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Abstract

Chronic inflammation increases the risk of a number of cancers, including gastric, colon, and 

hepatic cancers. Conversely, tumors, similar to tissue injury, trigger an inflammatory response 

coordinated by the innate immune system. Cellular and molecular mediators of inflammation 

modulate tumor growth both directly and by influencing the adaptive immune response. 

Depending on the balance of immune cell types and signals within the tumor microenvironment, 

inflammation can support or restrain the tumor. Adding to the complexity, research from the past 

two decades has revealed that innate immune cells are highly heterogeneous and plastic, with 

variable phenotypes depending on tumor type, stage, and treatment.

The field is now on the cusp of being able to harness this wealth of data to a) classify tumors based 

on their immune makeup, with implications for prognosis, treatment choice, and clinical outcome; 

and b) design therapeutic strategies that activate anti-tumor immune responses by targeting innate 

immune cells.
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Introduction

Tumor development elicits a host response that resembles inflammation and is similarly 

coordinated by the innate immune system. Cellular and extracellular components engaged in 

this process shape tumor growth and progression by modifying the abundance and functions 

of one another, interacting with cancer cells, and modulating the adaptive immune response. 

Inflammation is a plastic process and ultimately, whether inflammation promotes or inhibits 

cancer depends on the balance of a complex and still incompletely understood cellular and 

molecular circuit [Fig. 1].
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One of the earliest indications of a connection between immunity and cancer was the 

detection of immune cells in histological sections of tumors (1). Another clue came from 

clinical practice. In the 19th century, the German physicians Wilhelm Busch and Friedrich 

Fehleisen independently recognized that patients could experience cancer regression after 

contracting post-operative infections (2). This observation was further expanded upon by 

William B. Coley, an American surgeon, who, in the 1890s, began inoculating patients with 

bacteria, with the idea that the response to the pathogen could clear both the infection and 

the cancer. Eventually, he settled on “Coley’s toxins”, a formulation comprising heat-killed 

gram-positive Streptococcus pyogenes and gram-negative Serratia marcescens bacteria. The 

therapy had severe side effects, required daily inoculations, and beneficial responses were 

mostly limited to sarcoma, a rare cancer. However, Coley’s was the first concerted and 

broadly recognized effort to elicit an immune response against cancer (3, 4).

Early research focused mostly on inducing inflammation to elicit anti-cancer immunity; yet, 

the possibility that inflammation could also drive cancer was already suggested in 1828 by 

Jean-Nicolas Marjolin, a French surgeon, who reported the occurrence of squamous cell 

carcinoma in chronically inflamed wounds (5). In 1863, the German pathologist Rudolf 

Virchow proposed that cancer originates at sites of chronic inflammation (1). Starting in 

the 1990s, seminal work using genetically engineered mouse models demonstrated that 

innate immune cells such as neutrophils, macrophages, and mast cells contribute to cancer 

progression (6–13).

During the past decade, the clinical success of cancer immunotherapy has sparked renewed 

interest in the role of innate immunity in cancer. Although most approved strategies are 

aimed at boosting tumor-specific cytotoxic T cell responses, strategies to engage the innate 

immune system in anti-cancer responses are being developed. Moreover, sophisticated 

techniques to resolve gene expression and proteomic profiles at the single-cell level have 

allowed researchers to classify cancers based on their immune makeup: the type of immune 

cells present in the tumor, their phenotypes, and their location within the microenvironment. 

These studies have also highlighted the plasticity of innate immune cells, i.e., how their 

phenotype and function change in response to the microenvironment. Along with its 

genotype, the cancer immune makeup is refining our capacity to predict clinical outcome. 

Here, we review the contrasting roles of innate immunity in cancer and discuss the clinical 

application of these findings.

1. Inflammation and cancer are highly interconnected

Inflammation is a biological reaction the body mounts in response to infections, wounds, 

and chemical exposure, to restore homeostasis and prevent loss of tissue function (14, 15). 

The cells and molecules responsible for triggering and coordinating inflammation make 

up the innate immune system. Tissue-resident macrophages and mast cells are the first to 

recognize the insult. They secrete a variety of soluble mediators, cytokines and chemokines, 

to recruit other innate immune cells to the infection (or injury) site. Neutrophils are the first 

cells to respond to such signals, becoming activated and killing invading bacteria (16, 17). 

If this acute inflammatory response is not able to eliminate the insult, macrophages and 

T cells are next attracted to and activated by increased expression of chemokines, growth 
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factors, and cytokines. This process is followed by a resolution and repair phase in which 

the local release of signals, e.g., resolvins, protectins, and transforming growth factor β 
(TGF-β), inhibits further neutrophil recruitment (18). Instead, monocytes are attracted to the 

site, where they differentiate into macrophages, remove dead cells, and initiate tissue repair 

mechanisms. This orchestrated immune response mediates neutralization of the offending 

agent. However, when the body is unable to resolve this acute inflammatory response, the 

result is chronic inflammation (19). In 1986, Howard Dvorak published an essay where he 

drew a parallel between tumors and “wounds that do not heal” (20). He argued that tumors 

invoke an inflammatory wound healing response similar to the one described above, creating 

favorable conditions for survival and growth [Fig. 2].

Epidemiological data support the notion that chronic inflammation drives tumor 

development. Prospective studies have shown that patients displaying elevated levels of 

circulating inflammatory markers (e.g., C-reactive protein) at routine checkups have more 

than twice the risk of developing cancer within one year than those with normal levels 

(21). A 2018 study estimated that 42% of adult cancers in the United States are caused by 

modifiable risk factors (22), all of which cause either local or systemic inflammation. For 

example, cigarette smoking accounts for 19% of cancers, obesity is linked to 7.8%, alcohol 

intake explains 5.6% of cases, and chronic infections are the cause of 3.3% of cancers in the 

United States and 13% of cases worldwide (23).

Local inflammation can promote cancer development and progression within the same 

tissue or organ site (24, 25). Several infections can result in cancer: i) Helicobacter pylori-
induced gastritis can progress to gastric cancers, ii) chronic hepatitis B or C virus infections 

can lead to liver cancers, and iii) unresolved infection with human papillomavirus can 

result in cervical cancers. Besides direct carcinogenic mechanisms associated with the 

infectious agents, the persistent inflammatory environment resulting from the failure to clear 

the infection contributes to the development of these cancers (26). Chronic inflammatory 

diseases in the absence of infections can also forge a local microenvironment that is primed 

for tumor development. For instance, inflammatory bowel diseases, such as Crohn’s disease 

and ulcerative colitis, increase the risk of developing colorectal cancer (27). Similarly, 

chronic pancreatitis carries an elevated risk of developing pancreatic cancer (28). Lastly, 

environmental factors can predispose patients to and promote cancer by causing local 

inflammation. Most notably, exposure to particulate or tobacco smoke has a well-defined 

relationship with chronic obstructive pulmonary disease development, which increases the 

risk of lung cancer (29).

In addition to changing the local inflammatory microenvironment, some insults such as 

tobacco smoke and obesity drive systemic inflammation. As a result, levels of circulating 

pro-inflammatory mediators are chronically elevated, leading to an increased risk of 

developing cancer in several organs (30). For instance, in a diet-induced mouse model 

of obesity, high levels of serum interleukin (IL)-5 and granulocyte-macrophage colony-

stimulating factor (GM-CSF) cause lung inflammation and subsequent metastasis to this 

site (31). Consistent with inflammation’s pro-tumorigenic role, long-term treatment with 

nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with lower cancer incidence 

(32), including a notable decline in the incidence of lung cancer in chronic smokers (33). 
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Moreover, a phase III trial (CANTOS; NCT01327846) of an inhibitory antibody targeting 

the pro-inflammatory molecule IL-1β for atherosclerosis also found that it significantly 

reduced lung cancer incidence (34), while a subsequent trial testing the anti-IL-1β antibody 

together with chemotherapy in established lung cancer found no effect (35). However, not 

all chronic inflammatory diseases increase the risk of cancer. For instance, psoriasis and 

rheumatoid arthritis do not appear to promote cancer, although it is possible that the drugs 

used to keep these inflammatory diseases in check also modify cancer risk.

Cancers not directly associated with inflammation still recruit innate immune cells, 

release cytokines, and exhibit angiogenesis and tissue remodeling—essentially driving the 

establishment of “tumor-intrinsic” inflammation (36) [Fig. 3a]. NSAIDs can also reduce 

mortality from some of these cancer types, e.g., prostate and brain cancers (32, 37).

Drivers of tumor-intrinsic inflammation include genetic and epigenetic alterations in tumor-

suppressor genes and oncogenes. The tumor-suppressor TP53 is a good example. In several 

cancer models and in clinical studies, immune cells are attracted to the primary tumor 

in response to P53 loss. For instance, in prostate cancer, loss of P53 triggers C-X-C 

chemokine motif ligand 17 (CXCL17) upregulation and the subsequent recruitment of 

immunosuppressive innate immune cells in the tumor microenvironment (TME) (38). 

Beyond this local effect, P53 loss in breast cancer stimulates tumor-associated macrophages 

(TAMs) to release high levels of IL-1β, driving systemic inflammation and ultimately 

supporting metastasis (39).

