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Abstract

Hundreds of genetic loci increasing risk for neuropsychiatric disorders have recently been 

identified. This success, perhaps paradoxically, has posed challenges for therapeutic development, 

which are amplified by the highly polygenic and pleiotropic nature of these genetic contributions. 

Success requires understanding the biological impact of single genetic variants and predicting their 

effects within an individual. Comprehensive functional genomic annotation of risk loci provides 

a framework for interpretation of neurobiological impact, requiring experimental validation with 

in vivo or in vitro model systems. Systems-level, integrative pathway analyses are beginning to 

elucidate the additive, polygenic contributions of risk variants on specific cellular, molecular, 

developmental, or circuit-level processes. Although most neuropsychiatric disease modeling has 

focused on genes disrupted by rare, large-effect-size mutations, common smaller-effect-size 

variants may also provide solid therapeutic targets to inform precision medicine approaches. 

Here we enumerate the promise and challenges of a genomics-driven approach to uncovering 

neuropsychiatric disease mechanisms and facilitating therapeutic development.

The high heritability of neuropsychiatric disorders (46.3% as a class)1 is a tantalizing clue 

that genetics will finally provide a rigorous neurobiological framework for comprehending 

conditions that have evaded biological understanding for decades2. Heritability estimates 

indicate that inherited genetic variants contribute substantially to disease liability, often 

more so than early environmental influences or noninherited, de novo mutations, but clearly 

gene and environment usually contribute together (Fig. 1)2–6. Initial linkage and candidate 
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gene studies of psychiatric disease often yielded inconsistent findings, as a result of limited 

power and difficulty accounting for systematic biases such as population stratification. When 

interpreting results from large-scale genomics studies, it is important to take statistical power 

into consideration7. So, in contrast to candidate gene studies, results from more recent, 

large-scale genome-wide studies have yielded much more robust results3.

The genetic architecture of psychiatric disease has received much attention and is the subject 

of several recent reviews2–6,8–10. Genetic variants associated with neuropsychiatric disease 

take several forms based on detection methodology and study design (Box 1 and Table 1)4. 

They can also be classified by effect size, which can be inferred from population genetics 

models that predict an inverse relationship between variant frequency and effect size11.

Hundreds of causal genetic variants with varying effect sizes have been robustly associated 

with neuropsychiatric disorders, with thousands more likely involved3,12–16. An essential 

next step is deciphering the biological impact of these variants. Here we discuss biological 

interpretation of genetic variation, focusing on rare variants of moderate to large effect and 

common variants with small effect. This genetics-driven approach has several advantages. 

First, genetics accounts for a majority of disease liability for many neuropsychiatric 

disorders and is therefore expected to be a high-yield area of investigation (Box 2 and 

Fig. 1). Second, genetic variants indicate biological causality. Third, human genetics is 

grounded in human biology, which is especially important for neuropsychiatric phenotypes 

that may not be fully conserved across species. Finally, next-generation sequencing 

technology provides a near-complete survey of the genetic search space in an unbiased 

fashion at genome-wide scale, circumventing many of the limitations in reproducibility that 

undermined earlier genetic approaches (Table 1).

Interpreting rare genetic variation

An early clue of the genetic contribution to major psychiatric conditions was their 

association with rare Mendelian syndromes, such as DiGeorge, Rett, or fragile X, each 

with characteristic morphologic, cognitive, and neuropsychiatric phenotypes. The advent 

of chromosomal microarrays enabled the detection of copy number variation (CNV), 

submicroscopic deletions or duplications in DNA. More recently, whole exome sequencing 

(WES) and whole genome sequencing (WGS) have enabled the large-scale detection of rare, 

unique and private single nucleotide variants (SNVs), small chromosomal rearrangements 

(<50 kb), indels, and inversions. Chromosomal microarrays and WES have such a high 

yield in identifying genetic variants underlying neurodevelopmental disorders that they are 

becoming the standard of care for children with autism spectrum disorder (ASD)17.

Detection, association, and interpretation of disease-causing genetic variants have many 

challenges, largely driven by the relatively high number of potentially disease-causing 

rare variants in every genome18,19. Sequencing studies are rarely sufficiently powered to 

detect disease association at a variant level, given the vast size of the genomic search 

space and potential number of ultra-rare or even private variants. To improve power, gene-

based approaches are often applied, in which association testing is performed after variants 

are aggregated at the gene level7. Formal statistical significance should be assessed at 
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genome-wide thresholds and statistical evidence of association should not be superseded by 

biological plausibility or ‘functionality’.20 The genome of a random individual will have 

on average 100 loss-of-function or likely gene-disrupting variants (nonsense, frameshift, 

and splice-site mutations), approximately one of which will be de novo. Furthermore, every 

individual carries on average 20 completely inactivated genes19. Synonymous variants are 

far more common and are therefore usually set aside, although there is now evidence that 

synonymous variation can have gene regulatory functions and can contribute to disease 

risk21. Individual rare genetic variants must therefore be interpreted in the context of the 

specific locus’s or gene’s tolerance for mutations, evolutionary or selective constraint18, 

and population allele frequency20. Several bioinformatic tools exist that predict the 

deleteriousness of a given variant or tolerance for mutation at a gene level18,22, although 

this remains an area of active development.

