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Characterization of Altered Gene Expression and Histone
Methylation in Peripheral Blood Mononuclear Cells Regulating
Inflammation in COVID-19 Patients

Xiaoming Yang,* Alex C. Rutkovsky,* Juhua Zhou,* Yin Zhong,* Julian Reese,’
Timothy Schnell,” Helmut Albrecht,” William B. Owens,” Prakash S. Nagarkatti,*
and Mitzi Nagarkatti*

The pandemic of COVID-19 has caused >5 million deaths in the world. One of the leading causes of the severe form of COVID-19
is the production of massive amounts of proinflammatory cytokines. Epigenetic mechanisms, such as histone/DNA methylation,
miRNA, and long noncoding RNA, are known to play important roles in the regulation of inflammation. In this study, we
investigated if hospitalized COVID-19 patients exhibit alterations in epigenetic pathways in their PBMCs. We also compared gene
expression profiles between healthy controls and COVID-19 patients. Despite individual variations, the expressions of many
inflammation-related genes, such as arginase 1 and IL-1 receptor 2, were significantly upregulated in COVID-19 patients. We also
found the expressions of coagulation-related genes Von Willebrand factor and protein S were altered in COVID-19 patients. The
expression patterns of some genes, such as IL-1 receptor 2, correlated with their histone methylation marks. Pathway analysis
indicated that most of those dysregulated genes were in the TGF-$, IL-1b, IL-6, and IL-17 pathways. A targeting pathway
revealed that the majority of those altered genes were targets of dexamethasone, which is an approved drug for COVID-19
treatment. We also found that the expression of bone marrow kinase on chromosome X, a member of TEC family kinases, was
increased in the PBMCs of COVID-19 patients. Interestingly, some inhibitors of TEC family kinases have been used to treat
COVID-19. Overall, this study provides important information toward identifying potential biomarkers and therapeutic targets

for COVID-19 disease.

respiratory syndrome coronavirus 2 (SARS-CoV-2) has

resulted in >250 million infected cases and >5 million
deaths in the world. In the United States, >40 million people have
been infected with the virus. Although most infected people are
asymptomatic or with mild symptoms, ~5-10% of the individuals
develop a severe form of the disease with clinical features such as
pneumonia, acute respiratory distress syndrome, cytokine storm, and
multiorgan failure, which could lead to death (1). One of the major
underlying causes of death in COVID-19 patients is the induction of
cytokine storm, during which massive amounts of proinflammatory
cytokines are produced, causing tissue damage and organ failure.
The proinflammatory cytokines induced include IL-6, IL-8, and
TNF-a (2, 3). It is believed that SARS-CoV-2 infection activates
various immune cells, including macrophages, NK cells, T cells,
and dendritic cells. As a result, multiple inflammatory pathways,
such as the JAK/STAT signaling, TNF-a pathway, and TLR path-
way, are stimulated, leading to the release of proinflammatory
cytokines and cytokine storm (4, 5). Although drugs such as dexa-
methasone, a corticosteroid, have been shown to reduce mortality
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in patients with the severe form of COVID-19 (6, 7), treating
COVID-19 patients with immunosuppressive drugs has a limited
effect due to the inability to control the cytokine storm once
initiated.

