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Tumor microenvironment‑aware, 
single‑transcriptome prediction 
of microsatellite instability 
in colorectal cancer using 
meta‑analysis
Mi‑Kyoung Seo, Hyundeok Kang & Sangwoo Kim*

Detecting microsatellite instability (MSI) in colorectal cancers (CRCs) is essential because it is the 
determinant of treatment strategies, including immunotherapy and chemotherapy. Yet, no attempt 
has been made to exploit transcriptomic profile and tumor microenvironment (TME) of it to unveil 
MSI status in CRC. Hence, we developed a novel TME-aware, single-transcriptome predictor of MSI 
for CRC, called MAP (Microsatellite instability Absolute single sample Predictor). MAP was developed 
utilizing recursive feature elimination-random forest with 466 CRC samples from The Cancer Genome 
Atlas, and its performance was validated in independent cohorts, including 1118 samples. MAP 
showed robustness and predictive power in predicting MSI status in CRC. Additional advantages 
for MAP were demonstrated through comparative analysis with existing MSI classifier and other 
cancer types. Our novel approach will provide access to untouched vast amounts of publicly available 
transcriptomic data and widen the door for MSI CRC research and be useful for gaining insights to help 
with translational medicine.

Microsatellite instability (MSI) is characterized by genetic hypermutability due to impaired DNA mismatch repair 
(MMR) system1. MSI is observed in many solid tumors, including gastric, and endometrium cancers, as well as 
in colorectal cancer (CRC, approximately 15%)2,3. Exhibiting prognostic and predictive features of a high tumor 
mutational burden, a high neoantigen load, and an immune-active tumor microenvironment (TME) charac-
terized by high levels of tumor-infiltrating lymphocytes and overexpression of immune checkpoint molecules, 
cancers with MSI are known to be great candidates for immune checkpoint inhibitors (ICIs) treatment, such 
as pembrolizumab and atezolizumab (anti-PD-1 and anti-PD-L1 monoclonal antibody, respectively)4,5. MSI 
status is meaningful as a predictive indicator for cancer treatment and as a prognostic determinant, identifying 
a patient’s MSI status is essential in clinical setting and research areas.

With recent escalation of its importance in CRC, it has been explored from publicly obtained samples, such 
as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, resulting in numer-
ous studies which broaden our understanding in MSI and expand therapeutic options for MSI CRC patients6. 
However, prior to utilization, MSI status information must be provided beforehand by quantifying the extent 
of genomic events in microsatellite loci, at genomic level, using the Bethesda Panel, a PCR-based five marker 
panel, or by examining the loss of mismatch repair proteins using immunohistochemistry (IHC) at the protein 
level1. Additionally, with recent advances in next-generation sequencing (NGS) technology, MSI predictors, such 
as MANTIS7,8, MSIsensor9, and MOSAIC10, MSICare11 have been developed to extract MSI status from whole 
exome and whole genome sequencing data. However, assigning the MSI status from expression data had not been 
possible until a k-Nearest Neighbors (k-NN, k = 5) classifier called preMSIm using 15 gene-set for pan-cancer 
was recently proposed12 and several other attempts which had been made, although the software has not been 
made readily available13,14.

The preMSIm has constructed as a pan-cancer MSI predictor by utilizing three MSI dominant carcinomas as 
training data12, but it did not reflect the distinct expression profiles of its cancer of origin. Furthermore, individual 
MSI tumors have unique tumor microenvironment (TME) and molecular pathway characteristics. For example, 
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immune inflamed MSI microenvironment could be characterized by higher infiltration of anti-tumorigenic 
immune cells, such as adaptive immune cells (T and B lymphocytes) and innate immune cells (dendritic cells, 
macrophages, and natural killer cells) than immune desert MSS tumors, and, in CRC, when mutations or activa-
tion of MYC and RAS pathways occur, chemokine CCL9 is expressed and an immunosuppressive environment 
is established, which prevents enrichment of cytotoxic NK cells and T cells around the tumor15. There are also 
comprehensive immune and stromal cell type studies using the transcriptome-based cell-type quantification 
method and pathway studies according to MSI status in colorectal cancer16. IFN-γ and CD8 T effector gene sig-
natures were highly activated in the MSI group compared to the MSS group, suggesting that this phenomenon 
is also associated with CD8 cell infiltration and upregulation of PD-L1 and PD-L2 and p-STAT117. This suggests 
that MSI and MSS constitute a unique TME that will contribute to immunotherapy, thus implying the importance 
of understanding TME as well as tumor characteristics. Therefore, transcriptome based MSI predictor which 
integrates both TME and molecular pathway characteristics in CRC is needed.