Another important cause of tumor-intrinsic inflammation is necrotic cell death, occurring 

when, e.g., rapidly growing tumors outpace the blood supply, resulting in hypoxia and 

necrosis. Necrotic cells release potent danger-associated molecular patterns (DAMPs), 

endogenous “danger signals” recognized by innate immune system cells via germline-

encoded pattern recognition receptors (PRRs), e.g., Toll-like receptors (TLRs) (40). DAMP 

sensing increases phagocytosis of the necrotic debris and amplifies the inflammatory 

response so antigen-presenting cells (e.g., dendritic cells [DCs] and macrophages) can 

activate the adaptive immune response. High mobility group box 1 (HMGB1) is a nuclear 

non-histone-binding protein that serves as a DAMP by signaling through TLR3, -4, and -9, 

as well as the scavenger receptor RAGE (receptor for advanced glycation end products) [Fig. 

3a]. HMGB1 binding to its receptors ultimately leads to inflammatory cell recruitment and 

induces the release of pro-inflammatory cytokines (41, 42). DAMPs are also important in 

eliciting the antigen-specific adaptive immune response evoked by immunogenic cell death 

of tumor cells. This is a unique form of cell death defined by its ability to elicit protective 

immunity and mainly caused by cytotoxic agents like anthracyclines and radiotherapy. 

Following immunogenic cell death, the chronic exposure of DCs to DAMPs, particularly 

calreticulin, ATP, and HMGB1, favors DC maturation and priming of protective T cell 

responses that can kill tumor cells and establish anti-tumor immunological memory (43). 

Supporting the importance of this mechanism for anti-tumor immunity, germline mutations 

in PRRs affect cancer risk and response to therapy. For example, patients with breast 

cancer who carry a TLR4 allele displaying reduced binding to HMGB1 relapse faster after 

chemotherapy (41) [Fig. 3b].
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In summary, inflammation is a hallmark of cancer, whether it originated before or is driven 

by the cancer.

2. Innate immune cells in the tumor are heterogeneous and plastic

The innate immune system comprises immune cells of either myeloid or lymphoid lineage, 

and several classes of proteins, including cytokines, chemokines, receptors, and proteins 

of the complement system. These components are not inherently tumor-supportive or tumor-

opposing. Rather, their activity depends on the relative abundance of each cell type in the 

specific tissue, the balance of signals within the TME, and the tumor progression stage [Fig. 

1]. For instance, lung cancer cells engineered to express a strong antigen are rejected by 

cytotoxic T cells in the lung, but expression of the same antigen and a very similar genetic 

makeup in pancreatic cancer cells instead exacerbates the disease, as this site has fewer DCs 

capable of activating T cells (44). In addition, the phenotype and function of innate immune 

cells are plastic and change as their local environment changes. We present key findings that 

illustrate this context-dependence of innate immune cell types and how it affects cancer.

2.1 Myeloid cells modulate tumor-associated inflammation—Myeloid cells 

comprise heterogeneous cell populations derived from a common myeloid progenitor in 

the bone marrow. These cells are recruited to the tumor and can regulate the tumorigenic 

process, from initiation to invasion and metastasis. The most well-studied myeloid cells are 

macrophages/monocytes, neutrophils, myeloid-derived suppressor cells (MDSCs), and DCs.

2.1.1 Macrophages and monocytes: Macrophages are large phagocytic cells critical for 

host defense, especially against bacteria, but are also necessary for tissue homeostasis, e.g., 
by clearing cell debris and dysfunctional cells. Tissue-resident macrophages originate from 

cells seeded to tissues during embryogenesis, but macrophages can also expand from bone 

marrow-derived blood monocytes, which are recruited in large numbers in response to injury 

or infection (45).

Macrophages and their monocytic precursors constitute the largest fraction of leukocytes 

in most solid tumors and are critical drivers of cancer-associated inflammation (46, 

47). Activated inflammatory macrophages produce potentially mutagenic reactive nitrogen 

species (RNS) and reactive oxygen species (ROS) and secrete cytokines, including tumor 

necrosis factor α (TNF-α) and interleukins (e.g., IL-1β, IL-6, IL-12), providing fertile soil 

for initiation and progression of chronic inflammation-associated cancers. In a model of 

colitis-associated cancer, constitutive genetic inactivation of the canonical nuclear factor κB 

(NF-κB) pathway, a master regulatory pathway of inflammation, specifically in myeloid 

cells (macrophages and neutrophils), results in downregulated inflammatory cytokine 

secretion and reduced tumor incidence (12). Furthermore, when stimulated by interferon-

γ (IFN-γ) and TLR ligands, macrophages can directly kill tumor cells by generating 

nitric oxide (NO) (48). However, as the tumor progresses, cues in the microenvironment 

drive TAMs to become tumor-supportive. Early findings showed that this phenotypic 

shift could occur in response to IL-4/IL-13 derived from e.g., T lymphocytes (49). Yet, 

other cytokines (e.g., IL-10 and TGF-β), tumor cell-derived metabolic products, hypoxia, 

and immune complexes can also induce pro-tumorigenic polarization of TAMs (50–52). 
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Much of the early literature on macrophages categorized anti-tumorigenic macrophages as 

classically activated/M1 and pro-tumorigenic macrophages as alternatively activated/M2. 

This dichotomy reconciled the antithetical roles that macrophages display in cancer, but it is 

now clear that a spectrum of phenotypes exists beyond the two extremes. Accordingly, the 

field has moved away from the binary nomenclature, favoring a more precise definition 

of populations based on how the cells are isolated and which markers define them 

(53). In 2018, high-dimensional profiling techniques like single-cell RNA sequencing and 

mass cytometry have allowed us to granularly characterize the heterogeneous macrophage 

populations in tumors and map their plastic evolution during disease progression or 

treatment (54).

TAMs’ ability to directly sustain tumor progression has been widely documented and 

reviewed [e.g., (47)]. In brief, TAMs are key players driving the acquisition of a tumor 

vasculature, the so-called “angiogenetic switch”. Tie2+ monocyte-derived macrophages are 

an essential source of vascular endothelial growth factor (VEGF) and support angiogenesis 

in several mouse models (13). In addition, intravital imaging of mammary tumors showed 

that perivascular TAMs aid cancer cells in entering blood vessels (55). But TAMs can 

also promote invasion by remodeling the extracellular matrix (ECM) through expression 

of proteases such as matrix metalloproteinases (MMPs) and by promoting the epithelial-

mesenchymal transition of cancer cells (9, 56). At the metastatic site, macrophages 

can aid cancer cells to adapt to the new environment. For instance, in the lungs, α4 

integrin on macrophages can serve as a receptor for vascular cell adhesion molecule 1 

(VCAM-1) expressed on breast cancer cells and can activate pro-survival signaling (57). In 

addition, both monocytes (or monocytic MDSCs, see below) and macrophages reinforce the 

immunosuppressive TME by secreting cytokines, e.g., IL-10 and TGF-β, which inhibit the 

anti-tumor immune response (58).

A clinically relevant aspect of macrophage biology is its profound effect on treatment 

outcome. Depending on the treatment and their phenotype, TAMs can either contribute 

to or interfere with the therapeutic mechanism (59). For instance, in mice, macrophages 

capture therapeutic anti-programmed cell death protein 1 (PD-1) monoclonal antibodies 

(mAbs) from the surface of T cells, the intended target, thus blunting therapeutic efficacy 

(60). However, PD-1 is also expressed on TAMs, and PD-1 blockade in NOD scid gamma 
mice, which lack T, B, and natural killer (NK) cells, leads to a TAM-dependent decrease in 

tumor burden, suggesting that TAMs can be pharmacologically re-educated (61) and again 

highlighting the plasticity of these innate immune cells. Indeed, a colony stimulating factor 

1 receptor (CSF-1R) inhibitor causes tumor regression by re-polarizing macrophages rather 

than simply depleting them in a mouse model of glioma (62). This inherent plasticity of 

macrophages represents both an obstacle in trying to untangle their complex biology and an 

opportunity for therapeutic targeting.

2.1.2 Neutrophils: Neutrophils are some of the first immune cells to be recruited 

to damaged tissues. They can eliminate pathogens by phagocytosis, by the release of 

antibacterial proteins and proteases, and by the formation of neutrophil extracellular 

traps (NETs) (63). Granulocyte-colony stimulating factor (G-CSF) and other cytokines 

that promote the differentiation and release of neutrophils from the bone marrow are 
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often elevated locally in the tumor and systemically in patients with cancer, leading to 

the mobilization of high numbers of both mature and immature neutrophils (39). High 

levels of tumor-associated neutrophils and neutrophils in blood (neutrophilia) and high 

neutrophil-to-lymphocyte ratios are associated with poor prognosis in cancer (46, 64, 65). 

Like macrophages, neutrophils also have pro- or anti-tumor activities (66), depending on 

context. Yet, the stimuli leading to these opposite activities are much less defined than they 

are for macrophages.

Tumor-associated neutrophils can support cancer cell proliferation, angiogenesis, and 

immunosuppression in the TME (67). However, by harnessing their plasticity, they can 

become anti-tumor through TGF-β blockade (68). Similarly, IFN-β suppresses genes 

encoding homing and angiogenic factors in neutrophils, delaying tumor growth in melanoma 

and fibrosarcoma mouse models (69).