We and the others have shown that epigenetic mechanisms such
as histone/DNA methylation, miRNA, and long noncoding RNA
play important roles in the regulation of cytokine production and
inflammation (8, 9). Dysregulation of miRNA in PBMCs of sepsis
patients who also develop cytokine storm correlates with clinical
manifestations and inflammation (10). In posttraumatic stress disor-
der patients, we have shown that the expression of proinflammatory
cytokines is associated with altered histone/DNA modification and
noncoding RNA expression (miRNA and long noncoding RNA)
(11, 12). In animal models of inflammatory disease, we have shown
that epigenetic changes in Th cells associate with disease develop-
ment (9, 13). More importantly, treatment with anti-inflammatory
agents such as A9-tetrahydrocannabinol and cannabidiol reduces
the symptoms and partially reverses these epigenetic changes, high-
lighting the important role of epigenetic modification in immune
response (9, 13, 14).
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PBMCs, which include primarily T cells, B cells, and monocytes,
are key players in the peripheral immune system that produce proin-
flammatory and anti-inflammatory cytokines and chemokines during
an infection. Thus, genetic and epigenetic studies using these cells
provide useful clues on the ongoing systemic inflammation. In the
current study, we used next-generation sequencing—based approaches
to examine genome-wide histone methylation and gene expression
profiles in the PBMCs of COVID-19 patients. We focused on two
histone marks, H3K4me3 and H3K27me3. These two marks are rela-
tively well studied. The presence of H3K4me3 in the promoter region
is associated with transcriptional activation, whereas H3K27me3 is
associated with transcriptional repression (15, 16). In immune cells,
these two marks are often present in the same genomic locations,
allowing the cell to quickly turn the transcription on and off in
response to the environmental stimuli (16). In our previous studies,
we have found that these two histone marks correlate with the expres-
sions of some immune regulatory genes in human PBMCs (17). In
the current study, we also examined global gene expression in
PBMC:s using RNA sequencing (RNA-seq). Despite individual var-
iations, the expressions of many genes were altered in COVID-19
patients. To assess the expression of genes of interest in a larger
cohort, the RNA-seq data from a recent multiomics data set (18)
were also analyzed, and the findings are reported. Among the upre-
gulated genes in COVID-19 patients, the majority were associated
with the regulation of inflammation.

Materials and Methods

Patient samples

Blood samples were provided by Richland Hospital of Prisma Health in
Columbia, SC. The COVID-19 patients were those infected and admitted to
the hospital, whereas the controls were healthy volunteer donors. All controls
and patients were between 25 and 78 y old and gave written consent. The
study was approved by the institutional review board of Prisma Health and
the University of South Carolina. In this study, we included six healthy con-
trols and six COVID-19 patients. The healthy controls included four Cauca-
sians and two Asians, four males and two females, with an average age of
32.5 y. The COVID-19 patients included five males and one female with the
average age of 63 y. The COVID-19 patients were African Americans. All
COVID-19 patients had severe symptoms and were admitted to intensive
care unit (ICU). The blood samples were taken between 7 and 14 d after
they were admitted to the hospital (see Supplemental File 1 for patient infor-
mation and WBC differential).

PBMC isolation

Peripheral blood samples were drawn into EDTA-coated tubes. Samples were
processed immediately using Ficoll-Paque Plus (GE Healthcare) according
to the provided protocol. The average amount of PBMC in controls was
1.7 x 10%ml, and in COVID-19 patients, it was 4.7 X 10%ml. Isolated
PBMCs were resuspended in PBS. Total RNA, genomic DNA, and protein were
isolated using the AllPrep DNA/RNA/Protein Kit (Qiagen, Germantown, MD).

Chromatin immunoprecipitation sequencing and RNA-seq

Chromatin immunoprecipitation sequencing (ChIP-seq) was performed as
described previously (9). Briefly, histone and DNA were cross-linked by
formaldehyde, and chromatins were fragmented by sonication using Biorup-
tor (Diagenode, Denville, NJ). The H3K4me3 and H3K27me3 Abs for ChIP
were purchased from Abcam (Cambridge, MA). After the immunoprecipi-
tated chromatins were reverse cross-linked and purified, sequencing libraries
were prepared using the Illumina DNA sample preparation kit (Illumina, San
Diego, CA). For RNA-seq, libraries were prepared with the NEBNext Ultra
RNA Library Prep Kit (New England Biolabs, Ipswich, MA). Each sample
had its unique index, and pooled samples were sequenced by Illumina Next-
Seq 550. In ChIP-seq, we tested five controls and five COVID-19 samples,
and in RNA-seq, there were six samples in each group.

Real-time PCR and Western blotting

RNA was reversely transcribed into cDNA using random primers and Super-
Script II reverse transcriptase (Invitrogen, Waltham, MA) according to the
manufacturer’s instructions. The relative abundance of gene expression was
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determined by real-time PCR using 18S rRNA as the internal reference. For
miRNA quantification, cDNA was prepared using the miScript II RT Kit,
and PCR was performed using the miScript Primer Assay Kit (both from
Qiagen). Snod96 was used as the internal reference for miRNA. The average
amount in the control samples was set as 1. The error bars in quantitative
PCR results were SEM. Proteins isolated by the Qiagen DNA/RNA/Protein
Kit were used for Western blotting. Anti—bone marrow kinase on chromo-
some X (BMX) Ab was purchased from Abcam, and anti—f3-actin and anti-
GADPH Abs were from Cell Signaling Technology (Danvers, MA).