Here, in this study, we have developed an enhanced single-sample MSI classifier called MAP (Microsatellite 
instability Absolute single sample Predictor) that integrates transcriptomic characteristics of TME and molecular 
pathways to predict MSI in CRC. Our TME and molecular pathways aware predictor will open a way to utilize 
CRC expression data to elucidate MSI CRC. Hence, massive amounts of publicly available expression data without 
MSI status will be utilized to drive valuable MSI CRC research through our novel approach.

Results
Overview of MAP development.  We developed MAP, a method that can predict MSI status leveraging 
transcriptome data of colorectal cancer samples. As an MSI single sample predictor (SSP), the MAP model 
was developed with the following four components (Fig. 1a): (1) identification of the MAP signature (MAP-
gene model); (2) modeling based on pairwise gene expression of the MAP signature genes (MAPpairs model); 
(3) modeling based on ssGSEA scores of cancer-, molecular-, TME-, and immune-related signatures (MAPsig 
model); and (4) post-refinement of the final model and prediction of MSI status. To develop an SSP of MSI 
status without relying on a relative approach (e.g., comparing a patient’s data with other samples) and with lim-
ited platform bias, we constructed a recursive feature elimination-random forest (RFE-RF) model (MAPpairs 
model) with pairwise gene comparisons, leveraging an informative gene-set (MAP signature from the MAPgene 
model), rather than gene expression profiles, on a training dataset. In brief, RFE trains the model, ranks the 
features, and selects features through the process of repeatedly removing lower-ranked features18. The method of 
building a model by selecting features with the RFE method based on the RF algorithm is called RFE-RF18. We 
built another RFE-RF model (MAPsig model) based on ssGSEA scores for 101 signatures to reflect the degree 
of activity of cancer-, immune- and TME-related signatures of the samples. To select the best RFE-RF model 
from the parts mentioned above, we evaluated the area under the receiver operating characteristic curve (AUC) 
and confirmed the model performance in validation datasets (Table S1). Finally, at the post-refinement stage, an 
integrated MAPpairs and MAPsig model was used to precisely predict MSI status. We named this final model 
MAP and evaluated its accuracy, kappa, sensitivity, specificity, F1, and balanced accuracy in the validation data-
sets (Table S2).

MAP signature.  To minimize the size of the informative gene-set utilized in the MAPgene model, we, first, 
identified differentially expressed genes (DEGs) between MSI and MSS samples using the Wilcoxon rank-sum 
test. We assessed 718 DEGs with criteria of P < 0.001 and |log2 fold change|> 1, and selected a gene-set of 31 genes 
by performing RFE-RF modeling with an AUC of 99.2%. We called this gene-set the MAP signature (11 up- and 
20 down-regulated DEGs, Fig. 1b and Table S3). Among genes comprising the MAP signature, the MLH1 gene, 
which is commonly downregulated and/or hypermethylated in sporadic MSI samples, ranked as the top feature 
gene, based on both accuracy (the importance of the features that improves classification accuracy) and Gini 
index values (the importance of the features that reduces the impurity of classification) (Fig. 1c and Table S3). 
We also noted that LY6G6D19 and EPM2AIP1 genes20, which share a promoter with MLH1, were included in 
the gene-set. Additionally, we found that a known predictive marker for chemotherapy, thymidylate synthase 
(TYMS)21, was included in the gene-set, and its expression was higher in the MSI samples than the MSS sam-
ples (Fig. 1b,c). Other genes belonging to the following pathways were also included in the MAP signature: the 
WNT signaling pathway (RNF43, TCF7, and NKD1), Hippo signaling (TCF7, NKD1, and TGFBR2), and MAPK 
signaling (DUSP4 and TGFBR2). Three well-known frameshift mutated genes (DDX27, TGFBR2, and RNF43) 
in microsatellite loci in MSI CRC were also included. In terms of MMR, 718 DEGs were initially used when 
constructing the MAPgene model, although three MMR genes (MSH2, MSH6, and PMS2) were not included 
because their statistical significance or fold change did not meet the inclusion criteria (Fig. S1).