Early research showed that neutrophils from tumor-bearing animals could increase the 

invasive potential of cancer cells (70). For example, UV-damaged keratinocytes release 

HMGB1, resulting in a neutrophilic skin inflammatory response. In turn, neutrophil-derived 

TNF-α increases melanoma cells’ migration along blood vessels and consequently lung 

metastasis (71). Besides aiding cancer cells to escape the primary tumor, neutrophils can 

assist cancer cells in leaving blood vessels, e.g., by tethering cancer cells to liver sinusoids 

(72). During early stages of tumor progression, neutrophils are mobilized and accumulate at 

metastatic sites, where they help establish a premetastatic niche before cancer cells infiltrate 

(73–75). In the lungs of mouse mammary tumor virus–polyoma middle T antigen (MMTV-

PyMT) tumor-bearing mice, neutrophil-derived leukotrienes support the preferential 

expansion of a highly metastatic subpopulation of cancer cells, and targeting this mechanism 

is sufficient to decrease metastasis (76). Lastly, at both the primary and metastatic 

sites, neutrophils (or the possible overlapping cell population sometimes referred to as 

polymorphonuclear MDSCs, see below) can drive immunosuppression (77). Contrasting 

these findings, in experimental metastasis models, neutrophils activated by inflammatory 

stimuli inhibit liver metastasis by releasing cytotoxic NO, and thrombospondin-1 released by 

neutrophils in the lung establishes a metastasis-resistant niche (78, 79).

In the last decade, neutrophil-expelled NETs were found to promote metastasis. NETs are 

extracellular networks comprising chromatin and granule-derived antimicrobial peptides and 

proteases, such as neutrophil elastase, cathepsin G, myeloperoxidase, and MMP9. NETs 

were first described as contributors to the innate immune response, with the ability to 

immobilize and eliminate large pathogens that could not be engulfed by phagocytosis 

(80). However, since 2013, NETs in the TME have been found to be associated with 

tumor progression both in animal models of cancer and in patients with cancer, including 

breast, ovarian, colorectal, or lung cancer (81–83). NETs can promote metastasis through 

multiple means. Our group and others reported that NETs can be chemotactic for metastatic 

cancer cells (82, 84). NET-associated DNA was later shown to serve as a chemotactic 

factor for cancer cells expressing the transmembrane protein CCDC25, which upon sensing 

DNA, enhances cell motility and facilitates metastasis to the liver (85). Besides increasing 

cancer cell migration/invasion, NETs can also trap cancer cells in the vasculature and 

facilitate extravasation (81). The presence of an early-stage ovarian tumor in the abdominal 
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cavity induces neutrophils to accumulate in the omentum and release NETs in response 

to cell-derived factors (IL-8, G-CSF, CXCL1, and CXCL2), promoting the formation 

of a favorable premetastatic niche (83). Furthermore, we have shown that in the lungs, 

NET-associated proteases can induce cell proliferation through ECM remodeling (86). 

Specifically, neutrophil elastase and MMP9 cleave the basement membrane protein laminin, 

producing a cryptic epitope that activates integrin signaling and re-awakens dormant cancer 

cells. Lastly, NETs may physically shield cancer cells from cytotoxic immune cells (87). 

Based on these diverse pro-metastatic mechanisms, inhibiting NETs is thus a potential 

therapeutic strategy. Notably, targeting NETs in vivo with DNase I particles or a PAD4 

inhibitor reduces metastatic burden in breast and ovarian cancers and inhibits the NET-

activated awakening of dormant cancer cells (83, 84, 86).

2.1.3 Immature myeloid cells and myeloid-derived suppressor cells (MDSCs): MDSCs 

are a heterogeneous population of immature myeloid cells that greatly expand during 

pathological conditions such as cancer. They are usually divided into two groups 

based on surface marker expression: monocytic MDSCs (M-MDSCs) and granulocytic 

or polymorphonuclear MDSCs (PMN-MDSCs). Morphologically and phenotypically, M-

MDSCs and PMN-MDSCs are difficult to distinguish from monocytes and neutrophils, 

respectively, but they are functionally defined by their ability to restrain T cell activities. 

MDSCs expand in response to stem cell factors and cytokines like GM-CSF, G-CSF, 

M-CSF, IL-6, and VEGF. However, MDSCs’ immunosuppressive activity also requires 

activation by IL-4, IL-13, or TGF-β (88).

Unlike classical monocytes and neutrophils, MDSCs express high levels of molecules that 

inhibit T cell responses, including L-arginase, inducible nitric oxide synthase (iNOS), TGF-

β, IL-10, cyclooxygenase-2 (COX2), and indoleamine 2, 3-dioxygenase (IDO). L-arginase 

and IDO are important suppressing factors that catabolize essential metabolites and/or 

produce toxic metabolites that accumulate in the TME, inhibiting T cell proliferation (89). 

NO production suppresses T cell function by inhibiting major histocompatibility complex 

(MHC) class II expression or inducing T cell apoptosis (90). Moreover, MDSCs have a 

dormant metabolic phenotype characterized by repressed glycolysis, which they can “pass 

on” to T cells by transferring the metabolite methylglyoxal, ultimately causing metabolic 

and functional paralysis of activated CD8+ T cells (91). A preclinical study found that 

depleting MDSCs after primary tumor resection delayed lung metastasis and extended 

survival, implicating them in metastatic progression as well. In this setting, low-dose 

adjuvant epigenetic therapy (5-azacytidine and entinostat) decreases MDSC trafficking, 

reducing metastasis (92). Consistent with the ability of MDSCs to repress T cell function, 

MDSC level is negatively associated with patient responses to immunotherapy, including 

to cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and PD-1 inhibition (93, 94). 

Targeting MDSCs may therefore represent an attractive therapeutic opportunity, but with the 

caveat that there is currently no clear method to distinguish MDSCs from neutrophils and 

monocytes—cell types with many complex functions.

2.1.4 Dendritic cells (DCs): DCs are innate immune cells with a crucial role in bridging 

innate and adaptive immunity. DCs constantly scan their surroundings and detect antigens, 
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danger signals, and invading pathogens. Once they take up antigens, they migrate to 

lymphoid tissues (thymus, spleen, and lymph node), where they present antigens via MHC 

class I and II complexes to stimulate antigen-reactive effector immune cells, primarily T 

cells and B cells (95). Traditionally, DCs have been divided into two major populations: 

conventional (or myeloid) DCs (cDCs) and plasmacytoid DCs (pDCs) (96).

cDCs are professional antigen-presenting cells, further classified as cDC1s and cDC2s, 

priming CD8+ or CD4+ T cells, respectively. They have the ability to “cross-present”, i.e., 
present tumor-derived MHC-I antigens to CD8+ T cells. In humans, cDC1s express CD141 

and BDCA3. In mouse, the development of these cross-presenting DCs depends on the 

transcription factors Batf3 and Irf8, and tumor growth is increased both in Batf3−/− and 

Irf8−/− mice (97, 98). In lymphoid tissues, cDC1s are CD8α+, while in the periphery, they 

are identified by the expression of integrin αE, also known as CD103. Though they are 

a relatively rare population (often <1% of tumor-infiltrating immune cells), CD103+ DCs 

play a prominent role in recruiting and activating cytotoxic T cells. As antigen-presenting 

cells, cDC1s influence the breadth of the immune response, i.e., how many antigens 

are targeted. Adoptive cellular therapy with T cells expressing FMS-like tyrosine kinase 

3 ligand (FLT3L), a DC growth factor, leads to cDC1-dependent expansion of the anti-

tumor T cell repertoire (99). In a model of melanoma, CD103+ DCs were shown to 

be necessary for recruiting effector T cells intratumorally through CXCL9/10 expression 

(100). Accordingly, ablating CD103+ DCs thwarts tumor rejection after adoptive transfer 

of activated tumor-specific T cells in combination with immune checkpoint blockade (98, 

101). cDC1s also influence chemotherapy response. For example, in the MMTV-PyMT 

breast cancer model, macrophages inhibit the secretion of IL-12 by CD103+ DCs and 

ablating macrophages restores DCs’ IL-12 production, increases T cell influx, and improves 

outcome (58). Exposure to chronic stress can inhibit the immunostimulatory activity of 

DCs, compromising the response to lung and colon cancer in mice. Stress causes elevated 

glucocorticoid levels, which repress the response to the important pro-inflammatory type I 

IFN cytokines in tumor-infiltrating DCs and curtail the immune response (102).

In contrast to cDCs, pDCs have limited antigen-presentating ability but are 

immunomodulatory via e.g., the production of type I IFNs (103). pDCs are largely 

immunoinhibitory in cancer, and pDC recruitment is associated with poor prognosis in 

several tumors, including ovarian and breast cancers (104, 105). However, OX40+ pDCs 

from patients with head and neck cancer can stimulate tumor-specific T cell responses (106). 