Data analysis of University of South Carolina samples

For ChIP-seq, sequencing reads were mapped to human genome build hgl9
using Bowtie software (19). SICER was used for the peak calling (20, 21).
The peaks in WIG file format were visualized in the IGB genome browser
(https://www.bioviz.org). Differentially associated histone marks were ana-
lyzed by Partek package (https://www.partek.com). Fold change >2 and
p values <0.05 were considered as significant. For RNA-seq data, reads
were mapped with TopHat2 (22). Differentially expressed genes were deter-
mined by DESeq2 (23). An adjusted p value <0.05 was considered as signif-
icant. Functional enrichment analysis of significantly altered genes was
performed using g:Profiler (biit.cs.ut.ee/gprofiler). Ingenuity Pathway Analy-
sis (Qiagen) was used to identify the canonical pathways and top networks
in which the significantly altered genes are involved.

Meta-analysis of RNA-seq data from a multiomic data set

Human RNA-seq data were downloaded from the Gene Expression Omnibus
(series GSE157103) (18) and analyzed via Partek. This included 126 plasma
and leukocyte samples (100 COVID-19 patients and 26 non—COVID-19
patients) with differing degrees of disease severity. These data, along with
lipidomic, proteomic, and metabolomic data, are publicly available and
curated in a user-friendly database (https:/covid-omics.app:8080/) (18). The
raw data and all supporting information were uploaded into Partek, prealign-
ment quality control was performed, bases were trimmed with default set-
tings, STAR-2.7.8a aligned, and reads were quantified to the hgl9 reference
using the Partek E/M annotation model. Gene counts were filtered to exclude
maximum features =1.0 and normalized with recommended settings (cpm
add: 1E-4), resulting in 126 samples with 20,415 features. Principal compo-
nent analysis (PCA), differential analysis using the Partek gene-specific anal-
ysis (GSA) algorithm, and descriptive statistics were performed. GSA results
were filtered using the false discovery rate (FDR) <0.05 and are reported in
gene lists and volcano plots.

Results
Genome-wide histone H3K4me3 and H3K27me3 methylation in
PBMCs

Because H3K4me3 and H3K27me3 are two well-studied histone
marks that regulate gene expression, we first investigated whether
the overall histone methylation status was altered in PBMCs from
COVID-19 patients. To that end, ChIP-seq was performed in sam-
ples collected from five healthy controls and five COVID-19
patients. Interestingly, the histone methylation patterns in each indi-
vidual were very similar. There was no overall difference in these
two histone marks in PBMCs between controls and COVID-19
patients. In addition, H3K4me3 and H3K27me3 that seem to be
associated with opposite functions in regulating gene expression
coexisted in the same regions (Fig. 1). Such so-called “bivalent
domains,” in which the DNA segments have both repressive and
activating histone modifications, allow the genes to be turned on
and off rapidly depending on environmental signals. This result was
consistent with our previous ChIP-seq data from immune cells in
inflammatory disease models (9).

Histone marks in individual genes

Although there was no significant difference in overall global histone
methylation status in PBMCs between the controls and COVID-19
patients, the signal intensity in individual genes might differ, as
shown by us previously in other models (9, 17). By comparing the
levels of H3K4me3 and H3K27me3 within the 5 kb upstream and
downstream of the transcription start site (TSS), we identified genes
that have significant differences in histone mark intensity between the
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Histone methylation profile in PBMCs. H3K4me3 (A) and H3K27me3 (B) in PBMCs from five controls and five COVID-19 patients were

examined by ChIP-seq. The methylation marks in the region of Chr:1 0-2 Mb were visualized in IGB genome browser and presented as examples of global

histone methylation profile.

controls and COVID-19 patient samples (Fig. 2, Supplemental File 2).
Overall, there were more genes with altered H3K4me3 near the
TSS. However, those differences may or may not lead to altered
gene expressions, because gene expression is regulated by multiple
mechanisms.