To assess the representativeness of the MAP signature (31-genes) in reflection of MSI status, the expression 
patterns of the genes in the gene-set were investigated in a validation dataset, and expression patterns similar 
to those observed in the discovery dataset were noted. To further investigate whether the MAP signature could 
serve as a surrogate marker of MSI status and to evaluate its generalizability, we obtained and compared ssGSEA 
scores for the MAP signature in MSI and MSS tumors, as well as in MSI tumors of each of the four consensus 
molecular subtypes (CMSs). The general comparison between MSI and MSS samples revealed significant differ-
ences in MAP signature cores (P = 7.6 × 10−36), but not among the CMSs (Fig. 1d). This suggests that the composite 
genes of the MAP signature can capture MSI’s behavior-related features and discriminate between MSS and MSI 
status independent of CMS context.

MAP model.  Although the MAPgene model built based on gene expression showed high performance, to 
develop a true SSP with unnormalized data that does not rely on a relative comparison among multiple samples, 
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Figure 1.   Overview of the MAP model and designing the MAP signature from RFE-RF analysis of gene 
expression data. (a) Overview of the MAP model. MAP was developed through a workflow consisting of four 
strategies. (1) identification of the MAP signature (MAPgene model); (2) modeling based on pairwise gene 
expression of the MAP signature genes (MAPpairs model); (3) modeling based on ssGSEA scores of cancer-, 
molecular-, TME-, and immune-related signatures (MAPsig model); and (4) post-refinement of the final 
model and prediction of MSI status. (b) A volcano plot for DEGs between MSI and MSS samples. The x axis 
represents log2 fold changes in gene expression data for MSI versus MSS samples. Colored dots are significant 
DEGs in MAP signature; red and blue indicate up- and downregulated genes, respectively. (c) The importance 
of 31 features is based on accuracy and Gini index scores. The mean decrease in accuracy is a measure of how 
much influence it has in improving classification accuracy. The mean decrease in Gini is a measure of how 
impurity can be reduced by features used when separating nodes. The genes with red and blue colors indicate 
up- and downregulated genes in MSI, compared with MSS, respectively. (d) MAP signature. A box-plot of 
MAP signature ssGSEA scores according to MSI status (left) and CMS-MSI and MSS subtypes (right). The 
dots represent samples. MAP signature scores differ significantly between MSI and MSS samples independent 
of CMS subtypes. CMS2-MSI did not confirm statistical significance because the number of samples was 
small. * P < 0.05, ** P < 0.01, *** P < 0.005. DEG; differentially expressed gene, MSI; microsatellite instability, 
MSS; microsatellite stability, RFE-RF; recursive feature elimination-random forest, CMS; consensus molecular 
subtype, ssGSEA; single-sample gene set enrichment analysis, FDR; false discovery rate.
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we employed a pairwise gene comparison approach for model building: for example, if the expression of gene 
A was greater than that of gene B, the sample would be assigned MSI status. An RF model with 1000 trees of 
such rules was constructed utilizing the RFE-RF algorithm with five-fold cross-validation repeated 100 times. 
Finally, the MAPpairs model, comprised of 187 rules from 465 (31C2) rules at a starting point, was selected 
(AUC of 99.7%). To assess its performance and reproducibility, we applied the model to internal and external 
RNA-seq validation datasets and obtained accuracies of 99.1% and 95.4%, respectively, indicating it to be robust 
and highly accurate. In the MAPpairs model, MLH1-related features (MLH1/HPSE, MLH1/FECH, and MLH1/
GNLY) were the highest ranked features (Fig. 2a), and the ratios of genes (features) tend to enrich each group, 
and the expression value of each gene differs between groups, indicating that the ratio rules used in the MAP-
pairs model can distinguish the two groups well. (Fig. 2b). To investigate the features of MAPpairs further, we 
calculated the number of MSI and MSS samples that satisfied each rule in MAPpairs (Fig. S2). Most rules were 
able to classify MSI and MSS samples, and as such, they were considered to be reflective of the overall charac-
teristics of MSI, although not all samples may show similar profiles. For example, MSI samples are known to 
have a loss of MLH1 and an immunity-activated characteristic2, as well as high expression of thymidylate syn-
thase (TYMS) (chemotherapy response-associated gene)21. Features of the MAPpairs model, MLH1/GNLY and 
TYMS/MLH1, respectively, described these MSI characteristics well (Fig. 2b), but not in all tumors. This may 
suggest that the MAPpairs model, a random forest classifier, captures and reflects the more complexity of MSI 
CRC, not just a simple single rule.

