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Abstract

This cross-sectional study examined whether performance on the computerized Paired Associate 

Learning (PAL) task from the Cambridge Neuropsychological Test Automated Battery is 

associated with amyloid positivity as measured by Positron Emission Tomography, regional 

volume composites as measured by Magnetic Resonance Imaging, and cognitive impairment. 

Participants from the BIOCARD Study (N = 73, including 62 cognitively normal and 11 with 

mild cognitive impairment; M age = 70 years) completed the PAL task, a comprehensive clinical 

and neuropsychological assessment, and neuroimaging as part of their annual study visit. In linear 

regressions covarying age, sex, years of education and diagnosis, higher PAL error scores were 

associated with amyloid positivity but not with medial temporal or cortical volume composites. 

By comparison, standard neuropsychological measures of episodic memory and global cognition 

were unrelated to amyloid positivity, but better performance on the verbal episodic memory 

measures was associated with larger cortical volume composites. Participants with mild cognitive 

impairment demonstrated worse cognitive performance on all of the cognitive measures, including 
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the PAL task. These findings suggest that this computerized visual paired associate learning task 

may be more sensitive to amyloid positivity than standard neuropsychological tests, and may 

therefore be a promising tool for detecting amyloid positivity in non-demented participants.
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There is increasing evidence for subtle but significant changes in cognition during 

the preclinical phase of Alzheimer’s disease (AD), as measured by computerized 

neuropsychological tests (e.g., Buckley et al., 2017; De Jager et al., 2005; Polcher et 

al., 2017; Rentz et al., 2013; Stricker et al., 2020). However, less is known about 

whether computerized tasks are sensitive to biomarker changes during early disease phases. 

Consistent with the recognized need to identify brief, low-cost markers that are sensitive 

to both early cognitive changes and the presence of AD pathology, this study examined 

the relationship of a computerized test of visual paired associate learning to imaging 

biomarkers.

The Paired Associates Learning (PAL) task from the Cambridge Neuropsychological Test 

Automated Battery (CANTAB®; Cambridge Cognition, 2019) is a computerized task that 

assesses visual learning and memory (Barnett et al., 2016). Prior studies have demonstrated 

impaired CANTAB PAL performance among individuals with mild cognitive impairment 

(MCI) and mild AD dementia (e.g., Blackwell et al., 2004; de Jager et al., 2002; Egerházi 

et al., 2007; Fowler et al., 2002; Junkkila et al., 2012; Reijs et al., 2017), and that PAL 

performance, in combination with other measures, predicts progression to dementia with 

high accuracy (Blackwell et al., 2004; Fowler et al., 2002; Mitchell et al., 2009). However, 

prior studies evaluating PAL performance and biomarkers of AD pathology are more 

limited.

Most prior studies examining the relationship of PAL performance and AD biomarkers have 

used measures from cerebrospinal fluid (CSF). Collectively, these studies have demonstrated 

an association between PAL performance and CSF measures of beta-amyloid and tau (Reijs 

et al., 2017; Nathan et al., 2017; Salvadori et al., 2020; Soldan et al., 2016; but see 

Galluzzi et al., 2016). In contrast, only one prior study, to our knowledge, has evaluated 

the relationship between CANTAB PAL performance and amyloid burden as measured by 

Positron Emission Tomography (PET), and found no association among cognitively normal 

older adults (Konijnenberg et al., 2019). Studies that have evaluated the relationship of 

PAL performance to brain structure as measured by Magnetic Resonance Imaging (MRI) 

have shown an association with medial temporal lobe integrity among individuals with 

MCI (Meyer et al., 2013; Nathan et al., 2017), though null results have also been reported 

(Salvadori et al., 2020).