Even after taking into account inheritance and the predicted functional severity of a 

mutation, causal ambiguity often still exists even in cases of de novo protein truncating 

mutations, resulting in the assignment of ‘variant of unknown significance’. Robustly 

identifying the most likely causal rare variants requires more complete genomic annotations 

(including the noncoding part of the genome) and extensive population allele frequency 

databases from several populations (Fig. 2). A rare allele in one population may actually 

be common in another and without strong phenotypic consequences, substantially changing 

the interpretation of pathogenicity20. To confront this, several large-scale efforts have been 

made to aggregate population-level genomic variation into searchable databases, including 

among others ExAC23, DGV, and ClinVar. As an example, variants that are not found 

in the ExAC database, which includes WES results from over 60,000 unrelated adults 

without history of severe pediatric disease, are more likely to be deleterious23,24. Finally, 

the noncoding genome plays important regulatory roles, but is excluded from WES and has 

not been analyzed in the majority of published WGS papers. Having more comprehensive 

annotation of the noncoding genome in neural tissues is therefore a pressing goal of current 

research25. Standard pathway analyses should be applied only once variants have statistical 

support to avoid risk of false-positive results due to potential biases in these analyses, as 

well as inherent sensitivity to inclusion of spurious genes and population stratification (Box 

3)7,26,27.

The fact that de novo loss-of-function variants are predicted to have high impact14,28 has 

made them attractive targets to study (see “Disease modeling” below). The vast majority of 

disease models have therefore been based on manipulation of genes harboring these alleles 

of large effect size29. However, most of these mutations are pleiotropic in nature, associated 

with variable but often severe abnormalities in multiple cognitive, medical, and behavioral 

domains. Understanding which molecular, anatomical, or physiological abnormalities relate 

to specific cognitive or behavioral phenotypes is difficult, and experiments that attempt to do 

so are rare. A notable recent example capitalized on an allelic series identified in SHANK3, 

in which two different loss-of-function variants have been associated with distinct clinical 

phenotypes in humans, namely schizophrenia and autism, albeit in only a few individuals30. 

Comparison of mice harboring orthologous mutations identified distinct neurobiological 

effects of the different variants, correlated with distinctive changes in prefrontal and striatal 

circuitry between models, a remarkable dichotomy30. Studying other alleles on different 
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genetic backgrounds, and different genes showing similar phenotypic divergence in humans, 

as well as larger human cohorts with variable phenotypes associated with different alleles, 

will be necessary for appreciating the generalizability of these findings in mice to the 

observed divergence in disease mechanisms in humans.

Many high-penetrance rare mutations predispose to multiple clinically distinct disorders, 

including intellectual disability, epilepsy, autism, schizophrenia28,31. For example, 

about one-third of individuals with 22q11.2 deletions will have ASD and one-third 

schizophrenia28,32. As such, mice carrying a deletion syntenic to the human 22q11.2 locus 

should be viewed as a general model of neurodevelopmental disease, rather than a single 

disorder. Disease-associated CNVs have also been occasionally observed in apparently 

healthy carriers, for example in mothers with dup15q11–13 who pass the duplication to their 

affected children33. There is evidence that both genetic background and the environment can 

potentially have a large impact on the phenotypic outcome in these cases32,34. To account 

for this, it is prudent to conduct experimental manipulations at these loci on at least two 

genetic backgrounds. Furthermore, comprehensive clinical phenotyping of individuals with 

rare variants in the same locus will be essential to help decipher underlying neurobiological 

mechanisms35. Indeed, large-scale cognitive assessment of individuals carrying major-effect 

CNVs in the Icelandic population found substantially reduced performance in specific 

cognitive domains, even in carriers without a psychiatric diagnosis36. Neuroimaging has 

begun to elucidate the neuroanatomic and circuit-level impact of these rare variants, 

highlighting the promise of this bottom-up approach to mapping gene–brain–behavior 

relationships37. Furthermore, studying such people harboring the same mutation, but with 

different clinical outcomes, is likely to be high yield36. Finally, measuring other forms of 

genetic variation within rare-variant carriers, such as polygenic risk, may provide a potential 

explanation for underlying pleiotropy, as recently shown in schizophrenia34.

Another approach to disentangling mechanisms is to study allelic series of variants 

with different effects on the phenotype in one locus30. Here one would expect to see 

concentration of phenotypes within specific subcategories of variants: for example, milder 

phenotypes in patients with heterozygous or missense mutations in genes known to cause 

severe recessive disorders. The application of WES and WGS in larger populations will 

enable us to answer this question in more detail and will be a boon to genotype–phenotype 

studies in humans.

Interpreting common genetic variation

Genome-wide association studies (GWAS) have successfully identified thousands of 

common genetic variants associated with complex diseases (http://www.ebi.ac.uk/gwas/), 

including several hundred loci for neuropsychiatric disorders3,12,13,16,38,39. Population-level 

screening for common genetic contributions to human phenotypes is on the near horizon. 

Despite these GWAS successes, the number of resolved psychiatric disease genes remains 

small due to the difficulty identifying the causal variant(s) and their functional impact.

GWAS does not identify a gene per se, but a region that is associated with disease status. 

When genome-wide significance is achieved (set at P < 5 × 10−8), the effective confidence 

Gandal et al. Page 4

Nat Neurosci. Author manuscript; available in PMC 2022 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ebi.ac.uk/gwas/


interval surrounding a ‘lead’ or ‘index’ SNP (with the lowest P-value in a given locus) is set 

by the surrounding region of linkage disequilibrium (LD), which spans on average ~40 kb, 

but is highly variable throughout the genome. Identifying the underlying ‘causal’ variant(s) 

within a target region, and its biological effect, is typically an enormous challenge. In 

schizophrenia, for example, the strongest GWAS signal maps to the major histocompatibility 

complex (MHC) locus and spans several hundred genes12. Recent work elegantly dissects 

this locus to identify the likely causal variants within a few genes, including C4A (ref. 40), 

which we describe later in more detail.