It has been reported that there are changes in the expression of some
miRNAs in PBMCs of COVID-19 patients (24); therefore, we tested if
these genes were associated with histone modifications. For example,
it has been shown that miR-146a is consistently downregulated in
COVID-19 patients, whereas miR181a-2 is only downregulated in
severe COVID-19 cases (25, 26). In our ChIP-seq data, miR-146a
had increased suppressive H3K27me3 in the patient samples, whereas
the miR181a-2 host gene had a more active H3K4me3 mark in the
controls (Fig. 3A, 3B). A recent study showed that let-7b targets
the TLR4/NF-kB pathway and overexpressing let-7b suppresses the
expression of IL-6, IL-8, and TNF-a and improves survival in a
murine sepsis model (27). These proinflammatory cytokines are
increased in patients with COVID-19 (28, 29), and the let-7b host
gene in patient samples had a suppressive H3K27me3 mark (Fig.
3C), suggesting a decreased expression. In contrast, miR-486 was
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increased in the PBMCs of COVID-19 patients (25), and it was asso-
ciated with H3K4me3 (Fig. 3D). These results suggested that the
expression of some miRNAs correlated with these two histone marks.

Gene expression profile in PBMCs

To determine how SARS-CoV-2 infection affects gene expression
in PBMCs, RNA-seq was performed in samples from six controls
and six COVID-19 patients. Based on the overall gene expression
prolife, controls and patients did not form clusters as shown in sam-
ple-to-sample distances, suggesting the overall gene expression pat-
tern did not differ drastically (Fig. 4A). Nonetheless, there were ~160
genes that were significantly increased in COVID-19 patients, whereas
~60 genes were downregulated (Fig. 4B, Supplemental File 2).

Differentially expressed genes in PBMCs of COVID-19 patients

Pathway analysis by G-profiler revealed that the majority of the
increased genes were enriched in Gene Ontology: Biological Processes,
whereas none of the downregulated genes were in Gene Ontology:
Biological Processes (Fig. SA, 5B). Further analysis showed that most
upregulated genes in COVID-19 patients were related to immune
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increased histone mark in the COVID-19 samples, whereas blue dots are genes with reduced mark.
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response, including the TGF-B, IL-1b, IL-6, and IL-17 pathway (Fig.
5C). We also used Ingenuity Pathway Analysis to examine whether
these altered genes were enriched in some drug-targeting pathways.
The dexamethasone-targeting pathway was the most enriched one (62
upregulated and 6 downregulated genes; see Supplemental File 2 for
the list of the genes) (Fig. 6). Dexamethasone is an anti-inflammatory
drug and has been used in hospitalized patients with COVID-19 (6, 7).
Among those upregulated genes, some were well-known proinflamma-
tory or anti-inflammatory genes. For example, arginase 1 (ARGL1) is
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highly expressed in monocytes and has an anti-inflammatory func-
tion (30). CD177 is expressed in neutrophils and upregulated during
inflammation (31). IL-1 receptor 2 (IL-1R2) is an anti-inflammatory
gene but often overexpressed during inflammation (32). PG-endo-
peroxide synthase 1 is a target of nonsteroidal anti-inflammatory
drugs (33). There were other interesting genes that were upregulated
in COVID-19 patients. Period 1 (PER1) is a circadian gene that has
been reported to be dysregulated during inflammatory processes
(34). Von Willebrand factor (VWF), a blood-clotting protein, was
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FIGURE 4. Gene expression profile in PBMCs of control and COVID-19 patients. Gene expressions in six controls and six COVID-19 patients were deter-
mined by RNA-seq. The results were analyzed by DESeq2 software. (A) Sample-to-sample distance was determined by comparing overall gene expression
profile. (B) Red dots are genes with significant difference in expression level between in the control and patient group. Adjusted p value <0.05 was consid-

ered significant.
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upregulated in COVID-19 patients (35). Protein S (PROSI), a cofac-
tor that regulates blood clotting, was also upregulated in patients (36).
The expressions of these selected genes were further validated by

H3K27me3 marks of these genes. Although the expression of
these genes might be regulated by other mechanisms, the histone
marks in some genes were consistent with their expression patterns

(Fig. 7B, 7C).

real-time RT-PCR (Fig. 7A). We also examined H3K4me3 and
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Increased expression of BMX kinase

