression after nine weeks of 

gestation might result in failure of trophoblasts to differentiate from the proliferative to 

the invasive phenotype, thus resulting in shallow trophoblast invasion and malformation 

of placenta (89). Indeed, hypoxia-inducible factor (HIF)-1α, a marker of cellular oxygen 

deprivation, is expressed at high levels in trophoblasts. A growing body of literature supports 

HIF-1α as the molecular link between placental hypoxia and the downstream mediators 

of preeclampsia including endothelin-1 and endoglin (77, 90, 91). HIF-1 is a transcription 

factor complex stabilized under low oxygen tension to mediate cellular responses (92). 

HIF-1 is a heterodimeric protein consisting of the HIF-1β subunit that is constitutively 

active and the HIF-1α subunit that is rapidly inactivated and degraded by ubiquitination 

and subsequent passage via the proteasomal pathway, a process that is inhibited under 

hypoxic conditions (93). We observed that a decrease in HIF-1α expression correlated with 

a decrease in HTR-8/SVneo cell invasion following treatment with 10 or 100 μM PFBS.

In early pregnancy, EVTs form plugs that obstruct the maternal uterine spiral arteries 

and prevent maternal blood from quickly entering the intervillous space, which creates 

a physiologically low-oxygen environment (1–2%) (94, 95). Until around the 12th week 

of gestation, oxygen tension rises in the placenta after removal of the endovascular 

trophoblast plugs (96). This increasing oxygen level is an important signal for feto-

placental development and trophoblast invasion (97). Although trophoblasts isolated from 

placental tissues have been reported to exhibit decreased invasiveness under low oxygen 

concentrations, such as 0.1% (Onogi et al. 2011) and 3% (Crocker et al. 2005), trophoblast-

like cell lines, including HTR-8/SVneo and JEG3 cells, have been noted to exhibit increased 

invasiveness when exposed to 3% O2 (98) or 1% O2 (67). Therefore, the role of hypoxia in 

determining the invasive capacity of trophoblasts remains controversial and requires further 

elucidation. Our model supports the observation that decreased hypoxia conditions (i.e., 

lower HIF-1α expression) might limit trophoblast invasion. However, we understand that it 

is not ideal to study HIF-1 function under normoxia condition. The baseline level of HIF-1α 
could be due to some growth factors in the media or cell specific. Due to these limitations, 

further investigation is warrant.

Additional evidence of our observed phenomenon is the differentially regulated genes 

following exposure to 100 μM PFBS, as identified by RNA-seq analysis. These differentially 

regulated genes are involved in angiogenesis and cell growth and motility. ADAMTS play a 

role in events such as restructuring of tissue, coagulation, angiogenesis, degradation of the 

ECM and basal membrane, and tumoral cell invasion and metastasis (99). ADAMTS family 

proteases have been associated with reproductive disorders and pregnancy-related disorders 

such as preeclampsia including ADMATS1 (100, 101). ADM is a proangiogenic peptide 

hormone that is a potent vasodilator. Due to this property, ADM has been intensively studied 

in pregnancy and preeclampsia as a potential pathogenic factor in this disease (102–111). 

It is speculated to play a role in trophoblast implantation and angiogenesis (112). Indeed, 

we and others have shown that ADM mediates EVT growth, migration, invasion, and STB 

function (102, 108, 109). SNAI2 expression, stability and activity are under control of 

integrated and complex cellular signaling networks which can be furthermore affected by 
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perturbations in the oxygen level (113, 114). Down-regulation of SNAI2 has been shown in 

preeclampsia (115). CXCL12 is a chemokine that are multifunctional with various functions 

including inflammatory response and angiogenesis. As an example, selective expression of 

CXCL12 in hypoxic tissues is associated with migration of adult stem cells recruitment and 

further tissue regeneration (116–118). Recently, it was reported that CXCL12 are variously 

expressed in preeclampsia (119). IGFBP5 serves as a cell survival and proliferation factor 

in cancers (120–123). Interestingly, IGFBP5 is localized in the syncytiotrophoblast layer of 

first trimester placental villi and attenuates the effects of insulin growth factor (IGF)-1 and 

IGF-2 on promoting HTR-8/SVneo cell migration (124). Additionally, IGFBP5 was over 

expressed in preeclamptic placenta (125). PAPPA is a placental glycoprotein which cleaves 