A majority of common disease-associated genetic variation lies outside coding regions 

and is enriched in regulatory elements such as enhancers or promoters. Variants in these 

regulatory elements act to modulate the expression and splicing of distal gene targets, 

potentially with large effect. Regulatory elements also tend to act in a cell-type- and 

tissue-specific manner and can be inferred through evolutionary conservation, chromatin 

accessibility, and characteristic histone marks (Box 3)41–44. Projects such as ENCODE45, 

the NIH Epigenetics Roadmap46, PsychEncode25 and GTEX47 are building tissue-specific 

atlases of human gene regulation. However, these annotations are generally derived from 

only a few individuals and are far from complete, especially in neural tissues, directly 

limiting our ability to annotate genetic variants relevant to human brain disorders. There also 

is substantial evidence that gene regulation can occur at long intrachromosomal distances48. 

Consequently, identifying the gene targets of regulatory regions is a challenging problem 

and an area of active investigation using both computational49 and experimental approaches, 

such as HiC50. Gene targets can also be inferred statistically, relying on expression 

quantitative trait loci (eQTL; see “Integrative approaches” below), which identifies variants 

that are associated with changes in gene expression in a given cell type or tissue. Although 

most (~80% of) variants acting as eQTLs occur within 100 kb of their target gene, many loci 

act on genes hundreds of kilobases away47,48,51. Once a regulatory effect such as an eQTL 

or physical promoter–enhancer interaction is confirmed experimentally, further conclusive 

evidence can be derived from showing that such relationships exist in human brain and 

are altered in the disease-affected brain. Complementing such studies by investigating the 

effects of common disease-associated SNPs on human phenotypes, such as brain structure 

and function, can provide further insight into circuit mechanisms52.

Capturing polygenicity

The biological effect of individual common variants (or loci) in most cases will be very 

small4,53. Since individual common variants account for such a small proportion of disease 

liability, how can they be of use? One major insight came from the work of Visscher, 

Wray, and colleagues, who used quantitative genetic reasoning to demonstrate that one 

could capture the aggregate effect of genetic variants (polygenicity), many of which fail to 

meet highly conservative genome-wide significance thresholds but nonetheless contribute to 

disease liability54. In schizophrenia, there are predicted to be over 8,000 disease-associated 

common variants13. A similar level of polygenicity is expected for virtually every major 

common neuropsychiatric disorder3. How this plays out in an individual patient is not 

yet known, and environmental factors (such as smoking55 or cannabis use56) potentially 

contribute. Indeed, it is clear that genome-wide significant loci represent the tip of the 
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iceberg in terms of the biological signal captured by GWAS4,53,54. New approaches such as 

LD score regression57 can quantify the aggregate ‘SNP heritability’ captured by common 

variants within a given study, which can then be used to calculate genetic correlations 

across disorders or with other traits of interest58, especially intermediate phenotypes59. An 

extension of this method can quantify the proportion of heritability attributed to SNPs within 

various functional categories (such as enhancers for specific cell types)60. Conceptually 

similar, polygenic risk scoring (PRS) quantifies within an individual the aggregate effect 

of common variants for a given trait, typically calculated as the sum of trait-associated 

alleles across the genome, weighted by effect size61,62. PRS can be used to identify high-

risk individuals for closer clinical assessment, phenotyping before disorder onset to better 

understand disease trajectory, or to stratify for clinical trials, choosing or refining treatments 

on the basis of genetic signal. In addition, PRS provides a continuous, quantitative measure 

of genetic load that can be correlated with phenotypic or endophenotypic measures, such 

as structural or functional neuroimaging63. However, PRS is likely to be population-specific 

and is limited by the power of the initial GWAS. There is urgent need to expand such studies 

to more diverse populations of African, Hispanic, and Asian descent, so that individuals 

within these populations can benefit from the promise of genetic advances.

In schizophrenia, PRS can currently capture ~7% of variance in disease liability in 

independent populations of European ancestry12. While far from complete, this translates 

into odds ratios of 8–20 when comparing the highest vs. lowest decile groups, depending 

on population12. This finding was recently replicated in an independent UK population, in 

which PRS was found to account for 5.4% of variance in disease liability translating to an 

odds ratio of 7.7 between the highest and lowest deciles. As such, PRS is among the most 

strongly reproducible biological disease predictors to date64.

PRS can also be a powerful tool for identifying patient subgroups. For example, polygenic 

risk for bipolar disorder predicts manic symptoms in schizophrenia, but not other clinical 

symptoms, suggesting a distinct mechanistic underpinning for this symptom domain65. 

A similar approach was recently taken in inflammatory bowel disease, in which PRS 

can distinguish ulcerative colitis from Crohn’s disease and identify distinct subtypes of 

Crohn’s disease66. In ASD, LD score regression was recently used to demonstrate that 

genetic risk for deficits in social function fall along a continuous, bell-shaped distribution 

within the general population24, as previously predicted67. These studies demonstrate that 

quantification of polygenic risk coupled with systemic phenotypic assessment can facilitate 

new insights into disease biology.

However, a major challenge that remains is to understand the mechanisms by which multiple 

genetic risk factors of low individual effect size actually coalesce to increase disease risk. 

We emphasize the view that systems biology and integrative approaches as described below 

are a necessary step in prioritizing potential disease mechanisms and drug targets for 

therapeutic development3,68. Such approaches provide platforms on which to understand 

convergence in disease and protective mechanisms from human population genetic data3,68.
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Systems genetics

Some of the same technological advances that have enabled large-scale genetic investigation 

of complex diseases have also enabled systematic characterization of epigenetic, molecular, 

cellular, and circuit-level landscapes of the human brain across typical development25,69,70. 