Dysfunction of pDCs or their acquisition of immunosuppressive properties are a result 

of e.g., tumor-derived IL-10, TGF-β, and TNF-α, which directly suppress pDCs’ IFN-α 
production (107, 108). In addition, by expressing IDO and inducible T cell costimulator 

ligand (ICOSL), pDCs support tolerogenic regulatory T cell expansion (109, 110).

DCs can tune the response between immune control or immune tolerance, whereby 

the tumor is recognized but not attacked. For instance, in inflammatory conditions, 

cDC2s activate anti-tumor CD4+ T cells, whereas in non-inflamed lymph nodes, they 

induce ineffective priming of CD4+ cells and a tolerogenic response (111). Single cell 

RNA sequencing (scRNA-Seq) of murine and human lung cancers revealed that upon 

antigen uptake, cDCs in the TME activate a transcriptional program that limits their 

Maiorino et al. Page 9

Annu Rev Pathol. Author manuscript; available in PMC 2023 January 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



immunostimulatory function and T cell priming. IL-4 signaling drives this program and 

IL-4 blockade abolishes its effects, supporting the notion that the cytokine milieu serves as a 

rheostat for DC activation and determines the outcome of the immune response (112).

2.2 Lymphoid cells and lymphocytes straddle immunomodulation and 
effector functions—Innate lymphoid cells and unconventional T lymphocytes [γδ T 

cells and natural killer T [NKT] cells) share attributes of innate and adaptive immunity. 

Besides contributing to cytokine secretion in the TME, they display effector functions, such 

as cytotoxic killing of cancer cells.

2.2.1 Innate lymphoid cells (ILCs): ILCs have a lymphoid progenitor in common with 

T cells. However, they lack antigen-specific receptors, and their cytotoxic activity is instead 

regulated by soluble ligands that bind either activating or inhibitory surface receptors [Fig. 

3]. Based on their cytokine-production pattern and the transcription factors required for their 

development, ILCs are categorized into five major groups: natural killer (NK) cells, group 

1 ILCs (ILC1s), group 2 ILCs (ILC2s), group 3 ILCs (ILC3s), and lymphoid tissue-inducer 

cells (113, 114).

Like other immune cells, tissue type and cytokine milieu strongly influence whether ILCs 

are pro- or anti-tumor. For instance, administering IL-33 to 4T1 breast cancer-bearing mice 

results in accelerated tumor progression mediated by the accumulation of MDSCs and 

IL-13 producing ILC2 (115). In contrast, in pancreatic adenocarcinoma, IL-33-dependent 

expansion of ILC2s leads to therapeutic tumor immunity by recruiting CD103+ DCs and 

activating CD8+ T cells (116). IL-33 also triggers ILC1-dependent anti-tumor activity. In a 

mouse model of metastatic melanoma, IL-33 triggers ILC1 expansion and IL-5 upregulation 

in the lung, which in turn suppress lung metastasis via a mechanism that depends on 

eosinophil recruitment (117). ILC1s can also exert immune surveillance of early-stage 

tumors. In the MMTV-PyMT model of breast cancer, tumor initiation triggers an IL-15-

dependent expansion of tissue-resident ILC1-like cells with cytotoxic activity against cancer 

(118). However, an ILC1-like phenotype can also curb anti-tumor immunity. For example, 

owing to the plasticity of NK cells, TGF-β can convert them into ILC1s, resulting in a 

decreased ability to restrain tumor growth (119, 120). Contrasting roles have been reported 

for ILC3s as well. In a murine model of melanoma, expression of C-C motif chemokine 

ligand 21 (CCL21) recruits C-C chemokine receptor 7+ (CCR7+) ILC3s with lymphoid 

tissue-inducing ability, which promotes lymphoid stroma formation and the establishment 

of an immunosuppressive, pro-tumorigenic milieu (121). In contrast, ILC3s from human 

lung cancer specimens can instead be polarized toward an inflammatory phenotype, which 

correlates with better clinical outcome. Interaction with tumor cells or tumor-associated 

fibroblasts triggers these ILC3s to produce inflammatory (TNF-α, IL-22) and chemotactic 

(IL-8, IL-2) cytokines, causing activation of the endothelium and potentially recruiting 

anti-tumor leukocytes (122).

2.2.1.1 NK cells: The role of NK cells in cancer was recognized decades before that of 

the other ILCs, when in 1980, Talmadge et al. showed that tumor cells transplanted to 

beige mice, deficient in NK cell activity, grew faster than in control mice (123). In humans, 

the presence of NK cell infiltrate or overexpression of NK-activating ligands by cancer 
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cells correlates with better prognosis (124). In contrast, NK cell dysfunction, measured by 

flow cytometry analysis of cell-surface receptor expression and functional assays, predicts 

metastatic progression (125, 126).

NK cells can directly eliminate tumor cells by releasing cytotoxic granules or engaging 

death receptors (127). MHC-I molecules, expressed by most cells, serve as ligands for 

inhibitory receptors on NK cells, protecting healthy cells from being targeted. Cancer cells 

often lose MHC-I, especially when subjected to selective pressure by cytotoxic T cells, 

which rely on MHC-I to recognize their target. In such cases, the ability of NK cells to 

kill MHC-I-negative cells is an important fail-safe mechanism against immune escape (128). 

However, MHC-I downregulation is not the only signal that targets cancer cells for NK 

killing. Cancer cells also present ligands for NK cell-activating receptors (129). For instance, 

activating the DNA damage response in transformed cells leads to increased expression of 

ligands for the NK cell-activating receptor natural killer group 2D (NKG2D) (130). Genetic 

models lacking NK cell-activating receptors display impaired tumor immunosurveillance, 

supporting their important role in making cancer cells susceptible to NK killing. For 

instance, crossing NKG2D-deficient mice with a transgenic model of prostate cancer or 

a transgenic model of B cell lymphoma leads to the development of highly malignant, early 

arising cancer (131). Similarly, genetically ablating the natural cytotoxicity receptor NKp46 

increases lung metastasis following transplantation of B16F10.9 melanoma or Lewis lung 

carcinoma cells (132). Under selective pressure, cancer cells can lose NK-activating ligand 

expression, leading to immune escape [e.g., (131, 133)].

Besides directly killing tumor cells, NK cells also amplify the anti-tumor immune response 

by secreting FLT3L, CCL5, and X-C motif chemokine ligand 1 (XCL1/2), which recruit 

cDC1s to the TME (134, 135). Activating cDC1s, in turn, can potentiate the NK cell 

response to the tumor. For instance, in the lungs of tumor-bearing mice, cDC1-derived IL-12 

suppresses metastasis via an NK cell- and IFN-γ-dependent mechanism (136).

Similar to cytotoxic T cells, activated NK cells are also susceptible to so-called functional 

exhaustion, a state of decreased effector function. The activating cytokine IL-15 induces 

expression of the intracellular inhibitory molecule cytokine-inducible SH2-containing 

protein (CIS), which ultimately renders NK cells unresponsive to IL-15 in a negative 

feedback loop (137). In preclinical mouse models of metastasis, lung NK cells are activated 

by IL-12 but are also induced to upregulate checkpoint inhibitory receptors, e.g., PD-1, 

lymphocyte activating 3 (Lag-3), and T cell immunoreceptor with Ig and ITIM domains 

(TIGIT) (138). TIGIT expression was detected on tumor-infiltrating NK cells from patients 

with colon cancer and in several mouse models of cancer and was associated with 

dysfunction and reduced anti-tumor potential of these cells (139). In addition, NK cell 

activity is also restricted by modulated interleukin signaling. For instance, IL-1R8 negatively 

regulates ILR and TLR downstream signaling. IL-1R8-deficient mice display enhanced NK 

cell maturation and effector functions and are protected from liver cancer development and 

metastasis in the liver and lungs (140).
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2.2.2 Unconventional T cells

2.2.2.1 γδ T cells: γδ T cells comprise 0.5–5% of all circulating T cells in healthy 

individuals and are most abundant in the gut mucosa. Instead of the classical T cell receptor 

(TCR) with α and β chains, these cells have a distinct TCR consisting of γ and δ chains. 

This TCR confers non-MHC-restricted antigen recognition [Fig. 3c]. The presence of intra-

tumoral γδ T cells is associated with a favorable prognosis across many cancer types 

(46). Accordingly, in vitro studies have shown that γδ T cells are able to kill cancer cells 

via a) the granzyme-perforin pathway (141); b) expression of the death receptor ligand 

TNF-related apoptosis-inducing ligand (TRAIL) (142); and c) TNF-α and IFN-γ secretion 

(143). γδ T cells also induce enhanced cytotoxic activation of NK cells by engaging the 

co-stimulatory molecule 4–1BB (144). However, like other innate immune cells, γδ T 

cells are plastic and can acquire a pro-tumorigenic phenotype in response to soluble cues. 

Stimulation with IL-1β, IL-6, and IL-23 induces γδ T cell enrichment, producing the major 

immunosuppressive cytokine IL-17, with effects ranging from angiogenesis to immune 

escape (77, 145, 146). In pancreatic cancer, intratumoral γδ T cells express high levels 

of exhaustion-inducing ligands, leading to a curtailed adaptive response (146). In a mouse 

model of breast cancer, γδ T cell-secreted IL-17 and IL-1β stimulate neutrophil expansion 

and polarization (77). These neutrophils suppress CD8+ T cell function, which in turn 

facilitates the establishment of metastasis.