Expanding prior work, this study examined the cross-sectional association of PAL 

performance with 1) amyloid positivity as measured by PET imaging, 2) regional volume 

composites as measured by MRI, and 3) diagnosis in a sample of well-characterized 
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participants without dementia (62 with normal cognition, 11 with MCI). As a secondary 

goal, we compared the results of the PAL analyses to standard paper and pencil 

neuropsychological measures to determine if the results were unique to the PAL task, or 

more widely observed for other neuropsychological tests. We hypothesized that performance 

on the PAL task would be more sensitive to AD biomarkers, relative to standard 

neuropsychological tests.

Methods

Study Design

This study reports cross-sectional data from the BIOCARD study, an ongoing, longitudinal 

study that was designed to identify variables among cognitively normal individuals 

associated with the subsequent development of symptoms of MCI or dementia (see 

Supplemental Materials 1 for additional study details). All data reported here were collected 

between 2015–2019. The present analyses included data from 73 participants without 

dementia (62 cognitively normal, 11 MCI) who completed the CANTAB PAL task within 

16 months of their first amyloid PET scan (M days between PAL assessment and PET scan 

acquisition = 178, SD = 199). Of these, n = 2 were excluded from the MRI analyses because 

their MRI scan was collected prior to their PET scan, and more than 16 months before 

their PAL assessment. All participants signed informed consent forms approved by the JHU 

Institutional Review Board.

Clinical and Cognitive Assessments

Annual JHU visits include clinical and neuropsychological assessments, and annual 

consensus diagnostic reviews (see Supplemental Materials 1 and Albert et al., 2014). 

Briefly, the diagnostic criteria follow the recommendations incorporated in the National 

Institute on Aging and the Alzheimer’s Association working group reports for the diagnosis 

of MCI (Albert et al., 2011) and dementia due to AD (McKhann et al., 2011). This 

includes establishing a syndromic diagnosis (i.e., cognitively normal, MCI, impaired not 

MCI, dementia) based on: (1) clinical data pertaining to the medical, neurological, and 

psychiatric status of the individual; (2) reports of changes in cognition by the individual and 

by collateral sources, based on the Clinical Dementia Rating interview (Hughes et al., 1982; 

Morris, 1993); and (3) decline in cognitive performance, based on review of longitudinal 

testing.

In the CANTAB PAL task (https://www.cambridgecognition.com/cantab/; Cambridge 

Cognition, 2019), participants are instructed to remember the location of colorful abstract 

patterns presented within several possible locations on an iPad screen. In the data presented 

here, participants could complete up to 5 stages, which involve learning one, two, three, six 

or eight pattern-location pairings. For each trial, participants are first presented with gray 

boxes configured in a circle on a black background, indicating possible target locations. 

All boxes are “opened” in a randomized order, revealing either an empty box or a pattern 

to be remembered. After the final box is “opened,” the previously presented patterns are 

sequentially presented in the middle of the screen. Participants respond by tapping the 

location in which the pattern appeared. If all patterns are correctly recalled at any given 
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stage, the task advances to the next successively difficult stage. If any of the patterns are 

incorrectly recalled, the trial is repeated, with up to ten attempts per stage at the 6- and 

8-item stages. The outcome variable in the present analyses was the total number of errors 

across all stages, adjusted for the estimated number of errors a participant would have 

made on any problems not attempted due to a previous failure (i.e., ‘total errors adjusted’), 

referred to as PALTEA (max = 120).

The standard neuropsychological test scores examined for purposes of comparison included: 

(1) Verbal Paired Associates immediate recall (Wechsler Memory Scale - Revised (WMS-

R); Wechsler, 1987), as it involves paired associate memory, like the PAL. (2) A verbal 

episodic memory composite score, as composite scores have been reported to have superior 

psychometric properties for studying early AD cognitive change compared to individual 

tests (Langbaum et al., 2014, 2015). This composite score (Soldan et al., 2019) was 

derived from confirmatory factor analysis, and calculated by summing weighted z-scores 

for WMS-R Logical Memory delayed recall, WMS-R Paired Associates immediate recall, 

and California Verbal Learning Test trial 1–5 recall (Delis et al., 1987). It therefore reflects 

a range of episodic memory processes from multiple neuropsychological tests, including 

delayed story recall, immediate paired associate recall, and repetition learning. (3) The 

Mini-Mental State Examination (MMSE; Folstein et al., 1975), as it is a commonly used 

measure of global cognition.