These resources now enable comprehensive pathway-based, systems-level approaches to 

articulating the neurobiological context in which genetic variation may exert its effects, as 

recently reviewed71. Perhaps most relevant for CNS disorders, disease relevant gene sets can 

be investigated for temporal, spatial, and cell-type specificity using large reference data sets. 

The BrainSpan69 and BrainCloud72 projects profiled gene expression in hundreds of human 

brain samples across the lifespan, beginning with early fetal timepoints. Spatial patterns are 

captured in exquisite anatomic detail in adult73 and fetal74 human brain samples, as well 

as primate75, by the Allen Brain Institute. CNS cell-type-specific transcriptomes have been 

defined using single-cell RNA sequencing (RNA-seq) or cell sorting methods in primate76, 

mouse77, and now human78. Overlapping the growing list of reproduced genetic hits in 

psychiatric disease with more refined cell-type-specific profiles is likely to provide key 

circuit-level insight into disease79.

Using these approaches, common genetic variation for schizophrenia, bipolar disorder, and 

depression has been suggested to converge on pathways for histone methylation, immune 

signaling, and neuronal signaling, although this must be viewed as preliminary owing 

to the small number of known loci in this analysis80. Gene coexpression networks can 

identify modules of genes with predicted functional relationships at specific spatiotemporal 

timepoints in brain. Intersecting these modules with risk genes can yield insights into 

disease biology68,71,81,82. Clustering genes on the basis of experimentally defined physical 

properties, such as protein–protein interactions, can identify sub-networks of convergent 

biological processes, such as chromatin remodeling and histone regulation in ASD83–85. 

Combining protein–protein interaction, gene expression, and other data into truly integrated 

networks reflecting CNS function will be critical to understanding pathway convergence of 

manifold genetic risk variants in these disorders.

Integrative approaches

Allele-specific expression and eQTL studies link genetic variation with altered transcript 

expression. Sample size and tissue specificity are critical limiting factors, as 10–45% and 

~70% of eQTLs are predicted to be tissue and cell-type specific, respectively47,86. This 

has prompted several consortium-level efforts to generate eQTL databases of human brain, 

including GTEx47, UKBEC87, and CommonMind88, among others. As current human brain 

eQTL studies contain at most a few hundred samples, they remain vastly underpowered 

given a large statistical search space relating a dense map of genetic variation to expression 

of ~20,000 genes. Furthermore, as eQTLs are often highly cell-type specific86, tissue-

level profiling of brain tissue homogenate likely obscures contributions from underlying 

individual cell types.

Nevertheless, psychiatric GWAS studies have found enrichment of brain-specific eQTL 

among disease-implicated SNPs as a class, suggesting that intersection with these regulatory 
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data sets may provide important biological insights39. Critical steps moving forward 

will be to intersect GWAS-implicated disease variants with large-scale eQTL studies, 

followed by verification of the significance (and directionality) of predicted functional 

relationships through case-control transcriptome profiling. Recent innovative studies have 

begun to directly integrate GWAS and eQTL data to perform transcriptome-wide association 

studies, which have the potential to provide powerful genecentric insights into disease 

mechanisms89,90. On balance, however, we note that overlap of eQTL and disease 

association peaks does not provide evidence of a causal relationship to disease, since linkage 

disequilibrium acts on both signals and some degree of overlap is expected by chance alone. 

Furthermore, eQTL studies may be less statistically conservative in correcting for multiple 

comparisons than GWAS, leading to a higher propensity for false positive results91.

Similar approaches exist for defining the landscape of epigenetic regulation of gene 

expression, which represents an additional layer of biological complexity44. Major 

psychiatric risk genes include CHD8, which encodes a chromatin remodeling enzyme 

associated with ASD and macrocephaly35, and SETD1A, which encodes a histone 

methyltransferase and was recently associated with schizophrenia, developmental delay, 

intellectual disability, and epilepsy92. Common genetic variants for schizophrenia and 

bipolar disorder have also been linked to histone methylation, albeit less directly80. Recent, 

in-depth characterization of the spatial and developmental trajectory of methylation in 

human brain demonstrated that schizophrenia-associated variants strongly overlap with fetal 

brain methylation-QTL signals70,93. Similar approaches are being undertaken for histone 

acetylation QTL94, for example, as part of PsychEncode25.

Partitioning the GWAS SNP heritability from schizophrenia and bipolar disorder on the 

basis of functional categories defined by these epigenetic signatures identified strong CNS 

enrichment for common genetic variation in both disorders and fetal brain, specifically 

in schizophrenia60,95. Concordantly, genetic variants conferring risk for schizophrenia so 

far seem enriched in fetal prefrontal cortex gene coexpression networks81,82. These results 

suggest that fetal brain development represents one critical window during which genetic 

risk factors for certain specific neuropsychiatric disorders exert their effects.

Finally, the most powerful approaches will integrate multiple orthogonal data sets to assess 

differing levels of genetic, epigenetic, and neurobiological regulation. An exemplary recent 

example of this type of approach was the investigation of the top genome-wide significant 

locus in schizophrenia, spanning the highly complex MHC region40. This work combined 

fine mapping of this locus in schizophrenia with a newly generated reference of structural 

haplotypes to predict that disease-associated variants function by increasing expression of 

the complement component 4A gene (C4A) in brain. The role of C4A was verified using 

gene expression profiling in schizophrenia brain samples, and the C4 protein was shown to 

regulate synaptic pruning in a rodent model, identifying one of the causal neurobiological 

mechanisms contributing to disease risk. Integrative approaches have also been undertaken 

to characterize other GWAS loci in schizophrenia—for example, identifying risk variants 

that function as eQTL and map to enhancer regions encoding the L-type calcium channel 

CACNA1C95.
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Disease modeling

Many powerful basic research tools now exist that can guide mechanistic insight into 

disease-associated genetic variation, ranging from in vivo animal models to in vitro culture 

systems of human fetal neuron progenitor cells, adult induced pluripotent stem cell–derived 

neurons, and cerebral organoids96,97, each with advantages and limitations29. Caution is 

always warranted, as insights from behavioral and circuit-level analyses related to human 

higher cognition and behavior are limited by evolutionary divergence. Even at a molecular 

level, some genes and signaling pathways are not well conserved between humans and 

rodent models98,99. In addition, genetic risk alleles for psychiatric disease may converge on 

human-specific transcriptional processes, or pathways that are not well preserved in lower 

organisms100–102.