2.2.2.2 Natural Killer T (NKT) cells: NKT cells are a small subset of T lymphocytes 

that recognize lipid antigens presented on the non-polymorphic MHC-I-like molecule CD1d. 

This family is subdivided into Type I NKT cells or iNKT cells, presenting a semi-invariant 

TCR, and Type II NKT cells, with a variable TCR [Fig. 3c]. Most studies have found that 

type I and type II NKT cells play contrasting roles in cancer immunity, with the former 

promoting and the latter suppressing anti-tumor responses.

Much like NK cells, iNKT cells can directly kill cancer cells through non-antigen-specific 

cytotoxic mechanisms (147). iNKT cells can also target other cells expressing CD1d in the 

TME, including TAMs (148). In addition, iNKT cells support the efficient cross-priming 

of cytotoxic T cells by inducing DC maturation. For instance, iNKT stimulation with 

α-galactosylceramide, a high-affinity ligand for CD1d, leads to the upregulation of co-

stimulatory molecules on DCs via CD40-CD40L interaction (149). DCs cross-primed by 

iNKT cells uniquely recruit T cells via the CCL17-CCR4 axis, potentiating anti-tumor 

immunity (150). Lastly, iNKT cell activation directly boosts cytotoxic cells, as exhausted 

NK cells and T cells can be rescued via iNKT cell-dependent production of IL-21, IL-12, 

and IL-2 (151). Conversely, an elegant genetic approach comparing CD1d-deficient mice 

(lacking all NKT cells) to Jα18−/− mice (deficient in iNKT cells only) showed that type II 

NKT cells suppress anti-tumor immunity in several mouse models (152). In fact, type I and 

type II NKT cells can be mutually antagonistic: when stimulated by specific ligands, type II 

NKT cells suppress the proliferation and cytokine production of type I NKT cells (153).

2.3 The complement system bridges innate and adaptive immunity—The 

complement system is a central part of the humoral arm of innate immunity. It comprises 

more than 50 plasma proteins, regulators, and receptors that serve as a first defense 
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against pathogens and unwanted host molecules, besides mediating the effects of antibodies 

involved in a variety of activities, from regulating cytotoxicity to adaptive immunity and 

tissue homeostasis (154, 155). The complement system is activated by three major pathways 

(the classical, alternative, and lectin pathways) that converge into the cleavage of C3 into 

C3b. C3b binds to the surface of cells and marks them for phagocytosis by macrophages 

or neutrophils. After C3 is activated, C5 is cleaved and initiates assembly of the membrane 

attack complex, which accumulates on cell membranes and induces cell lysis. Furthermore, 

the cleavage products of C3 and C5—C3a and C5a—are chemokines with important 

inflammatory and chemoattractant functions [Fig. 3d].

The complement system’s activation can induce tumor cell lysis and phagocytosis by 

immune cells. In fact, the complement system mediates tumor cytolysis induced by 

rituximab, a chimeric anti-CD20 mAb developed to treat B cell lymphomas (156). 

Chemotherapy-induced immunogenic cell death (in breast cancer) activates signaling 

through the complement system, leading to a switch in B cell phenotype, which ultimately 

boosts anti-tumor immunity by increasing the ratio of effector T cells to regulatory T cells 

(157). However, in some settings, components of the complement system impair anti-tumor 

immunity instead. C5a generation suppresses CD8+ T cell responses by recruiting regulatory 

T cells and MDSCs and producing immunosuppressive molecules, e.g., L-arginase, IL-10, 

IL-6, CTLA-4, and PD-L1 (158, 159). Furthermore, C3a and/or C5a change the TME by 

recruiting TAMs, decreasing NK cell infiltration, and promoting NET formation (160–162). 

Another complement factor, iC3b, has been shown to promote IL-10 and TGF-β2 expression 

and MDSC generation (163, 164) to induce immunosuppression. Lastly, genetically or 

pharmacologically ablating the long pentraxin 3 (PTX3), which restrains complement 

activation, results in increased susceptibility to mesenchymal or epithelial carcinogenesis 

due to unleashing macrophage-mediated inflammation (165).

3. The TME modulates innate immunity

Besides cancer cells and immune cells in the TME, innate immune cell plasticity can be 

triggered by other cellular and non-cellular components, including the ECM, fibroblasts, and 

the microbiome.

3.1 Extracellular matrix (ECM)—The ECM is a three-dimensional scaffold of 

extracellular macromolecules, proteins, and polysaccharides that provides structural and 

biochemical support to cells. Several cell types, including fibroblasts, immune cells, and 

cancer cells, cooperate to produce, assemble, and modify the ECM.

Tumor progression is often accompanied by the deposition of a tumor-specific ECM, a 

typically stiffer and more fibrotic matrix characterized by higher levels of remodeled and 

cross-linked proteins (166) than regular ECM. The tumor-specific ECM can augment many 

hallmarks of cancer, such as resistance to cell death (167), induction of angiogenesis 

(168), and metastasis (169). In addition, the ECM modulates immune cell activation, 

polarization, and survival (170). A first layer of regulation comes from the physical and 

mechanical properties of the ECM. In human breast cancers, more aggressive subtypes 

display stiffer ECM and higher TGF-β, coinciding with higher macrophage infiltration, 
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especially at the invasive front (171). Moreover, ECM stiffness and density regulate 

several immunoregulatory genes in macrophages. For example, when macrophage-like 

RAW 264.7 cells are cultured on high-density collagen matrix, their ability to inhibit T 

cell proliferation increases, while their ability to attract cytotoxic CD8+ T cells decreases 

(172). As a second layer of regulation, ECM components can be functional ligands of 

receptors on innate immune cells. As do many human tumors, Lewis lung carcinoma cells 

overexpress the matrix proteoglycan versican, which signals through TLR2 and stimulates 

macrophages to produce TNF-α, ultimately sustaining metastatic spread in mice (173). 

Collagen activates the immune-inhibitory receptor leukocyte-associated immunoglobulin-

like receptor-1 (LAIR-1), and overexpression of collagen by tumor cells impairs NK cell 

cytotoxic activity through LAIR-1 signaling (174).

Matrix remodeling is another layer of the ECM-mediated regulation of innate immune cells. 

Enzymes such as MMPs, members of a disintegrin and metalloproteinase (ADAM), and a 

disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) families cleave 

ECM proteins, producing peptide fragments, called matrikines, with immunomodulatory 

activity. For example, versikine, derived from versican proteolysis, enhances the 

differentiation of cross-presenting cDC1s from the bone marrow-derived precursor, thus 

promoting T cell anti-tumor immunity (175).

3.2 Fibroblasts—Within the TME, fibroblasts are a major producer of ECM and soluble 

factors. Normal fibroblasts can suppress tumor initiation and progression via direct cell-cell 

contact, secreting soluble factors and maintaining ECM integrity. However, with tumor 

progression, fibroblasts’ tumor-suppressive functions are lost. When normal fibroblasts turn 

into cancer-associated fibroblasts (CAFs) it triggers a range of tumor-supporting signals. 

As reviewed elsewhere, CAFs promote tumor growth by multiple mechanisms (176). 

One of these is driving an immunosuppressive microenvironment by secreting cytokines 

and chemokines that regulate the recruitment and functional differentiation of tumor-

infiltrating immune cells. For instance, CAF-produced IL-6 and GM-CSF induce monocyte 

differentiation toward alternatively activated macrophage (M2)-like TAMs and promote 

metastasis in a colon cancer mouse model (177). Human colorectal cancer-derived CAFs can 

attract monocytes by secreting IL-8 and subsequently enhance the pro-tumor polarization of 

macrophages, and these macrophages in turn suppress NK cell cytotoxicity and activation 

(178). Tumor-derived CSF-1 can repress CAFs’ expression of chemokines that attract PMN-

MDSCs. Therefore, an unwanted effect of CSF-1R inhibitors, used to block recruitment 

of macrophages into tumors, is the expression of PMN-MDSC-recruiting cytokines by 

CAFs, resulting in PMN-MDSC accumulation, and thus reducing the therapeutic benefit 

of CSF-1R inhibitors (179). Furthermore, CAFs induce infiltration of IDO-producing 

DCs, PDL1+ neutrophils, and regulatory T cells, while decreasing the infiltration and 

abrogating the functions of NK cells (180–183). In pancreatic adenocarcinoma, besides 

inflammatory fibroblasts (αSMAlowIL-6high) with a secretory phenotype and myofibroblasts 

(FAP+αSMAhigh) that secrete ECM, a novel population of CAFs was shown to express 

MHC-II and CD74, adding a potential immunomodulatory role as antigen-presenting cells 

(184). FAP+ fibroblasts inhibit immunological control of tumors: CXCL12 derived from 

FAP+ CAFs can be captured on the surface of cancer cells and mediates the exclusion of 
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cytotoxic lymphocytes from the tumor bed (185, 186). Inhibiting CXCR4, the CXCL12 

receptor, sensitizes the tumors to checkpoint inhibition and in patients with cancer produces 

an integrated response, recruiting adaptive and innate immune cells (185, 187).