In order to complement the MAPpairs model with the characteristics of immune and TME profiles, as well 
as the transcriptomic profile and tumor’s characteristics of MSI, we built the MAPsig model based on molecu-
lar, cancer, immune, TME, and MAP signature scores inferred by single-sample gene set enrichment analysis 

Figure 2.   MAP model. (a) Top 30 important features of the MAPpairs model. The mean decrease in accuracy 
(left) is a measure of how much influence a feature has in improving classification accuracy. The mean decrease 
in Gini (right) is a measure of how impurity can be reduced by features used when separating nodes. (b) 
A scatter plot and histogram of the gene pairs. The relationship between the expression of two genes in the 
MSI and MSS groups can be confirmed through a scatter plot, and the expression value of each gene can be 
confirmed through the density plots at the upper and lower right corners. MLH1-related rules and TFGBR2/
TYMS rule are shown. (c) Top 20 important features (signatures) of the MAPsig model. (d) Performance 
(accuracy, sensitive, specificity, and F1) of the MAP model. (e) Confusion matrices of the validation dataset. 
The actual MSI means MSI status provided in the dataset study. The red color-scale reflects percentages of class 
predictions against the actual class.
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(ssGSEA). The top signatures used in the final MAPsig model (44 signatures) included the MAP signature, 
antitumorigenic immune lymphocytes (effector memory CD8 T cell, Teff (CD8 T effector), Th2 cells, activated 
CD4 T cell), complement, INF-γ signatures, Wnt-β/catenin signaling, glycolysis, and cell cycle signaling (Fig. 2c). 
To find out the degree of activation of 44 signatures, we investigated the heatmap based on the inferred ssGSEA 
score. Compared to MSS, antitumorigenic immune lymphocytes, complement, glycolysis, cell cycle, and INF-γ 
related signatures were up-regulated in MSI, whereas MAP signature, Notch, angiogenesis, epithelial signature, 
and Wnt-β/catenin signaling were down-regulated (Fig. S3). To investigate the effect of MSI status on TME and 
oncogenic signatures, we analyzed the correlation between signature features and MSI probability of MAPsig 
model (Spearman correlation P < 0.01 and |rho|> 0.3). MAP signature, Wnt-β/catenin signaling, and epithelial 
signature showed the most negative correlation, suggesting that the higher these signature score values, the 
more down-regulation in the MSI group (Figs. S3 and S4). On the other hand, immune-related signatures such 
as pro-inflammatory cytokines and chemokines, type 2 T helper cells, effector memory CD8 T cells, interferon 
gamma, and inflammatory signatures were observed to show a positive correlation with MSI status or to show 
up-regulation in the MSI group (Figs. S3 and S4). The final MAP model was established after integrating the 
MAPpairs and the MAPsig models, and post-refinement processing was done by utilizing probability. Next, we 
applied the final MAP model to validation datasets to evaluate any potential overfitting and its applicability across 
multiple platforms. A total of 1118 samples (240 MSI and 878 MSS tumors) were tested, and MAP exhibited an 
average accuracy of 96.1% (95% confidence interval (CI) 94.3–98.9), a sensitivity of 93.1%, a specificity of 97.5%, 
and an F1 score of 92.0% (Fig. 2d,e), indicating outstanding performance and feasibility as an MSI predictor.