PiB PET image acquisition and processing—Dynamic 11C-labeled Pittsburgh 

compound B (PiB) PET scans were obtained on a GE Advance PET scanner in 3D mode, 

acquired over 70 minutes immediately following an intravenous bolus injection of 11C-PiB. 

The PiB PET scans were processed using a method described in detail previously (Bilgel 

et al., 2018; Walker et al., 2020). Briefly, the anatomical label image was transformed 

from MRI to PET space and the PET PiB distribution volume ratio (DVR) image was 

generated using cerebellar gray matter as the reference region. Mean cortical DVR (cDVR) 

was calculated by averaging DVR values across cortical regions, using parcellation maps 

generated by MRICloud (Walker et al., 2020). PiB positivity was defined as a mean cDVR 

threshold of 1.06 based on two-class Gaussian mixture modeling (Bilgel et al., 2016).

MRI acquisition and image processing—MRI scans were acquired on a 3T MR 

system (Philips Healthcare, Best, The Netherlands). The protocol included magnetization-

prepared rapid gradient echo (MPRAGE) scans for structural brain imaging (TR=6.8ms, 

TE=3.1ms, shot interval 3000ms, flip angle=8°, FOV=240×256mm2, 170 slices with 

1×1×1.2mm3 voxels, and scan duration=5min59s). Brain volumes were segmented 

and quantified using an automatic processing tool, MRICloud (Mori et al., 2016; 

www.MRICloud.org). A brief description of steps involved in MRICloud’s highly 

reproducible (Rezende et al., 2019) T1-weighted image processing is provided in 

Supplemental Materials 2. These analyses focused on two volumetric composites similar 

to those used in prior work in this cohort, consisting of regions previously shown to 

be ‘vulnerable’ to neuronal injury in AD: (1) the MTL volume composite included the 

hippocampus, entorhinal cortex, and amygdala (Pettigrew et al., 2017), and (2) the cortical 

volume composite included the inferior temporal gyrus, middle temporal gyrus, middle 
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and superior temporal gyri poles, angular gyrus, superior parietal gyrus, precuneus, and 

posterior cingulate gyrus (Pettigrew et al., 2016). The composites were created as follows: 

for each region, volumes of the left and right hemispheres were first averaged. Left/right 

averages were then regressed on intracranial volume (ICV; i.e., total volume of brain tissues, 

ventricles, and sulci) to normalize for head size. The standardized residuals from these 

regression models were averaged to create the two composites described above.

Statistical analysis—Group differences in descriptive statistics were assessed by 

Wilcoxon rank sum tests for continuous variables and chi-square tests for binary variables.

Cross-sectional relationships between PAL performance and imaging biomarkers were 

examined with linear regression models, using separate models for amyloid positivity, the 

MTL volume composite, and the cortical volume composite. Comparable models were 

run for the three standard neuropsychological test scores. Model covariates included age 

(at cognitive assessment), sex, years of education, and diagnosis (normal vs. MCI). All 

continuous variables were standardized prior to model fitting and p < 0.05 was considered 

significant. Effect sizes were calculated using Hedges’ g, given the unequal group sizes.

A series of sensitivity analyses were also run. The first examined the impact of prior PAL 

task exposure (0, 1) on PALTEA performance. Additional models evaluated a continuous 

measure of cortical amyloid burden (i.e., cDVR, instead of PiB positivity), and the 

individual MTL regions. All analyses were run in R (version 4.0.3).

Results

On average, participants with MCI had higher PALTEA scores (i.e., more errors) and lower 

performance on the standard neuropsychological measures relative to those with normal 

cognition; they also had higher rates of PiB positivity and smaller MRI volume composites, 

though these biomarker measures did not differ between groups (Table 1).