Classic model organisms used for molecular genetics have predominantly consisted of fruit 

fly (Drosophila melanogaster), zebrafish (Danio rerio), and mouse (Mus musculus), owing 

to the relative ease of genetic manipulation and potential for high throughput investigation. 

Recent advances in genome engineering have facilitated the creation of transgenic rat103 

and primate104 models of neuropsychiatric disease, limiting throughput but enabling 

investigation of more complex neural circuitry105. Model organisms have historically been 

used to investigate the effect of rare, deleterious variants or Mendelian syndromes associated 

with neuropsychiatric disease. Common genetic variants are much more difficult to model 

in animals as most lie in regulatory regions poorly conserved across species. Transgenic 

mice have been used to model major effect forms of autism (including mutations in 

FMR1, TSC1, TSC2, CNTNAP2, and MeCP2), as well as copy-number variation (16p11.2, 

22q11.2, and dup15q11), as recently reviewed29. Adult rescue of phenotypic deficits has 

been demonstrated in major gene mouse models of neurodevelopmental disorders, such as 

fragile X syndrome, tuberous sclerosis and Rett syndrome, providing hope for treatment. 

However, analogous treatments in the human clinical populations have largely failed, for 

largely unknown reasons106. Similar models of rare variants have been investigated in flies, 

including loss-of-function mutations in the FMR1 homolog dmfr1 (ref. 107), and zebrafish, 

such as cntnap2 mutants108. Notwithstanding the above caveats, major advantages of in vivo 
models include the ability to directly interrogate complex circuit-level alterations, to assess 

basic cognitive phenotypes, to measure and manipulate neurodevelopmental processes, 

and to perform large-scale genetic or pharmacologic screens, among others. Modeling 

of 16p11.2 deletion syndrome in mice, for example, has enabled circuit-level phenotypic 

dissection, identifying a number of abnormalities in the physiology and function of the basal 

ganglia109. Molecular genetic dissection of this locus in zebrafish implicated a single gene in 

this region, KCTD13, as mediating the underlying neuroanatomic phenotype110. However, 

the region is complex and it is likely that other genes in this region contribute to the broader 

cognitive and behavioral phenotypes.

Recent developments in stem cell biology have enabled the in vitro generation of human 

neurons, providing a greatly needed experimental platform for phenotypic characterization 

and drug screening97. Much of the excitement centers on the potential for creating patient-

derived ‘virtual biopsies’ for a tissue is inaccessible to direct investigation. Characterizing 

neurons derived from human induced pluripotent stem cells from subjects with known 
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penetrant mutations111 and those without established genetic causes of disease both have 

value. In the latter, the likely causal heterogeneity requires higher numbers than are typically 

studied to yield generalizable results112. Advantages of this approach include the ability 

to capture polygenicity, incorporation of genetic background, ability to investigate human-

specific biological processes, and potential for high throughput assays113. Pharmacologic 

screening is thereby possible for patient-derived mutations114, presaging future precision 

medicine approaches. One limitation is that until we are able to develop mechanistic 

knowledge based on our genetic findings, it is not clear what relevant cellular or 

molecular phenotypes should be screened for in vitro29. Systematic approaches, such as 

gene expression profiling, are likely a good starting point and, critically, can be used to 

quantify the relative maturity, variability, cellular, and regional identity more rigorously than 

individual markers115. Other technical hurdles include line-to-line heterogeneity, a limited 

number of neuronal cell types that can be differentiated, and an inability to form complex 

circuits. More sophisticated approaches have recently been undertaken to address some of 

these limitations, including the development of cerebral organoids112 and human cortical 

spheroids96, which exhibit a cytoarchitectural structure with cortical lamination, incorporate 

neuronal and glial cell types, form functional synapses, and display spontaneous electrical 

activity. Considering genetic background effects, a final critical factor is sample size, which 

can be partially mitigated using either unaffected family members as controls or isogenic 

lines in which the genetic risk alleles have been corrected.

Pathways to precision health

Moving forward, how can we translate genetic hits into mechanistic insight to reinvigorate a 

stalled CNS drug development pipeline116? The genomics era has instilled much optimism 

in this regard117, having recently identified new causal pathways in schizophrenia40, new 

genetic predictors of treatment response in bipolar disorder118, and genetic risk factors for 

serious side effects of psychotropic medication119, among others. It is notable that most of 

these advances are the product of large-scale collaborative approaches120.