MSI signatures in other cancer types.  Using TCGA-STAD and TCGA-UCEC RNA-seq datasets, we 
evaluated whether MAP, which was developed for CRC, could be applied to other cancers. In the stomach ade-
nocarcinoma (STAD) and uterine corpus endometrial carcinoma (UCEC) data, accuracies of 80.2% and 75.4% 
were observed, respectively. To investigate why the MSI classifier of CRC is not suitable for other cancers, the 
same method used to construct the MSI signature (MAP signature) in CRC was applied to examine MSI sig-
natures in gastric cancer and uterine cancer, and then the differences in expression patterns were investigated. 
Uterine cancer showed an accuracy of 90.9%, with only nine genes (CXCL13, EPM2AIP1, H2AFJ, HOXA9, 
MLH1, RNLS, SDR42E1, TNFSF9, and ZNF300), whereas gastric cancer reached an accuracy of 83.4% using 
78 genes (Table S4). We further probed how cancer-specific MSI signatures are expressed in each cancer and 
observed that individual MSI signatures tend to correspond to DEGs not statistically significant in other cancers 
(Fig. 3a,b). MLH1 and EPM2AIP1 were differentially expressed in all three cancers, RPL22L1 was included in 
the MAP signature of CRC and STAD, and H2AFJ was observed in both CRC and UCEC. In addition, compar-
ing the MAP signature and MSI signature from the recently developed preMSIm, five genes (MLH1, RPL22L1, 
EPM2AIP1, DDX27, and SHROOM4) were observed in both signatures in CRC (Fig. 3c). It is also worth men-
tioning that all of the genes used in preMSIm are down-regulated in MSI, except RPL22L1, whereas the MAP 
signature additionally includes both up- and down-regulated genes in CRC. In addition, the expression pattern 
of the signature of preMSIm did not appear to suitably reflect genes important in gastric cancer, such as DDX27, 
SMAP1, and ZSWIM3, and in uterine cancer, such as DDX27, SHROMM4, SMAP1, and ZSWIM3, thereby mak-
ing it unable to efficiently differentiate MSI and MSS tumors (|log2 fold change|< 0.5) in these cancer types 
(Fig. 3d,e).

Discussion
Not all MSI status information is available in publicly available colorectal cancer expression data, such as NCBI 
Gene Expression Omnibus (NCBI GEO), thus such data cannot be utilized in MSI CRC research. For example, 
it hampers studies determining why most MSS samples belong to the immune desert type or the mechanism by 
which immune evasion occurred in a subset of MSI tumors by utilizing molecular or immunological characteriza-
tion of MSI and MSS. Although at the research level, if these studies are conducted, this may give clues to convert 
the immune-inactivated tumors into immune-activated types or to discover drugs targeting abnormally activated 
oncogenic pathways or suppressed TMEs which can be combined with ICIs. Additionally, since MSI samples 
are rare, with the difficulty of producing expression data due to RNA degradation, meta-analysis using multiple 
cohorts is required, but the use is hindered due to the absence of MSI status information in them. Furthermore, 
MSI research analysis can be performed after cross-validation of the MSI status of RNA-seq data of the tumor 
identified as the MSI sample at the DNA level. Here, we present MAP, a tumor microenvironment-aware, single-
transcriptome predictor of MSI in CRC, with robust accuracy validated using large samples from multiple cohorts 
of primary tumors. (N = 1118). We expect that the MAP will open the door to make such datasets of use in future 
MSI studies. MAP has the advantage of not requiring a matched normal sample as a control and sufficiently 
predicts MSI status with a single-sample transcriptome profile. In other words, to function as a single sample 
predictor, the ratio of gene pairs and the score of the signature composed of the tumor and TME characteristics 
were used as an input to the random forest models leveraging multiple decision trees. Therefore, MAP was an 
MSI predictor of RF model in which complex rules were comprehensively reflected rather than just a few rules.