One of the most significantly increased genes identified by RNA-seq
in the PBMCs of COVID-19 patients was BMX kinase (Supplemental
File 2). BMX belongs to a group of nonreceptor tyrosine kinases
called the TEC family. Interestingly, the BMX gene is located next to
the ACE2 gene, which is the receptor for SARS-CoV-2. The expres-
sion of BMX was further validated by real-time PCR (Fig. 8A). It is
known that BMX exerts its proinflammatory function, in part, by
inducing the expression of IL-6 and IL-8 cytokines. Indeed, their
expressions were increased in patient samples (Fig. 8A). TNF-q,
another downstream of BMX, was also increased (Fig. 8A). IL-17 is a
known proinflammatory cytokine that was also increased (Fig. 8A).
Somehow these cytokines were not identified as significantly increased
genes in RNA-seq data. However, real-time PCR results indicated that
their expressions were increased in the patients (Fig. 8A). We further
examined the expression of BMX at the protein level. In four control
samples, only one had a high level of BMX. In contrast, four out of
five patient samples had elevated protein levels of BMX (Fig. 8B).

Meta-analysis of COVID-19 and non—COVID-19 patients

Due to the small sample size and demographic difference in this
study, we investigated to determine whether those significantly altered

genes were also identified in other studies. A recent multiomics
cohort (18) was analyzed for RNA-seq gene expression changes
between specific groups in human plasma and leukocyte samples. The
PCA shows dimensional reduction between disease state of the 126
samples as COVID-19—positive (COVID-19) or COVID-19—negative
(non—-COVID-19). Differential gene expressions between specific
comparisons are reported as volcano plots showing FDR significance
=0.05 (Fig. 9). These genes are reported in Supplemental File 3. Sex
differences (male and female) are also reported between 39 individuals
positive for COVID-19. Expression of select genes in patients positive
(COVID-19) or negative for COVID-19 (non—COVID-19) and
among the COVID-19 positives who were admitted to the ICU or not
(non-ICU) are depicted as reported in the database provided by the
authors (https://covid-omics.app:8080/) (18). Furthermore, the expres-
sion of select genes of interest was plotted for the comparison between
COVID-19 ICU versus non—COVID-19 non-ICU to resemble the cur-
rent study. Interestingly, the majority of the changes seen, such as
increased expression of ARG1, BMX, IL1R2, and PROS1, were sig-
nificantly increased in COVID-19 ICU patients when compared with
non—COVID-19 non-ICU (Fig. 10), which was similar to the data
found in the current study (Figs. 7 and 8). However, the data set did
not indicate significant alterations in VWF and histone modification
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FIGURE 8. Expression of BMX in PBMCs. (A) The expression of BMX and its downstream genes in the control and COVID-19 samples (n = 5) was
quantified by real-time RT-PCR. The average amount in the control was set as 1, and the error bars represent SEM. (B) The protein levels of BMX in PBMCs

were determined by Western blotting.
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enzymes KMT2A and MLLT10, whereas we found their expressions
were altered in COVID-19 patients (Supplemental File 2).

Discussion

Excessive inflammation is the major cause of the severe form of
COVID-19. During inflammation, immune cells are activated and
gene expression is increased. Although gene expression is usually
correlated with histone marks, the overall levels of H3K4me3 and
H3K27me3 do not differ significantly. This result is consistent with
our previous results from mouse models of inflammatory disease
(9). The result is not unexpected because there are many histone
modifications. The gene expression can be regulated by other his-
tone marks. In addition to histone modification, DNA methylation
also plays an important role in gene expression. Interestingly, in our
RNA-seq data, KMT2A, MLLT6, and MLLT10 were found to be
downregulated (Supplemental File 2). KMTA2A (histone-lysine
N-methyltransferase 2A), also known as MLL1 (myeloid/lymphoid
or mixed-lineage leukemia 1), is an enzyme that can cause
H3K4me3 methylation. It can also lead to mono- and dimethylation
of H3K4 (37). MLLT6, a PHD finger-containing protein, and
MLLTI10 (histone lysine methyltransferase DOTIL cofactor) are
involved in chromosomal rearrangement resulting in various types of
leukemia (38, 39). In some acute leukemia, MLLT6 and MLLT10
are fused with the KMT2A gene, leading to the transcription activity
of certain genes in T cells (40, 41). However, deletion of KMT2A in
mouse only causes decreased H3K4me3 in certain genes (42, 43).
Besides KMT2A, there are at least six other family members
(KMT2B-G) responsible for H3K4 methylation (43). Therefore, we
do not expect that altered expression of KMT2A and MLLTI10 in
COVID-19 patients will lead to a significant change in the global
H3K4me3 level. Nevertheless, genes that have altered histone marks