IGFBFs and positively regulating IGFs (126). PAPPA-mediated IGFs activity in very early 

pregnancy has been shown to be associated with pregnancy loss, hypertension, preeclampsia, 

preterm delivery, fetal growth restriction, and fetal death (127–132). Although the biological 

effects of ANGPTL4 in cancer cells are controversial, it has been shown to regulate cancer 

cell growth, angiogenesis, and metastasis (133). Recently, Liu et al. reported that ANGPTL4 

might be associated with preeclampsia and promote HTR-8/SVneo cell proliferation and 

invasion (134). We determined that ANGPTL4 mRNA was specifically induced by treatment 

with 100 μM PFBS, which might be related to the regulation of cell growth and invasion 

following PFBS exposure. The promoted cell proliferation is consistent with the results from 

the Liu study, while the impeded cell invasion is in conflict with the study. Furthermore, 

these genes are directly or indirectly regulated by hypoxia and HIF-1α. Hatipoglu el 

at. found that ADAMTS1 is transiently induced by hypoxia in endothelial cells, and its 

transcription is mediated by HIF-1α binding (135). ADM promotes human endothelial cell 

proliferation via HIF-1α (136). SNAI2 belongs to a Snail family which is a direct target 

of HIF-1α in Hypoxia-induced endothelial to mesenchymal transition of human coronary 

endothelial cells (137). IGF and IGFBPs are also regulated by HIF-1α in cancer cells 

to shift glucose metabolism from the more efficient oxidative phosphorylation to the less 

efficient glycolytic pathway in order to maintain their energy production (138). ANGPTL4 

was reported to be induced by hypoxia/ischemia (139). Collectively, dysregulation of these 

genes and HIF-1α by PFBS exposure may mediate the disruption of HTR8/SVneo cell 

proliferation and motility. We observed a discrepancy between some genes expression and 

invasion phenotypes observed with exposure to different doses of PFBS. This could be 

that the invasion phenotype was the results of interactive regulation of genes instead of the 

regulation of individual gene.

In addition to the Notch and HIF-1α pathways, the Mitogen-Activated Protein Kinases 

(MAPKs) and Phosphoinositide 3-Kinase (PI3K)/AKT Signaling pathways are involved 

in trophoblast invasion and migration. MAPKs have four different families (140). Among 

them, ERK1/2 activation is known to mediate the regulation of HTR-8/SVneo cell invasion 

via numerous factors including endothelin (141), prostaglandin E2 (142), insulin-like growth 

factor-II (143), and epidermal growth factor (144). In particular, epidermal growth factor 

induces ECM remodeling through ERK1/2 and PI3K activation and promotes invasion in 

HTR-8/SVneo cells (145). However, no significant stimulation of these pathways was found 

in this current study.
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Trophoblast invasion is a complex and tightly regulated process. For successful invasion, 

the trophoblast must perform a range of functions: transformation of the maternal spiral 

arteries, tolerance of hypoxia, cell survival, differentiation, adherence to and digestion of 

the extracellular matrix, and movement and interaction with the maternal immune system. 

Each of these functions has multiple overlapping control systems resulting in delicate 

balance among competing mechanisms. This sensitive and vulnerable physiological process 

is readily disturbed by chemical exposures. The newly identified detrimental effects of PFBS 

on trophoblast cell invasion are important first steps toward a comprehensive understanding 

of the toxicological effects of exposure to this emerging environmental chemical during 

pregnancy.

There are limitations to our present study. Due to the complexity of trophoblast invasion, 

our study is limited to in vitro observations and is unable to capture the functions of these 

cells in vivo. The dose range of PFBS (0.01–100 μM) was chosen by referencing cord 

blood levels of PFBS in previous in vitro studies including our study; these ranged from 

0.009 to 1.48 ng/mL (0.027–4 μM) (57, 146–148). We included higher doses of PFBS 

in our current study after consideration of the following facts: 1) To date, no placental 

concentrations of PFBS have been reported in humans; 2) We and others found that PFBS 

does not internalized into the trophoblast cells in vitro (3), which seems not to be the case 

in vivo (149); 3) PFBS can bind to proteins in FBS which we used for cell cultures to 

reduce the free fraction of PFBS. Therefore, higher doses of PFBS are used in our study. 

We did not examine steroidogenesis using this cell model because steroidogenesis is more 

relevant to syncytiotrophoblasts. In fact, a recent study that examined steroidogenesis and 

the estrogen and androgen receptor activities in vitro suggested that PFBS does not exert 

endocrine effects (150).

Overall, our study is the first to examine how PFBS exerts its effects on human placental 

EVT cell function upon PFBS exposure. Our results highlight the ability of PFBS to alter 

placental EVT cell proliferation and invasion and relevant gene expressions and molecular 

pathways. The short chain PFBS, often considered one of the safe substitutes for PFOS, 

might be associated with adverse placentation. Future investigations in other cellular models 

and animal studies are warranted to understand additional effects of PFBS on placentas and 

birth outcomes.
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Abbreviations