3.3 Microbiome—As exemplified by Coley’s toxin, bacterial components can activate 

immunity and restrict cancer development. Microbes within a human organism interact with 

the host at numerous sites, like skin and mucosal surfaces. These microbes are not inert, 

but regulate innate and adaptive immunity, thus exerting a major influence on health and 

disease (188). Dysbiosis—a disruption in the homeostasis of microbial communities—has 

been linked to carcinogenesis. Indeed, large case-control studies have demonstrated that 

prolonged antibiotic use is an independent risk factor for cancer occurrence (189). Besides 

antibiotics, eating a high-fat diet also induces changes in the intestinal microbiome, favoring 

tumor progression in gastrointestinal cancer (190).

Microbiota can promote distinct inflammatory responses, thereby indirectly supporting 

tumor development. For instance, in a mouse model of colorectal cancer, erosion of the 

intestinal epithelial barrier favors entry of microbial products into the TME of early-stage 

lesions. This entry leads to the activation of IL-23-producing myeloid cells and enrichment 

of tumor-promoting cytokines, including IL-17 and IL-6 (191). Immunoregulatory effects 

of the intestinal microbiota, however, extend beyond the local environment, since other 

organs, e.g., the liver, can be exposed to the gut microbiome and its metabolites through 

the circulation. In mouse models of liver cancer, bile acids metabolized by gram-positive 

bacteria in the gut circulate back to the liver and downregulate expression of CXCL16 

on endothelial cells, inhibiting the CXCL16-mediated recruitment of NKT cells and tumor 

control (192).

Besides the gut, bacteria and even yeast can reside within the TME of other tissues, e.g., 
lung and pancreas (145, 193, 194). In a genetically engineered mouse model, lung cancer 

development is decreased in germ-free or antibiotic-treated mice vs. specific pathogen-free 

mice (145). At the molecular level, the lung microbiota activates myeloid cells to release 

IL-1β and IL-23, thereby inducing IL-17 production from γδ T cells and ultimately 

inflammation and tumor cell proliferation (145). Analogously, the pancreas microbiota 

generates a tolerogenic environment by inducing an immunosuppressive phenotype in 

macrophages and monocytes in a TLR signaling-dependent fashion (193).

Aside from contributing to cancer development, pioneering studies in mice revealed that 

response to immunotherapy in mouse models of melanoma depends on the composition of 

the intestinal microbiota. Modifying the microbiome, e.g., by administering specific bacteria 

or performing fecal transplant, re-sensitizes non-responders, leading to increased DC 

function and enhanced CD8+ T cell priming (195, 196). These findings spurred clinical trials 

in which patients with previously immunotherapy-refractory melanoma experienced partial 

and complete tumor regression when the treatment was repeated after fecal transplant from 

responsive patients (197, 198). Further studies will need to define the distinct mechanisms 

responsible for the microbiota’s effect on anti-tumor immunity, as well as define more 

scalable treatment options to modulate the microbiome.
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4. Multidimensional approaches to studying innate immune cells in the TME

While the first decades of TME research, including on innate immune cells, relied heavily 

on mouse genetics and cell biology to dissect the role of single cell types or pathways, recent 

advances have also been made using system-level approaches. The field has benefitted from 

-omics analyses, which produce large-scale biological datasets capturing e.g., the entire 

complexity of a sample’s mRNAs, proteins, or lipids. Initially focused on cancer cells, 

these approaches have now been extended to study the complexity of the immune infiltrate: 

the relative abundance of cell populations, diversity of phenotypes, and activation status. 

A crucial advance was the development of deconvolution techniques capable of estimating 

the abundance of different immune cell types in a sample from bulk transcriptomics data 

(199). An early large-scale analysis applied one such computational tool, CIBERSORT, to 

data from >27,000 patients across 25 cancers and revealed that intratumoral neutrophils 

are the leukocyte population most significantly associated with an adverse prognosis 

(46). Another group used RNA-Seq and flow cytometry to identify immune subtypes of 

triple negative breast cancer (TNBC) from mouse models and clinical datasets. Focusing 

on two myeloid compartments, they discovered that tumors with a macrophage-enriched 

microenvironment respond to checkpoint blockade, especially upon macrophage depletion. 

In contrast, the absence of immune infiltrate or the local and systemic accumulation of 

neutrophils correlates with a lack of immunotherapy response (200).

Additional improvements in high-throughput techniques have led to characterizing the 

TME at single cell resolution: capturing the heterogeneity within one cell type, including 

innate immune cells. Compared to scRNA-Seq, which informs on thousands of genes 

per cell, single cell proteomics protocols are not yet quite as powerful. Immune cells 

have historically been cataloged by extracellular markers; however, techniques like mass 

cytometry, which can probe tens of protein markers, including intracellular markers, 

have proven particularly informative in the field of cancer immunology. Integrating these 

approaches in multi-omics studies that yield single cell-level measurements for both 

proteins and transcripts promises to further amplify our ability to characterize the TME. 

Paired scRNA-Seq and mass cytometry of the immune compartment in early-stage lung 

tumor specimens revealed that cross-presenting CD141+ DCs (cDC1s) and NK cells are 

already depleted in early lesions compared to normal lungs. Stressing the importance of 

the single cell resolution, macrophages were as abundant as in normal tissue, but had a 

more pro-tumorigenic phenotype in tumors, with high expressions of IL-6 and the immune 

suppression-associated transcription factor peroxisome proliferator-activated receptor γ 
(PPARγ) and low expression of the co-stimulatory molecule CD86 (201). Later, the same 

group used scRNA-Seq to discover a cluster of DCs that had gone undetected by bulk 

methods, named “mature DCs enriched in immunoregulatory molecules” (mregDCs). The 

transcriptional program associated with mregDCs is activated upon antigen uptake and, 

depending on IL-4 signaling, can either enhance or inhibit DC immunostimulatory activity, 

making it an attractive candidate for clinical intervention (112).

Immunophenotyping tumors is further aided by topological techniques that collect complex 

data on tumor tissue sections, thus preserving spatial information. A major advantage of 

this analysis is that it can be applied to archival tissues, such that immune phenotype can 
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be retrospectively correlated with outcome. For instance, a highly multiplexed version of 

traditional immunohistochemistry techniques was optimized to probe 12-antibody biomarker 

panels for lymphoid and myeloid cells on specimens from patients with pancreatic ductal 

adenocarcinoma. Analyzing the leukocyte infiltrates in intratumoral regions revealed that 

therapeutic response to neoadjuvant GVAX therapy correlates with a rich myeloid infiltrate, 

but not with lymphoid infiltrate (202). Methods that further increase multiplexing or 

dimensionality are also available. A good example is Multiplexed Ion Beam Imaging 

by Time of Flight (MIBI-TOF), a method that leverages mass spectrometry to image 

at subcellular resolution large samples (up to 1 mm2) labeled with isotope-conjugated 

antibodies. By integrating this technique with sophisticated digital segmentation of 

the images, one group was able to spatially locate 36 proteins and reconstruct the 

microenvironmental architecture of TNBC samples. One important takeaway from the 

study is that tumors with equally abundant immune infiltrates can vary dramatically in the 

compartmentalization between tumor cells and immune cells (203). A similar conclusion 

was reached in another TNBC study, where researchers identified four immune subtypes 

based on the spatial distribution of CD8+ T cells and gene expression profiles from laser 

capture microdissection of stroma and epithelium. The subtype associated with the poorest 

outcome had unexpectedly high infiltration of CD8+ T cells, but these were restricted to the 

stroma and accompanied by elevated levels of IL-17-producing cells and neutrophils (204).

As the field moves forward, we must integrate immune phenotyping obtained from multi-

dimensional approaches with the other parameters that guide decision-making in the clinic 

to improve outcomes. Initiatives such as The Human Tumor Atlas Network, which will link 

multiparametric analysis of tumor samples with patients’ clinical information, promise to 

greatly accelerate progress (205).

5. Innate immune cells can be targeted for cancer therapy

Immunotherapies boost the immune system’s ability to fight diseases like cancer. They 

include antibody-based approaches, adoptive cellular therapies (including engineered 

immune cells), cancer vaccines, cytokine therapy, and small molecules targeting signaling 

pathways in immune cells. Although the approach of activating the immune system traces 

back to Coley’s work more than 100 years ago, it took off in earnest with the FDA 

approval of immune checkpoint inhibitors targeting CTLA-4 in 2011 (206). The majority 

of approved immunotherapies activate adaptive immune cells, i.e., B cells and CD4+ and 

CD8+ T cells, which are excellent targets because of their “memory” function. Nonetheless, 

innate immune cells can greatly influence adaptive immune responses. This potential is 

demonstrated by Bacillus Calmette-Guérin (BCG), a vaccine containing an attenuated 

Mycobacterium strain that has been used to treat non-muscle invasive bladder cancer for 

over 40 years. Intravesical administration of BCG activates innate immune cells through 

PRR signaling and subsequently leads to potent cytotoxic responses against the tumor (207). 

Approaches to reprogram, deplete, or reduce the recruitment of innate immune cells with 

immunosuppressive functions are therefore areas of very active investigation.