should be further investigated. The histone marks in some genes are
consistent with their expressions. In our previous study, miR-146a
was found to be one of the most significantly downregulated
miRNAs in PBMCs of sepsis patients (10). It is also one of the most
downregulated miRNAs in COVID-19 patients (25). This suggests
that the downregulation could be due to the increased H3K27me3 in
its promoter region. We have demonstrated that miR-146a directly
targets IL-6 (10), and IL-6 promotes monocyte proliferation, which is
a hallmark for both sepsis and COVID-19. One limitation of this
ChIP-seq study is that we only examined two histone methylation
marks. Other histone modifications could also have important roles in
regulating gene expression in COVID-19 patients. Another pitfall of
this study is that these samples were collected at one time point and
only reflected the level of histone mark at that time point. It is known
that the alteration in histone modification status is a dynamic process.
If the samples were collected from the same patient at different time
points during the disease development, it would be more informative
in terms of how histone modifications regulate gene expression in the
PBMCs of COVID-19 patients during the course of the disease.

One of the most significantly upregulated genes in COVID-19
PBMCs is ARGL. It has been reported that the expression of ARG1
is increased in sepsis patients (44, 45). A recent study also shows
that ARGI is upregulated in COVID-19 patients (46). ARG is
known to play an important role in immune response and is
expressed by many types of immune cells, such as monocytes, mac-
rophages, neutrophils, and myeloid-derived suppressor cells. During
infection, L-arginine is converted to NO by inducible NO synthase
in proinflammatory immune cells, such as M1 macrophages, in an
effort to kill the pathogens. L-Arginine can also be converted to
ornithine by ARG1 in M2 macrophages to suppress inflammation
and repair tissue damage. It has been suggested that an increased
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level of ARG1 may lead to the depletion of L-arginine in the sys-
tem, which, in turn, limits the production of NO and anti-infection
activity. It has also been suggested that upregulation of ARGI is
associated with elevated viral load (47, 48). Another anti-inflam-
matory gene that is upregulated in the PBMCs of COVID-19
patients is IL-1R2. The IL-1-mediated signaling pathway is critical
to immune response and is tightly regulated. IL-1R1 and IL-1R2
are two main receptors of IL-1. Although IL-1R1 is widely
expressed, IL-1R2 is mainly expressed by monocytes, macro-
phages, and neutrophils. IL-1R1 is responsible for signal transduc-
tion and initiates inflammatory response after binding to IL-1.
However, IL-1R2 is a decoy receptor, and the binding of IL-1 to
IL-1R2 does not trigger signaling (32, 49). As a result, IL-1R2
competes with IL-1R1 for ligand binding and servers as a nega-
tive-feedback mechanism. It has been reported that plasma levels
of IL-1R2 are increased in infectious diseases, including sepsis and
acute respiratory distress syndrome, as well as in other inflamma-
tory diseases, such as multiple sclerosis, rheumatoid arthritis,
and inflammatory bowel disease (50-52). Therefore, ARG1 and
IL-1R2 can serve as potential biomarkers and therapeutic targets
for infectious diseases, including COVID-19.

Our RNA-seq results also show an increased expression of two
coagulation-related genes, VWF and PROS1. VWF is a blood-clotting
factor synthesized by endothelial cells and platelets. A low level of
VWF is associated with bleeding, whereas a high level of VWF may
lead to blood clotting (53). It has been reported that COVID-19
patients have high levels of VWF in their blood, which may contribute
to blood clots in the lungs and other organs (54, 55). VWF synthesized
by endothelial cells is stored in Weibel-Palade bodies and released
when the vessel wall is damaged. It is believed that increased VWF in
COVID-19 patients is due to virus-induced endothelial cell damage.
The results from this study suggest that the increased expression of

VWF may also contribute to an elevated VWF level. Interestingly, the
expression of PROS1, a vitamin K—dependent anticoagulant, is also
increased in COVID-19 patients. There is speculation that PROS1 may
be depleted in patients with blood clots because blood clotting con-
sumes soluble coagulation proteins, including PROS1 (56). However,
it is unclear whether the level of PROSI1 is indeed decreased in the
blood of COVID-19 patients. If so, the increased RNA level of
PROSI could be a compensation mechanism. Nevertheless, the result
suggests a dysregulation within the coagulation system in patients with
COVID-19. Abnormal blood clotting is one of the main symptoms in
patients with COVID-19.