A related question that remains is how to prioritize genetically identified biological 

targets for development of new medicines. To date, such efforts have disproportionately 

focused on the mutations with the largest effect sizes, which are easier to identify, 

interpret, and model in preclinical settings. However, there is evidence that small effect-size 

(typically common, inherited, polygenic) and large-effect size (typically rare, noninherited) 

variants converge on distinct biological processes. In ASD, for example, inherited variants 

converge largely on postnatal synaptic processes, whereas de novo loss-of-function variants 

are enriched for developmental regulation and chromatin modification pathways15,71. A 

potential interpretation is that more highly penetrant mutations disproportionately disrupt the 

robustness of the neurodevelopmental trajectory to an environmental or genetic perturbation 

(‘canalization’)121. This would explain the association of rare variation with more severe and 

pleiotropic syndromes including intellectual disability, epilepsy, and ASD. This would also 

predict that clinical disease specificity is guided by distinct factors, such as environmental or 

common variants, in accordance with recent evidence34.
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We propose that genes and pathways affected by common variants may be at least equally, 

if not more, amenable to therapeutic intervention than those disrupted by high penetrance 

mutations (Box 4). First, the small effect size of common variants suggests that disease 

risk is inherently modifiable and that ‘protective’ environmental exposures in the form of 

biological intervention could prevent disease or reduce risk. Second, common variation by 

definition is present in a larger proportion of the population and therefore is likely more 

generalizable. Third, for most neuropsychiatric disorders, common variation is predicted 

to contribute more substantially to disease liability than highly penetrant mutations, often 

by an order of magnitude31,122,123. Finally, in other complex disorders, successful new 

drug targets can often be retrospectively substantiated by genome-wide significant variants 

(Table 2)124. In hyperlipidemia, for example, targets of statins (HMGCR) and the new 

class of lipid-lowering PCSK9-inhibitors (PCSK9) are among the top GWAS-identified 

risk variants125, although these targets were discovered before the GWAS era. There are 

enormous challenges to targeting common variants using traditional methods. First, we need 

to better characterize composite genetic risk in individuals—what common and/or rare risk 

variants are necessary and sufficient to cause disease in an individual. Individual genetic 

subtypes of a disorder could be identified on the basis of convergent risk profiles defined by 

population scale WGS, thus stratifying patients by their underlying biology65,66.

High-throughput precision health approaches are gaining traction and may provide an 

additional platform through which to validate potential drug targets. Phenome-wide 

association studies, which integrate clinical and genomic data to identify genotype–

phenotype relationships on the basis of electronic medical records, offer great promise126,127 

as evidenced by pharmacogenomic-based predictors of drug efficacy128. Other powerful 

new approaches include computational drug repositioning129,130, integrating, for example, 

a database of known drug targets with GWAS-implicated disease loci131 or with the 

transcriptomic profile of a drug from resources such as the Connectivity Map132. With large 

enough samples, the goal is that phenome-wide association studies will allow dissection 

of genetic contributions to specific phenotypes that, when combined, produce a specific 

clinical syndrome. Finally, the importance of environmental factors (such as gut microbiota) 

is becoming increasingly realized. Once genetic risk factors and pathways are accounted for, 

it will become possible to more systematically query the impact of the environment and its 

interaction with genetics. This approach has shown recent success in dissecting the role of 

smoking55 and cannabis56 use on risk of schizophrenia. As such, the knowledge imparted by 

understanding genetic contributions to disease risk can serve as a causal anchor, magnifying 

the power of follow-up studies and providing a strong foundation for finally unraveling the 

complex brain–behavior relationships underlying neuropsychiatric disease.
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Box 1

Large-scale genetic investigation of complex traits, such as 
neuropsychiatric disease

Technological advances now enable cost-effective, genome-wide interrogation of genetic 

variation in large cohorts, but they necessitate careful power analysis and study design to 

maximize variant discovery (Table 1)7. Microarray-based platforms can detect structural 

anomalies such as CNVs or genomic rearrangements. SNP microarrays provide a cost-

effective platform for common trait GWAS. A genome-wide SNP backbone coupled 

with imputation to an ancestry-matched reference panel enables efficient genomic 

coverage. Population-specific platforms have been developed, such as the PsychChip, 

which has higher density in regions associated with psychiatric disease, including rare 

CNVs and exome variants. Despite this, coverage remains incomplete and generally 

limited to common or previously identified rare variants. Massively parallel, high-

throughput sequencing platforms identify variants with single-base-pair resolution and 

can theoretically capture the full range of allele frequencies (for example, common, 

rare, private) and variant types (SNVs, indels, CNVs). In WES, the ~1% protein-coding 

portion of the genome is captured and then sequenced, to reduce cost and bolster 

interpretability of identified variants. WGS surveys the entire genomic space, although 

coverage is still often incomplete because of difficulties mapping repeat-dense regions. 

Sufficient depth is critical to overcoming potential sequencing errors and capturing 

heterozygous SNVs. Sanger sequencing is often performed as a confirmatory test.

Study design is an important factor when considering large-scale genetic studies. Case/

control is a standard design that compares allele frequencies across a diverse set of cases 

and controls en masse. However, subtle biases (for example, population stratification) 

must be rigorously accounted for and inheritance patterns cannot be determined. Family 

designs that include a proband and both parents (‘trio’) can account for population 

stratification and identify inheritance patterns but are more difficult and expensive to 

collect. Filtering for de novo variants in a proband with unaffected parents can facilitate 

interpretation of pathogenicity. However, ‘unaffected’ parents may harbor incompletely 

penetrant mutations, especially for complex traits.