PAL performance and imaging biomarkers

Higher PAL error scores were associated with amyloid positivity (effect size, Hedges’ 

g=0.60) (Table 2, Figure 1). The pattern of results was similar using cDVR (estimate=0.21, 

95% CI (−0.03, 0.43), p=0.08). In contrast, PAL performance was unrelated to the MTL 

and cortical volume composites, and to the individual MTL regions (see Supplemental 

Materials 3). In all models, PAL error scores were higher among participants with MCI, 

but PAL performance was unrelated to age, sex, or years of education. All patterns of 

results were unchanged when an indicator for prior PAL task exposure was included as an 

additional model covariate; notably prior task exposure was not significantly related to PAL 

performance (p>0.09; data not shown). The patterns of results were similar when amyloid 

positivity and MRI measures were included as simultaneous model predictors (data not 

shown).

Standard neuropsychological measures and imaging biomarkers

The three neuropsychological measures were unrelated to amyloid positivity (similarly, 

for cDVR, all p-values>0.33, data not shown), the MTL volume composite, and to the 
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individual MTL regions. However, better performance on the verbal Paired Associates task 

and the verbal episodic memory composite score (but not MMSE) was associated with larger 

cortical volume composites (Table 3). In all models, neuropsychological performance was 

lower among participants with MCI and males, with trends for lower performance with 

fewer years of education.

Discussion

In this cross-sectional study, PAL performance was associated with amyloid positivity. The 

association between PAL performance and amyloid positivity was moderate in magnitude 

(effect size=0.60). However, PAL scores were not associated with the MRI measures. In 

comparison, scores on a subset of standard neuropsychological assessments were associated 

with the cortical volume composite, but not amyloid positivity. Participants with MCI 

demonstrated worse performance on all of the cognitive measures, including the PAL task. 

Together, these results indicate that the PAL task may serve as a promising tool for detecting 

amyloid positivity in non-demented participants.

To our knowledge, only one prior study has examined the relationship of PAL performance 

to PET amyloid burden. Although Konijnenberg et al. (2019) found no association between 

PAL performance and amyloid levels, levels of amyloid positivity were lower (14% vs. 

33% in this study), likely due to the fact that all participants were cognitively normal. 

Prior studies using amyloid measured in CSF have been mixed. Reijs et al. (2017) reported 

an association between higher PAL error scores and lower CSF amyloid-β42 in a large 

sample of participants with normal cognition, MCI, and dementia, and that this association 

did not differ by diagnosis. However, other studies have found no relationships with CSF 

amyloid biomarkers in cognitively normal (Konijnenberg et al., 2019) and MCI (Galluzi 

et al., 2016; Nathan et al., 2017; Salvadori et al., 2020) groups. Of note, studies of other 

computerized visual paired associate learning tasks have been similarly mixed (e.g., Lim et 

al., 2013; Racine et al., 2016). One possible reason for these discrepant findings may be 

the greater variability in PAL performance and amyloid levels afforded by studies including 

both cognitively normal and impaired participants (including the current study), compared 

to studies among a single diagnostic group. In support of this, the association between PAL 

performance and amyloid positivity was attenuated when the analyses were restricted to 

participants with normal cognition (p = 0.23), suggesting the range in variability may be 

important.

Prior studies in MCI participants have primarily reported associations between PAL 

performance and CSF levels of tau, including total tau, phosphorylated tau (p-tau), and 

the ratios of tau/beta-amyloid (Nathan et al., 2017; Reijs et al., 2017; see also Soldan et 

al., 2016), as well as worse PAL performance among participants with an ‘AD-like’ CSF 

profile (Salvadori et al., 2020). We therefore cannot rule out the possibility that the results 

reported here reflect the combined impact of amyloid and tau. Consistent with this, PiB PET 

amyloid burden is most strongly related to CSF p-tau/Aβ42 and tau/Aβ42 ratios, relative to 

the individual analytes alone (Fagan et al., 2011). While this interpretation is still in line 

with the view that the PAL task may be useful in the detection of PET amyloid positivity, 

additional studies with both amyloid and tau PET are needed.
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It is noteworthy that all three standard neuropsychological measures were unrelated to 

amyloid positivity. However, better performance on the two verbal episodic memory 

measures was associated with larger cortical volume composites as well as diagnostic status. 