5.1 Macrophages: removed or reprogrammed—One strategy to target 

macrophages is to block their recruitment to tumors. CCL2 and the cytokine CSF-1 promote 
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tumor infiltration of monocytes and their maturation to TAMs. Genetically ablating CCL2 or 

CSF-1 in mouse models limits tumor progression (11, 208). Several antibodies (carlumab, 

RG7155, AMG 820) and small molecules (PF-04136309, PLX3397) targeting CCL2 and 

CSF-1, or their receptors CCR2 and CSF-1R, have been studied in clinical trials. CCL2 

inhibition correlates with reduced tumor progression and metastasis in breast cancer mouse 

models (209). A phase II study of carlumab (CNTO 888; a humanized antibody that binds 

CCL2) in metastatic castration-resistant prostate cancer did not show anti-tumor activity 

as a single agent (210). In contrast, the CCR2 small inhibitor PF-04136309 combined 

with the chemotherapeutic regime FOLFIRINOX resulted in an objective tumor response 

in 16 of 33 patients with pancreatic cancer (211). However, results of randomized, double-

blinded trials targeting CCR2 have not yet been reported. PLX3397, a CSF-1R inhibitor, 

was tested in phase I and II trials in advanced tenosynovial giant cell tumors, where it 

was well tolerated, and 12 of 23 patients showed an anti-tumor response after treatment 

(212). Yet, when PLX3397 was tested in a phase II study in patients with recurrent 

glioblastoma, it showed no efficacy (213). The antibody RG7155 (emactuzumab) blocks 

CSF-1R dimerization and showed promising results in a phase I trial: 86% of the 28 patients 

achieved an objective response and 7% achieved a complete response (214). AMG 820, an 

anti-CSF-1R antibody, was recently tested in combination with pembrolizumab in patients 

with colorectal, pancreatic, and non-small cell lung cancer. The combination therapy showed 

on-target pharmacodynamic effects, such as CSF-1 accumulation in the serum, and had an 

acceptable safety profile, but no efficient anti-tumor responses were observed (215).

A recent study took advantage of myeloid cells’ propensity to home to metastatic niches 

and genetically manipulated myeloid cells to deliver IL-12. Upon homing to the metastatic 

niches, these IL-12-genetically engineered myeloid cells (IL-12-GEMys) elicited a strong 

anti-tumor immune response by activating endogenous T and NK cells and modulating the 

metastatic TME, resulting in greatly reduced lung and liver metastasis in mice (215a).

Strategies exploiting the plasticity of macrophages—attempting to reprogram or re-

polarize them from pro-tumor to anti-tumor—are also being explored (45). Re-polarizing 

macrophages theoretically has the advantage of leading to the activation of cytotoxic effector 

immune cells (e.g., NK and T cells) by producing cytokines (including TNF-α, IL-6, and 

IL-12). The most straightforward method to re-polarize macrophages toward an anti-tumor 

phenotype is by activating PRRs, like TLRs. Synthetic ligands for diverse PRRs, many 

initially developed as vaccine adjuvants, are now being tested as cancer immunotherapies 

(216). The topical administration of the TLR7 ligand imiquimod has anti-tumor activity in 

superficial basal cell carcinoma and breast cancer skin metastasis (217, 218). The TLR9 

ligand IMO-2055 combined with targeted and anti-angiogenic therapy in patients with 

non-small cell lung cancer showed good tolerability and possible anti-tumor activity (219). 

Motolimod, a small molecule targeting TLR8, is in clinical trials for advanced cancers (220). 

We are exploring how the combination of monophosphoryl lipid A (MPLA, a TLR4 agonist) 

with IFN-γ can reprogram TAMs to upregulate TNF-α, IL-12, and iNOS expression; 

decrease CD206 expression; and activate T cells in breast and ovarian cancer mouse models. 

The result is significantly reduced primary tumor growth and metastasis (48).
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COX2 inhibitors, histone deacetylase (HDAC) inhibitors, phosphoinositide 3-kinase γ 
(PI3Kγ) inhibitors, and stimulator of interferon genes (STING) agonists are also used 

to reprogram TAMs. COX2 inhibition increases TNF-α, IL-12, and iNOS expression, 

shifting the macrophages to an anti-tumor phenotype (221, 222). In a phase I clinical 

trial for the treatment of docetaxel-resistant prostate cancer, patients treated with a 

COX2 inhibitor (celecoxib) and an epidermal growth factor receptor (EGFR) inhibitor 

(gefitinib) showed reduced tumor growth and invasion (223). HDAC inhibitors modify 

the epigenetic profile of monocytes and macrophages, resulting in altered gene expression 

and polarization toward an anti-tumor phenotype. In a mouse model of breast cancer, 

the HDAC inhibitor TMP195 induced the recruitment and differentiation of monocytes/

macrophages into highly phagocytic and immunostimulatory cells, resulting in reduced 

tumor burden and metastasis and increased response to chemotherapy and immunotherapy 

with anti-PD1 antibodies (224). In mouse models of head and neck squamous cell 

carcinoma and breast cancer, selective inactivation of PI3Kγ in macrophages promoted 

an immunostimulatory transcriptional program in TAMs and in turn restored CD8+ T cell 

activation and cytotoxicity, leading to increased survival (225). A PI3Kγ inhibitor IPI-549 

(eganelisib) is currently being tested in multiple phase I/II clinical trials (NCT03719326, 

NCT03980041, NCT03961698, NCT03795610). Finally, targeting STING induced TAM 

re-polarization in vitro; increased IFN-γ, iNOS, and IL-12 production; and led to promising 

results in mouse models (226). Different STING ligands are currently in clinical trials as 

sensitizers for multiple immunotherapies (227).

5.2 DCs: boosting presentation of tumor antigens—DC-based therapies utilize 

patient-derived DCs, generally produced by isolating circulating DCs or monocytes 

from the patient’s blood. Monocytes are then differentiated into monocyte-derived 

DCs by culturing them with GM-CSF and IL-4, and these DCs are further matured 

with a cocktail of substances, e.g., IL-6, TNF-α, IL-1β, prostaglandin E2 (PGE2), 

and polyinosinic:polycytidylic acid [poly(I:C)] (228). Maturation—involving enhanced 

expression of MHC-I, MHC-II, and co-stimulatory molecules and increased cytokine 

production—is essential, as incompletely matured DCs can induce tolerance rather than 

immunity (229). DCs have also been engineered using gene-editing technologies, like RNA 

interference, viral transduction, and clustered regularly interspaced short palindromic repeats 

(CRISPR)/Cas9, to promote their maturation (230, 231). Sipuleucel-T, a DC-based therapy 

approved in 2010 for castration-resistant prostate cancer (232), consists of matured and 

tumor antigen-loaded patient-derived DCs. Patients with melanoma have also been treated 

with ex vivo activated cDCs loaded with the tumor-associated antigens of tyrosinase and 

glycoprotein 100 (gp100) (233).

Various approaches have also been used to boost cDC mobilization to tumors, e.g., 
administering FLT3L (234) or modifying DC activities within the TME. The latter 

approaches include using TLR ligands, such as intra-tumoral injection of TriMix mRNA 

(three mRNA molecules encoding for CD70, CD40L, and constitutively active TLR4) (235), 

oncolytic viruses (236), self-replicating IL-12 RNA encapsulated in oncolytic nanoparticles 

(237), CD40-TLR4 agonists (238), or STING agonists (239). Such approaches have 

resulted in lasting systemic antigen-specific T cell immunity and tumor regression in many 
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preclinical models, including of melanoma, breast carcinoma, colon cancer, and lung cancer 

(235, 237–239).

5.3 NK cells: a new frontier of cytotoxic immunotherapy—Different approaches 

have been investigated to engage NK cell function to treat cancer, including 

immunomodulatory cytokines, mAbs, and adoptive transfer of engineered NK cells. The 

most prominent cytokines used in NK cell activation are IL-2 and IL-15, both known to 

induce the expansion and increased cytotoxicity of NK cells (240). IL-2 treatment, the 

first approved immunotherapy, was approved to treat patients with metastatic renal cell 

carcinoma and melanoma (241). Moreover, the adoptive transfer of autologous or allogeneic 

NK cells is also used to improve NK cell tumor surveillance. mAbs have been designed to 

either block the interaction between the inhibitory NK cell receptor and its corresponding 

ligand on the cancer cells or engage activating receptors on NK cells. For example, lirilumab 

targets the inhibitory killer cell immunoglobulin-like (KIR) receptor and is in clinical trials 

for treating acute myeloid leukemia, multiple myeloma, lymphoma, chronic lymphocytic 

leukemia, and Hodgkin lymphoma (242). Another inhibitory receptor on NK cells, NKG2A, 

can be targeted by monalizumab, resulting in both enhanced NK cell activation and T cell 

function (243, 244). Recombinant reagents that increase the specificity and efficacy of NK 

cell activation—named bispecific and trispecific killer cell engagers (BiKEs and TriKEs, 

respectively)—are also in development. BiKEs bind to a surface tumor antigen, e.g., the 

highly expressed CD30 on Hodgkin lymphoma, and to an NK cell receptor, e.g., CD16, 

to trigger NK cell-mediated toxicity of the cancer cells (245). A TriKE has been designed 

to target CD33-positive hematological malignancies: it engages CD33 on the cancer cells; 

contains a CD16-heavy chain to activate NK cells; and also contains an IL-15 molecule to 

drive NK cell priming, expansion, and survival. This TriKE is currently in phase I clinical 

trials (NCT03214666) (246). Recently, NK cells have also been engineered to contain 

chimeric antigen receptors (CARs), which enables them to be directed against specific 

targets (247), much like similarly engineered CAR-T cells. Adaptive transfer with CAR-NK 

cells has shown promising results in preclinical models of B cell lymphoma and is currently 

being evaluated in a phase I/II study (248).