Table 1

Platforms for large-scale, genome-wide interrogation 

of genetic variation

Technology

Outcome 
measure in 
individual

Outcome 
measure in 
population Challenges to interpretation

Chromosomal 
microarray

CNV Recurrence (1) Pleiotropy
(2) Incomplete penetrance
(3) Pathogenic gene(s) not directly 
identified

Genome-wide 
SNP microarray

SNP Polygenic 
score

Genome-wide 
significant index 
SNP or 
haplotype

(1) Identifying causal variant
(2) Identifying functional effect of 
variant
(3) Function of noncoding regions 

Gandal et al. Page 19

Nat Neurosci. Author manuscript; available in PMC 2022 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Technology

Outcome 
measure in 
individual

Outcome 
measure in 
population Challenges to interpretation

often not well established, especially 
in CNS

Whole exome 
sequencing

(De novo) 
SNVs

Gene burden test (1) Pathogenicity often difficult to 
establish unless multiple instances 
observed
(2) Functional significance often 
unclear, especially for missense 
mutations

Whole genome 
sequencing

SNPs (De 
novo) SNVs, 
indels

Gene burden test 
or Recurrence

(1) Pathogenicity often difficult to 
establish unless multiple instances 
observed
(2) Functional significance often 
unclear, especially for missense 
mutations
(3) Function of noncoding regions 
often not well established, especially 
in CNS
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Box 2

Genetic architecture of neuropsychiatric disease

A fundamental question for any complex human trait is the degree to which genetic 

or environmental factors influence phenotypic variance. Heritability (h2) refers to the 

proportion of phenotypic variance due to genetic factors and in the narrow sense is also 

referred to as additive genetic variance (A). Environmental factors can be partitioned into 

the common, shared environment (C) and the residual, nonshared environmental variance 

(E). While the common, shared environment can be difficult to precisely pinpoint, it is 

often interpreted as in utero and early childhood factors. Classically, twin studies have 

been used to estimate these various components, although more sophisticated statistical 

methods have been developed (for example, generalized linear mixed models)139. 

Importantly, de novo genetic variation, which can contribute substantially to disorders 

such as ASD or intellectual disability, is generally not captured in heritability estimates. 

Disease-associated genetic variation can be further partitioned by allele frequency and 

inheritance patterns. Common variants (minor allele frequency >0.5%) generally have 

small effect sizes with odds ratios <1.3. Rare variants, including CNVs, have much 

larger effect sizes (odds ratios typically 2–60), and yet penetrance for specific clinically 

defined disorders can vary widely. Mutations of larger effect size have been constrained 

by natural selection because of negative effects on reproductive fitness and therefore tend 

to be both rare and de novo. The contribution of common genetic variation to overall 

disease liability (for example, SNP heritability) can be estimated using genome-wide 

complex trait analysis (GCTA)140 or methods that partition heritability, such as LD-score 

regression (Fig. 1)57. Except for severe intellectual disability (IQ <50), current estimates 

indicate that rare variants contribute an order of magnitude less to overall disease liability 

than do common variants, although this varies across conditions.
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Box 3

Lessons in reproducibility

Psychiatric genetics is susceptible to false positive results, a problem amplified by 

frequent comorbidities, overlapping symptoms and limited biomarkers. The candidate 

gene era was fraught with false positives, which have been limited by genome-wide 

analyses3. However, in the era of whole exome and genome sequencing, nonpathogenic 

rare and private variants will be identified in every individual genome, so extra care must 

be taken to avoid overinterpretation of results7,20.

Replication is critical; genotypes and phenotypes between discovery and replication 

sets should be comparable. For example, an early genetic finding in schizophrenia was 

a linkage peak including the DTNBP1 locus. Replication studies measured different 

markers around DTNBP1 without imputation to a common reference, each defining a 

different haplotype as the risk allele, with no concordance of findings141. And indeed, the 

largest schizophrenia GWAS to date has failed to find any association near the DTNBP1 
locus.

In case/control studies it is critical to account for all potential biological (for example, 

age, sex) and technical confounds, especially those related to experimental design, 

such as batch effects. For example, a study profiling gene expression in cell lines 

derived from subjects of European and Asian ancestry reported that 25% of genes were 

differentially expressed across ethnicities, which was claimed to reflect common genetic 

variation142. However, these results disappeared after accounting for a strong group 

× batch confound143. Similarly, a recent high-profile GWAS of longevity reported 33 

genome-wide significant SNPs, which were able to predict lifespan in an independent 

cohort with a remarkable 77% accuracy144. This study was later retracted after it was 

determined that a batch effect likely accounted for the signal.

Subtle differences in allele frequencies between subpopulations within case and control 

groups (termed “population stratification”) or (cryptic) relatedness among subjects can 

also introduce significant bias. A recent study claimed to predict a diagnosis of ASD with 

a remarkable ~70% accuracy using only 237 common SNPs, but did not properly account 

for population stratification, as claimed145. Rather, these SNPs were strongly associated 

with ethnicity differences between subjects, and did not predict ASD status146. Similarly, 

a recent paper claimed to identify eight genetically defined subtypes of schizophrenia 

in 4,196 patients and 3,827 controls, but did not account for population stratification147. 

One should be concerned that, without explicit correction, these results are driven by 

ancestry or other hidden confounds.

Finally, rare variants are present in every genome, can have a predicted functional effect 

without actually being pathogenic, can segregate with traits owing to hidden factors 

(for example, linkage disequilibrium), or can aggregate by chance in affected family 

members. A recent paper reported a new Mendelian form of multiple sclerosis caused by 

a rare mutation in NR1H3, identified in two multiplex families with a severe form of the 

disease148. The authors also show that the purported disease variant causes transcriptional 

dysregulation of NR1H3 and its target genes. However, a study with 13-fold larger 
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sample size found no such association. Rather, the results can be accounted for by 

a previously identified genome-wide significant common multiple sclerosis variant in 

moderate LD ~400 kb away149. Potential pathogenic variants should be assessed in large 

population-scale databases whenever possible, and evidence of a biological effect in a 

model system does not provide evidence for genetic association.
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Box 4