This may suggest that these tests are less sensitive than the PAL task to AD-specific 

biomarkers, but more sensitive to general neurodegeneration. We hypothesize that the 

sensitivity of the PAL to amyloid positivity may be due to the task’s multi-factorial nature. 

Studies examining the nature of errors on computerized visual paired associate learning 

tasks suggest that poor performance reflects impairments in both learning and aspects of 

executive function, such as strategy use (Baker et al., 2019; Harel et al., 2011; O’Donnell 

et al., 2011). Consistent with this hypothesis, amyloid burden has small but significant 

relationships with several cognitive domains (e.g., episodic memory, executive function, 

visuospatial) (Baker et al., 2017; Han et al., 2017; Hedden et al., 2013; Jansen et al., 2018; 

Pike et al., 2007).

PAL performance was unrelated to the MTL and cortical volume composites, which may 

be because the participants were largely cognitively normal. The few prior studies that 

have reported associations between PAL performance and structural MTL integrity have 

been conducted among individuals with MCI (Meyer et al., 2013; Nathan et al., 2017) who 

likely have more atrophy than the combined group of participants included here. Given that 

participants with MCI continued to demonstrate poorer PAL performance after accounting 

for both PET and MRI biomarkers, it may be that the early accumulation of AD pathology 

alters aspects of brain function that are important for PAL performance, in the absence of 

significant atrophy (Dickerson & Sperling, 2008; Pasquini et al., 2019). Consistent with 

this, a prior functional MRI study reported altered MTL activation (i.e., hyperactivation and 

hypoactivation) during PAL task performance among individuals with MCI (de Rover et 

al., 2011). While this provides an additional possible mechanism underlying poorer PAL 

performance among participants with MCI, in the absence of significant diagnostic group 

differences in the biomarker measures included here, future studies should examine this 

possibility by simultaneously measuring task-induced activations and AD biomarkers.

The PAL task has several features that make it a promising tool for clinical applications, 

compared to paper and pencil neuropsychological tests. PAL task administration can be 

standardized across individuals and time points, and performance scored immediately. 

The task also uses a large number of randomly selected, abstract and nonverbal stimuli, 

which may reduce the influence of other factors such as sex, education, and culture. In 

the present analyses, for example, PAL performance was associated with diagnosis and 

amyloid positivity, but not demographic characteristics such as sex and years of education, 

and PAL performance was not impacted by prior task exposure. In contrast, the standard 

neuropsychological measures (which were unrelated to amyloid positivity) were related 

to sex and years of education, and practice effects are well established (e.g., Calamia et 

al., 2012). The PAL task may therefore be useful as a brief, low-cost screening tool for 

determining whether to pursue more invasive or expensive biomarker procedures.

These findings should be interpreted within the context of the study’s limitations. Study 

participants were highly educated, primarily White, and have a strong family history of 

dementia due to AD. Additionally, the sample size was modest and some analyses (e.g., 
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diagnostic group comparisons) may have been underpowered. These results therefore need 

replication in larger, more diverse cohorts.

Conclusions

Higher PAL error scores, but not standard measures of episodic memory and global 

cognition, were associated with amyloid positivity. These results suggest that CANTAB PAL 

performance may be more sensitive to amyloid positivity than standard neuropsychological 

tests. This task may therefore be a useful and inexpensive screening tool for clinical trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Association between PAL error scores and PiB positivity (adjusted for age, sex, years of 

education, and diagnosis).
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