Attempts to create an absolute predictor for subtype classification of cancer and stratification of patients by 
applying relationships or ratios between two genes, not the expression value of the gene itself, are ongoing22,23. 
MAP is an absolute classifier, not relative, and was developed to reflect tumor molecular characteristics, immune-
related signatures, and tumor-infiltrating immune cells in TME of CRC. Also, since MAP is an RF classifier, one 
feature does not represent all MSI in common, but the MSI status is determined through the complex reflection 
of various features. Therefore, it may be difficult to interpret clinical and biological significance of features, and it 
might be considered to be included technical as well as biological rules to improve the accuracy of classification.
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During the development, it showed an accuracy of 99.1% (1/115) in the correct identification of MSI in 
the internal validation TCGA dataset. Only one sample (TCGA-DC-6154) with MSI status was incorrectly 
predicted as being MSS by the MAP model, and it was also marked as MSS with the MOSAIC program, a tool 
which predicts MSI status at genomic level10. We speculated such discrepancy may stem from the different tissue 
sampling locations (MSI typing vs. DNA and RNA sequencing) or MSI intratumor heterogeneity, rather than 
MAP misinforming. We also encountered misclassification of a 11CO070 (MSS) hypermutated sample from an 
external RNA-seq validation dataset and five MSS samples from the GSE39582 dataset as MSI by MAP. Using 
the clinical information available, we further investigated the five MSS samples from the GSE39582 dataset and 
they all carried BRAF mutation and high CpG island methylator phenotype (CIMP). In sporadic MSI CRC, the 

Figure 3.   MSI signatures. (a) MAP signature and UCEC MSI signature on TCGA-UCEC. (b) MAP signature 
and STAD MSI signature on TCGA-STAD. (c) MAP signature and preMSIm signature on TCGA-COADREAD. 
(d) MAP signature and preMSIm signature on TCGA-STAD. (e) MAP signature and preMSIm signature on 
TCGA-UCEC. The x-axis represents log2 fold changes in gene expression data for MSI versus MSS samples. The 
colored dots mean the genes of the corresponding signatures marked in each panel. The blue dotted line on the 
x-axis means − 1 and 1 of the log2 fold change scale, and 2 (− log10(0.01)) on the y-axis.
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accompanying characteristics of BRAF mutation and high CIMP are known to be strongly correlated with MSI24, 
but it was not possible to determine misassignment or tumor heterogeneity characteristics in detail due to the 
absence of lynch syndrome status or mutation information of other MMR genes of the samples. Additionally, in 
research on CMS reported by the Colorectal Cancer Subtyping Consortium, the distribution of CMS2 (known 
as immune-desert type) samples with MSI status was exceedingly rare (10 of 270, 2.7%)2, whereas eight out of 
the 10 CMS2-MSI samples belonged to one cohort (GSE13294 dataset). This particular cohort carried a slightly 
dissimilar CMS2-MSI population distribution from the other datasets, and out of these eight samples, five were 
classified as MSS by MAP.

MAP showed accuracies of 98.6% (95% CI 97.6–99.6) in RNA-seq and 95.1% (95% CI 91.6–98.7) in micro-
array data, all primary tumor and MSI detected based on PCR panel, showing a slight difference depending on 
the platform. Although MAP is an absolute SSP with a specificity of approximately 97% and a high accuracy of 
96.1%, it may be due to the inherent characteristics derived from development based on RNA-seq, or a rare MSI 
subgroup (e.g., immune-desert CMS2-MSI) that exists in a specific cohort (GSE13294). Due to the paucity of 
clinical information, we were unable to thoroughly characterize the samples that were not accurately predicted.

The recently developed preMSIm, a pan-cancer MSI predictor, is a k-NN classifier using 15 genes identified 
by using only three frequent cancer types (COAD, STAD, and UCEC) as training data. However, due to the 
limitations mentioned by the author of preMSIm12 and based on our findings, these 15 genes are not enough to 
predict MSI in pan-cancer. This is because tumor biology and tumor microenvironment are distinct for individual 
cancer origins, suggesting diverse tumor-intrinsic gene expression patterns. In this context, MAP is superior 
when predicting the MSI status in CRC as it was designed to reflect both the molecular characteristics of CRC 
and the complexity of its surroundings.