BMX is a member of the TEC family, a group of nonreceptor
tyrosine kinases including hepatocellular carcinoma (TEC), Bruton’s
tyrosine kinase (BTK), and IL-2—inducible T cell kinase (57). This
group of kinases is known to be critical in immune response (58).
For example, BTK is required for BCR signaling. Mutations in the
BTK gene can lead to an absence of B cells in peripheral blood (59).
It has been shown that BMX is activated by TLR agonists and is
associated with MyDS88 and focal adhesion kinase in rheumatoid
arthritis synovial fibroblasts (60). Downregulation of BMX inhibits
LPS-induced IL-6 expression in synovial fibroblasts, whereas overex-
pression of BMX increases LPS-induced IL-6 (61, 62). BMX is also
required for TNF-a— and IL-1B—induced expression of IL-8 (63).
Although in our RNA-seq data, the RNA levels of IL-6 and IL-8 did
not differ significantly, real-time PCR showed that their expressions
were increased in PBMCs of COVID-19 patients. Interestingly, in
recent clinical trials, administration of BTK inhibitors acalabrutinib
and ibrutinib to the hospitalized COVID-19 patients resulted in
improved oxygenation and decreased the disease severity (64, 65).
Further studies indicate that the activity of BTK in macrophages of
COVID-19 patients is increased, whereas the total protein level does
not differ (64). Acalabrutinib and ibrutinib have been approved to
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treat chronic lymphocytic leukemia because they inhibit lymphocyte
activation (66). It is assumed that reducing lymphocyte activity alle-
viates the hyperinflammation caused by the viruses. Acalabrutinib
and ibrutinib are also potent inhibitors of other TEC family kinases,
including BMX. Because the expression of BMX is increased in the
PBMCs of COVID-19 patient, it is possible that the effects of these
drugs may also be due to the inhibition of BMX.

Our patient sample data have limitations. The sample size is
small, and the changes in gene expression could be due to individual
difference, which is more pronounced in human studies. To assess
our findings on a larger scale, we employed in silico analysis of the
data generated by Overmyer et al. (18) using the provided online
portal as well as analysis of the raw data. The results showed that
when COVID-19 ICU versus non—COVID-19 non-ICU was com-
pared, ARG1, BMX, IL1R1, IL1IR2, PROS1, and MLLT6 were sig-
nificantly altered, and these changes were similar to our patient
findings. On the contrary, KMT2A, MLLT10, and VWF were not
significantly changed in their studies. This discrepancy could be
caused by small sample size and individual variations. Another rea-
son for the discrepancy is that in their study, the COVID-19 patients
were compared with other non—-COVID-19 patients admitted to the
hospital, whereas in our study, the controls were healthy individuals.
Interestingly, the authors reported increased expression of platelet-
associated proteins, including VWEF, in COVID-19 samples com-
pared with non—COVID-19 samples. VWF has been implicated in
COVID-19-associated endotheliopathy (67). In addition, the expres-
sions of some known inflammatory cytokines, such as IL-6, IL-8,
and IL-17, were not significantly different in RNA-seq data from
the current study. However, the differential expression could be
detected by real-time PCR, which is more sensitive than RNA-seq.
Despite these limitations, the results are consistent with the patho-
logy of COVID-19 disease. Pathway analysis indicates that the
altered genes are enriched in pathways known to be involved in
COVID-19. Interestingly, more than one third of the upregulated
genes were downstream targets of dexamethasone. Dexamethasone
is a glucocorticoid that has been widely used to suppress inflamma-
tion and cytokine storm. Dexamethasone acts through the binding to
the glucocorticoid receptor, which is ubiquitously expressed. The
ligand-activated receptor works as a transcription factor to activate
or suppress the expression of many genes (68). Glucocorticoids
have been used to treat cytokine storm in SARS, Middle East respi-
ratory syndrome, and, recently, COVID-19 (7).
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