5.4 Neutrophils: an underrated target—There are currently no approved therapeutics 

to inhibit neutrophil activity in cancer. However, strategies to limit neutrophils’ pro-

tumorigenic functions are being tested in early stage trials. These strategies include blocking 

CXC chemokine receptor 2 (CXCR2), which is critical for neutrophil recruitment (249). 

The CXCR2 antagonist AZD5069 markedly reduced neutrophils in a phase II clinical trial 

in patients with asthma and is now being evaluated in patients with advanced tumors 

(NCT02583477, NCT02499328, NCT03177187). In addition, the small molecule inhibitor 

reparixin, a non-competitive CXCR1/CXCR2 antagonist, was safe and tolerable in a phase 

Ib trial for HER-2-negative metastatic breast cancer (NCT02001974) (250). Neutrophils and 

granulocytic MDSCs can suppress anti-cancer immune responses, in part via arginase-1 

activity (251). The combination of arginase-1 inhibitors with various chemotherapies or anti-

PD-1 is in phase I and II clinical trials (NCT02903914, NCT03361228, NCT03314935).
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6. Conclusion

Inflammation is an integral part of cancer pathology. Inflammation can favor cancer 

development, and cancer, in turn, elicits an inflammatory response. In fact, even cancers 

that are considered immunologically cold for lack of an adaptive immune response are 

often populated by innate immune cells. As described above, targeting the innate immune 

system therefore offers opportunities to a) prevent cancer development, b) stratify patients 

for specific treatments, and c) elicit an anti-tumor immune response.

Some chronic inflammatory conditions are well known to favor cancer development, but 

more research is needed to identify opportunities to interrupt the signaling that supports 

tumorigenesis and prevent tumor progression. In addition, we are just starting to appreciate 

how genetic factors [e.g., polymorphisms in immune-related genes (41)] and environmental 

factors [e.g., diet (31, 190), stress (102)] influence the immune system and contribute to 

tipping the scale towards tumorigenesis.

Technological advances now allow us to profile the composition and phenotype of the tumor 

and systemic immune microenvironment. Soon, we should be able to harness this knowledge 

to better identify patients at high risk of recurrence and to assign patients to the therapy they 

are most likely to benefit from (39, 200, 202, 204).

From a therapeutic standpoint, targeting inflammatory cells provides an opportunity to 

influence cancer growth and improve adaptive immune responses. The outcome of the 

inflammatory response is highly context-dependent. In fact, almost universally, components 

of the immune system display both pro-tumor and anti-tumor functions. This duality implies 

that the innate immune system has an inherent degree of plasticity that can be leveraged. 

More work needs to be done to define which molecular players reprogram inflammatory 

cells to an anti-tumor phenotype. Moreover, as innate immune cells influence both one 

another and adaptive immune cells, understanding the hierarchy of signals that can switch 

an immunosuppressive microenvironment to an inflammatory one can allow us to act on the 

upstream components.
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Fig. 1. Plasticity of the innate immune system
The components of the innate immune system are not inherently tumor-supportive or tumor-

opposing. Rather, cells of the innate immune system are highly plastic and their phenotype 

and activity depend on the balance of signals within the tumor. (a) The anti-tumorigenic 

functions of the innate immune system include 1) antigen presentation and activation of the 

adaptive response, 2) direct killing of cancer cells, and 3) amplification of the anti-tumor 

immune response through cytokine secretion. (b) During tumor progression signals from 

tumor cells and other cells in the microenvironment can polarize innate immune cells 

towards supporting the tumor, e.g., through 4) angiogenesis, 7) ECM remodeling, 5, 6, 8) 

immunosuppression, and 9, 10) pro-metastatic activities. Thus, because of plasticity, the 

innate immune system has tumor-promoting potential. However, plasticity also affords us 

the opportunity to therapeutically reprogram the innate immune system to fight the tumor.
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Abbreviations: DC, dendritic cell; ECM, extracellular matrix; IDO, indoleamine 2,3-

dioxygenase; IL, interleukin; ILC, innate lymphoid cell; MDSC, myeloid-derived suppressor 

cell; NET, neutrophil extracellular trap; NK, natural killer; NKT, natural killer T; NO, 

nitric oxide; ROS, reactive oxygen species; TAM, tumor-associated macrophage; TGF, 

transforming growth factor; VEGF, vascular endothelial growth factor.
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Fig. 2. Aberrant wound healing response, fibrosis, and cancer
Partly owing to the activation of the innate immune system, features of the tumor 

microenvironment resemble an aberrant wound healing response. Wound healing consists 

of overlapping phases (left). Injury of adult tissue results in local hemorrhage, immediately 

followed by clotting. A temporary matrix of fibrin is deposited locally, which serves as 

a scaffold for migrating immune cells, epithelial cells, fibroblasts, and endothelial cells. 

During wound healing, neutrophils and macrophages kill bacteria, degrade the fibrin clot, 

and remove cellular debris. Neutrophils also secrete mediators such as TNF-α, IL-1β, and 

IL-6, amplifying the innate response. Macrophages produce VEGF and other growth factors, 

such as TGF-β, that stimulate the next phase: migration and proliferation of cells within 

the wound. In this phase blood supply is restored, new connective tissue is produced, 

and the wound re-epithelializes. Lastly, during the repair phase, the extracellular matrix is 

remodeled and new blood vessels are culled. Failure to clear the rich inflammatory infiltrate 

results in chronic inflammation (right). The persistence of inflammatory cells results in 
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the accumulation of toxic compounds such as reactive oxygen and nitrogen species, as 

well as cytokines, which support tumor initiation and progression and sustain myofibroblast 

activation and fibrosis. Inflammation, fibrosis, and cancer are tightly linked in a vicious 

cycle, in which they can each trigger and aggravate the other.

Abbreviations: ECM, extracellular matrix; EMT, epithelial–mesenchymal transition; 

IL, interleukin; RNS, reactive nitrogen species; ROS, reactive oxygen species; TGF, 

transforming growth factor; TNF, tumor necrosis factor; VEGF, vascular endothelial growth 

factor.
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Fig. 3. Interactions between cancer and the innate immune system
Cellular and molecular components of innate immunity interact with cancer cells through 

a variety of mechanisms that can support or restrain tumor growth. (a) By virtue of 

the high degree of plasticity of innate immune cells, cytokines secreted in the tumor 

microenvironment can polarize innate immune cells toward tumor-supportive phenotypes. 

(b) Necrotic cells release DAMPs, endogenous “danger signals” recognized by pattern 

recognition receptors (PRRs), e.g., Toll-like receptors (TLRs), on innate immune cells. 

DAMP sensing increases phagocytosis of the necrotic debris and amplifies the inflammatory 

response, leading to activation of the adaptive immune response. Opposite mechanisms also 

exist. For example, the binding of CD47 to SIRPα helps cancer cells escape phagocytosis, 

by transmitting a “don’t eat me” signal. (c) Innate lymphoid cells (ILCs and NK cells) 

and unconventional T lymphocytes (γδ T cells and NKT cells) can directly eliminate 

tumor cells by releasing cytotoxic granules or engaging death receptors. In NK cells, this 

cytotoxic activity is regulated by cancer cell ligands that bind either activating or inhibitory 

surface receptors. Unconventional T lymphocytes recognize cancer cells through their TCR. 

The γδ TCR allows for non-MHC-restricted recognition of e.g., phosphoantigens. The 

invariant or semi-invariant TCR on NKT cells binds lipid antigens presented on the non-

polymorphic MHC-I-like molecule CD1d. (d) The complement system can mediate tumor 

cell lysis and phagocytosis by immune cells, e.g., by binding anti-cancer antibodies on the 
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surface of cancer cells. By contrast, cleavage products of complement activation (C3a and 

C5a) can support tumor growth, either by directly affecting cancer cells or by recruiting 

immunosuppressive cells.

Abbreviations: DAMP, danger-associated molecular pattern; G-CSF, granulocyte colony–

stimulating factor; HSP, heat shock protein; IL, interleukin; ILC, innate lymphoid cell; M-

MDSC, monocytic myeloid-derived suppressor cell; M-CSF, macrophage colony stimulating 

factor; MHC, major histocompatibility complex; NK, natural killer; NKT, natural killer 

T; PGE2, prostaglandin E2; PMN-MDSC, polymorphonuclear myeloid-derived suppressor 

cell; PRR, pattern recognition receptor; SIRPα, signal-regulatory protein α; TAM, tumor-

associated macrophage; TAN, tumor-associated neutrophil; TCR, T cell receptor; TLR, 

Toll-like receptor.
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