MLH1 was included in the list of MAP signatures used in the MAP model without other MMR genes, which 
implies that the TCGA data used as training data may include many tumors due to MLH1 deficiency. Thus, MAP 
enables classify sporadic CRC, characterized by MLH1 promoter hypermethylation or MLH1 loss, whereas Lynch 
syndrome, a familiar syndrome, due to germline mutations of MMR or EPCAM gene1, may not be reflected. In 
addition, due to the lack of IHC and clinical information (e.g., KRAS, BRAF mutations, and Lynch syndrome 
status) in the validation datasets, the characteristics of samples with incorrectly predicted MSI status (e.g., 
MSH2/MSH6-negative CRC) could not be thoroughly assessed. Although MAP reflects the characteristics of 
sporadic MSI CRC well, MSH2/MSH6-negative MSI CRC reflection is somewhat limited because the expression 
patterns of MSH2 and MSH6 among MMR genes are not distinctly distinguished from MSS and MSI in TCGA 
and external validation dataset and information on each MMR gene-negative phenotype was not available in 
the TCGA clinical information, so it was not considered during training. Finally, we built a model using TCGA 
CRC data as training data to use the most well-researched public data. However, because this study did not uti-
lize training data that we could control or investigate in depth, the opportunity to link the model’s results with 
biological features in detail was limited.

In conclusion, we provided MAP, an MSI predictor for CRC that is robust and accurate. Although MSI pre-
diction based on IHC and PCR is well established and available at a low cost for clinical application, MAP will 
find use in MSI-related research seeking to employ the large amounts of publicly available CRC expression data 
and will be useful for gaining insights to help with translational medicine.

Methods
Dataset acquisition.  This meta-analysis was performed in accordance with the PRISMA guidelines 
(Fig. S5). For the discovery cohort, 581 RNA-seq data (rsem.norm.expression) from TCGA-COADREAD were 
downloaded from the TCGA data portal (https://​portal.​gdc.​cancer.​gov/). Matching data on MSI status (82 MSI 
and 499 MSS) was downloaded from The Cancer Imaging Archive (TCIA) (https://​tcia.​at/). For the validation 
cohort, 106 RNA-seq data from 24 MSI and 82 MSS samples (rsem.norm.expression) from an independent 
study25 were downloaded. MSI-low tumors were grouped with MSS tumors as in previous studies26,27. The gene 
expression values of RNA-seq were log-transformed (with base 2) for analysis. Five independent microarray-
based cohorts were used as an additional validation dataset, particularly to test platform compatibility25,28–32. 
Detailed information on the datasets is available in Table  S1. Information on consensus molecular subtype 
(CMS) classification was obtained from the Colorectal Cancer Subtyping Consortium for all array datasets2. 
For cases with missing CMS information, CMS labels were inferred by using the random forest (RF) method 
provided by the CMSclassifier R package2. Genes covered in both of the discovery and validation datasets were 
used for further analysis.

Development of the MAP predictor.  Development of a gene‑based predictor (MAPgene).  A schematic 
drawing of the MAP development process is provided in Fig. 1a. To select informative genes for MSI prediction, 
we first identified differentially expressed genes (DEGs) between MSI and MSS tumors using the Wilcoxon rank-
sum test in the discovery cohort. To construct and train a prediction model, RNA-seq data were divided into 
training and internal validation datasets at a ratio of 4 to 1. To extract the most discriminative genes from the 
DEGs, the recursive feature elimination-random forest (RFE-RF) algorithm was used on the 466 training data-
set. Briefly, feature selection was conducted by the backward selection method, wherein the RFE-RF repeatedly 
constructed an RF model by eliminating features with the least importance. The selection process was repeated 
100 times, applying an upsampling approach to the MSI group (due to the small group size) using caret33 and 
randomForest R package. The final model (MAPgene) was then selected based on that with the best area under 
a receiver operating characteristic curve (AUC) for 31 genes.

https://portal.gdc.cancer.gov/
https://tcia.at/
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Development of an absolute, gene‑pair‑based predictor (MAPpairs).  To make the MAPgene model absolute (i.e., 
to predict MSI status from a single patient without comparison to a reference cohort or sample-wise normali-
zation), a new model (MAPpairs) was developed using pairwise gene expression values instead of single gene 
expression values. A total of 465 (31C2) gene-expression pairs were generated for the selected 31 genes. These 
gene expression pairs were then converted to rules that indicated the relative over- or under-expression between 
two genes. For example, if the expression of gene A was higher than that of gene B, the rule (gene A > gene B) 
was generated. Another RFE-RF model was then constructed using the 465 rules and trained with a five-fold 
cross-validation. Similar to the feature selection procedure, RFE-RF was applied with a five-fold cross-validation 
and repeated 100 times. The final absolute model was selected according to its AUC.