FDA-approved medications supported by common-variant association

Nearly all classes of medications currently used to treat neuropsychiatric disease 

were discovered by serendipity and target the same molecular pathways as their 

prototypes, developed decades ago116. Novel therapeutic targets are greatly needed and 

genetics provides an avenue for their identification117. Preclinical drug development has 

historically favored targets based on rare, moderately penetrant genetic variants, which 

are easier to identify, interpret, and investigate in model organisms. Although this has 

been successful in some cases, the recent dismal approval rate of candidate drugs entering 

clinical trials for neuropsychiatric disorders suggests that alternative approaches may be 

needed106. We argue that pathways enriched for common genetic variation should receive 

more attention for drug development. In support of this, we have surveyed the literature 

for examples of FDA-approved medications that are supported by GWAS-identified 

targets (Table 2). While most of these drugs were developed before the GWAS-era, their 

targets can be retrospectively validated by genome-wide significant loci associated with 

disease risk. One can extrapolate from these successes to predict that additional pathways 

enriched for common variation from disease GWAS can identify future efficacious drug 

targets131. We note that this is neither prospective nor a formal statistical analysis 

assessing enrichment of approved drugs acting on GWAS-identified targets. However, 

others have estimated that genetic evidence as a whole could double the success rate of 

clinical drug development124.

Table 2

FDA-approved medications supported by GWAS 

variants

Disease
Lead GWAS 

SNP Genetic locus
FDA-approved medication 

Drug class

Psoriasis rs9988642 IL12R–IL23R Ustekinumab Biologic

Hyperlipidemia rs12916 HMGCR Many Statin

Hyperlipidemia rs2479409 PCSK9 Alirocumab Biologic

Type 2 diabetes rs1801282 PPARG Many Thiazolidinediones

Type 2 diabetes rs5219 KCNJ11 Many Sulfonylurea

Osteoporosis rs9533090 TNFSF11 
(RANKL)

Denosumab Biologic

Osteoporosis rs7751941 ESR1 Many Selective estrogen receptor 
modulator

Schizophrenia rs2514218 DRD2 Many Antipsychotic

Rheumatoid arthritis rs2228145 IL6R Tocilizumab Biologic

Rheumatoid arthritis rs3087243 CTLA4 Abatacept Biologic

See Supplementary Table 1 for further details.
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Figure 1. 
Genetic and environmental contribution to liability for neuropsychiatric disease. (a) ACE 

model liability estimates (see Box 2) are compiled for various neuropsychiatric disorders 

derived from large-scale twin and/or population-based studies. (b) Genetic contributions 

can be further partitioned by variant classes, including common, rare inherited, and rare 

de novo mutations. The contribution of de novo variants to disease liability is lower than 

their overall frequency in cases due to incomplete penetrance. Data are compiled from refs. 

2,3,8–10,13,29,31,123,133–138.
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Figure 2. 
Neurobiological framework for interpretation of individual disease-associated variants. (a) 

When considering a neurobiological framework for interpretation of disease-associated 

genetic variation, it is most important to begin with variants that meet genome-wide 

significance thresholds20. (b) Independent replication is also critical, which can be supported 

by prior reported associations in a clinical genetic database (for example, ClinVar) and by 

an appropriate observed frequency in large population reference databases (for example, 

ExAC). (c) Functional annotation differs for coding and noncoding variants, although some 
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general principles apply to both (for example, inheritance, evolutionary conservation). For 

coding variants, the target gene is known and annotation is initially based on impact to the 

amino acid sequence. Synonymous mutations, often interpreted as neutral, can contribute 

to human disease risk by changing transcription factor or microRNA binding or by altering 

mRNA stability or secondary structure21. Nonsense, frameshift, and canonical splice site 

mutations are generally placed in the most deleterious, likely gene disrupting category, 

although their disease association must still be statistically supported. Interpretation of 

missense mutations is more difficult, relying typically on evolutionary constraint or by 

inferred disruption of protein structure or biochemical function22. Functional annotation 

of noncoding variants is a rapidly evolving area, but can be broadly conceptualized as 

(top) predicting a regulatory effect and (bottom) identifying target gene(s). Computational 

methods can predict the likelihood that noncoding regions act as enhancers, repressors, 

or insulators within a given tissue or cell line on the basis of epigenetic annotations49. 

Gene targets can be inferred through statistical frameworks such as eQTL or by mapping 

intrachromosomal physical binding interactions through chromosome conformation capture 

methods. (d) Predictions of the potential impact of a variant on the target gene should 

be experimentally validated. Gene-level disruption can be confirmed in a cell-based 

experimental system, as long as genomic and epigenetic context are considered. Model 

organisms with construct validity may also be useful. (e) Once the proximal biological 

effect of a disease-associated variant is determined, disease mechanisms can begin to 

be inferred through follow up investigation in preclinical or clinical settings. Performing 

comprehensive clinical and medical phenotyping of individuals harboring specific, known 

disease-associated variants will be especially important for mechanistic insight as well 

as future ‘genotype-first’ precision medicine approaches35. NHGRI, National Human 

Genome Research Institute; EBI, European Bioinformatics Institute; ATAC-seq, assay for 

transposase-accessible chromatin with sequencing; DHS, DNase I hypersensitivity sites; 

ChIA-PET, chromatin interaction analysis by paired-end tag sequencing; TSS, transcription 

start site; SIFT, sorting intolerant from tolerant; MAPP, multivariate analysis of protein 

polymorphism.

Gandal et al. Page 27

Nat Neurosci. Author manuscript; available in PMC 2022 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Interpreting rare genetic variation
	Interpreting common genetic variation
	Capturing polygenicity
	Systems genetics
	Integrative approaches
	Disease modeling
	Pathways to precision health
	References
	Table 1
	Table 2
	Figure 1
	Figure 2