PFAS Poly- and per-fluoroalkyl substances

PFOS Perfluorooctane sulfonic acid

PFBS Perfluorobutane sulfonate

BPA Bisphenol A

DES Diethylstilbestrol

RES Resveratrol

CTBs Cytotrophoblasts

EVTs Extravillous cytotrophoblasts

STBs Syncytiotrophoblasts

EMT Epithelial–mesenchymal transition

ECM Extracellular matrix

MTS 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium

RT-PCR Reverse transcription polymerase chain reaction

PI Propidium Iodide

DAPI 4′,6-diamidino-2-phenylindole

RIPA Radioimmunoprecipitation assay

FITC Fluorescein isothiocyanate

RIN RNA Integrity Number

USEPA The United States Environmental Protection Agency

MAPKs Mitogen-Activated Protein Kinases

PI3K Phosphoinositide 3-Kinase

TGF–β3 Transforming growth factor β3
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Fig 1. PFBS promotes proliferation in HTR-8/SVneo cells in a dose-dependent fashion.
(1A) Cell viability of HTR-8/SVneo cells after PFBS (0, 0.01, 0.1, 1, 10, 100 µM) exposure 

as measured by MTS assay with an absorbance of 490 nm.

(1B) Cell cycle analysis in HTR-8/SVneo cells treated with PFBS (0, 0.01, 0.1, 1, 10, 100 

µM) as measured by flow cytometry.

(1C) Representative immunofluorescent images showing DAPI, Ki-67, and DAPI+Ki-67 

staining for HTR-8/SVneo cells treated with PFBS (0, 0.01, 0.1, 1, 10, 100 µM).

(1D) Ratio of Ki-67(+)/DAPI(+) in HTR-8/SVneo cells after PFBS (0, 0.01, 0.1, 1, 10, 100 

µM) exposure.
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Fig 2. PFBS reduces cell migration in HTR-8/SVneo cells in a dose-dependent manner.
(2A) Representative videos of wound closure after PFBS (0, 0.01, 0.1, 1, 10, 100 µM) 

exposure in HTR-8/SVneo cells.

(2B) Rate of distance migrated over time (µm/h) across each wound after PFBS exposure (0, 

0.01, 0.1, 1, 10, 100 µM) in HTR-8/SVneo cells.

Note: The black arrows point to the edge of the initial scratch. The play button is under each 

image. White bar is 500 μM
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Fig 3. PFBS significantly disrupts HTR-8/SVneo cell invasion in a dose-dependent fashion.
(3A) Images of filters carrying invaded HTR-8/SVneo cells exposed to PFBS (0, 0.01, 0.1, 

1, 10, 100 µM) in a Matrigel invasion assay.

(3B) Invasion index (relative to control; 0 µM PFBS) after PFBS exposure (0, 0.01, 0.1, 1, 

10, 100 µM) in HTR-8/SVneo cells.

Note: white bar is 400 μM
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Fig 4. PFBS significantly down-regulates hypoxia induced factor (HIF)-1α protein level in a time 
and dose-dependent fashion.
(4A) Protein levels of HIF-1α normalized to GAPDH and a representative Western blot 

image of HIF-1α and GAPDH in HTR-8/SVneo cells exposed to PFBS (100 µM) in 0, 1, 3, 

6 h.

(4B) Protein levels of HIF-1α normalized to GAPDH and a representative Western blot 

image of HIF-1α and GAPDH in HTR-8/SVneo cells exposed to PFBS (0, 0.01, 0.1, 1, 10, 

100 µM) in 1 h.
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Fig 5. RNA-seq data revealed dysregulated genes by PFBS in HTR8/SVneo cells
A heatmap and clustering of differentially expressed genes in control (0 µM)) and PFBS 

(100 µM) treated cells.

Note: rep is replicate
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Fig 6. qPCR data validated the dysregulation of genes identified by RNA-seq analyses
Gene expression (fold changes) determined by quantitate-PCR analysis to compare the 

control (0 µM) and PFBS treatments (0.01, 0.1, 1, 10, 100 µM).
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Table 1.

The 16 dysregulated preeclampsia associated genes by PFBS

Gene Name Functions

ADMATS1 associated with various inflammatory process

ADM vasodilation, angiogenesis, antimicrobial

ANGPTL4 angiogenesis, proliferation, migration, invasion 

CNTF survival factors for various neuronal cells

CXCL12 vasculogenic actions, regulate trophoblast function and uterine spiral artery remodeling

DDX10 embryogenesis, cellular growth and division

FGF5 embryonic development, cell growth and invasion; associated with hypertension

FILIP1L angiogenesis activity, cell proliferation and migration 

IGFBP5 suppress trophoblast cell migration and invasion in Preeclampsia

IL7R Immune regulation

KCTD11 growth and proliferation

PAPPA Inflammation, wound healing, associated with preeclampsia, female infertility.

PSG4 Immune regulation

RUNX1 an regulator of hematopoiesis in placenta, associated with preterm birth

SERPINE1 cellular differentiation, modulation of apoptosis and steroidogenesis, associated with
preeclampsia

SNAI2 Focal adhesion, associated with placenta development and function and preeclampsia.
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