Development of a tumor microenvironment‑integrated model (MAPsig).  To construct a more sophisticated 
model, we exploited the molecular differences in cancer-, immune-, and TME-related signatures between MSI 
and MSS tumors. We collected 101 signatures, including immune and stromal cells (TCIA and MCP-counter)34,35, 
cancer hallmarks from MSigDB36, immune-related signatures, such as epithelial and mesenchymal signatures37; 
stromal and immune signatures38; immunoinhibitory signatures and immunostimulatory signatures)34; T-cell-
inflamed gene expression profile (GEP) 39 and IFN-γ expanded signatures 39; cell cycle signature40; cell cycle 
regulator41; mismatch repair (KEGG), C-ECM signature42; angiogenesis, HLA class I and II family signature43; 
pro-inflammatory cytokines and chemokines43; CD8 T cells (Teff)44; and the MAP signature. To obtain signature 
scores for each individual sample, single sample gene-set enrichment analysis (ssGSEA), with ssgsea.norm = F, 
was applied for the signatures above. Additionally, for cross-platform comparability, the acquired score was 
adjusted to a value between 1 and 10. We used the same modeling method as that for the MAPgene and MAP-
pairs models, although with different input values. Finally, the MAPsig model and features were selected for 
inclusion in the final according to those that provided the best AUC.

Model refinement.  When applying the MAPpairs model, we noted that true MSI samples tended to be classified 
with MSI at a probability much higher than 70%. Thus, only samples with a probability of having MSI that was 
more than 70% were assigned MSI status. Samples with a predicted probability of MSI that was lower than 70% 
were further examined by applying the MAPsig model to determine final MSI status, as it showed high overall 
AUC, accuracy, and specificity, but low sensitivity, making it of use in only verifying a true MSS sample. The 
software is available at https://​sourc​eforge.​net/p/​mapmsi/​wiki/​MAP/.

Validation dataset.  To evaluate the predictive performance of the MAP model, we employed RNA-seq 
data for CRCs (N = 106) with log2-transformed rsem.norm data. Also, to assess platform independency and the 
applicability of MAP on different array datasets, we collected data for five cohorts. In the microarray datasets, 
the probes per gene were selected using Jetset (http://​www.​cbs.​dtu.​dk/​bioto​ols/​jetset/)45. The array datasets were 
processed using fRMA R package per sample46. A total of five datasets were evaluated for the following: accuracy, 
sensitivity, specificity, F1 score, and balanced accuracy. All information on the datasets is provided in Table S1. 
For RNA-seq of stomach adenocarcinoma (STAD), and uterine corpus endometrial carcinoma (UCEC) were 
downloaded from the TCGA data portal (https://​portal.​gdc.​cancer.​gov/).

Consistency of genes in a microsatellite instability classifier model based on gene expres‑
sion.  To verify the consistency of feature genes with discriminative value in an MSI classifier model using 
gene expression, the Wilcoxon rank-sum test was used to analyze the external RNA-seq validation dataset. In 
addition, to assess the utility of MAP for MSI prediction, we calculated MAP signature scores (31-gene-set sig-
nature) using ssGSEA and compared them between MSI and MSS groups, as well as among MSI CMSs, using 
the Wilcoxon rank-sum test and Kruskal–Wallis test.

MSI signature construction at UCEC and STAD.  To investigate the MSI signature that can distinguish 
MSS and MSI in each cancer types, the same method was applied when constructing the MAP signature, except 
that the P < 0.02 and |log2 fold change|> 1 criteria was applied to identify sufficient number of DEG from two 
types of cancer. TCGA-UCEC and STAD expression dataset were download TCGA-UCEC and STAD RNA-seq 
data were downloaded from EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.txt file at https://​
gdc.​cancer.​gov/​about-​data/​publi​catio​ns/​panim​mune. In this file, only 12 of 15 signatures of preMSIm existed. 
The missing genes were HENMT1, NOL4L, and RTF2.

Correlation analysis of MSI status with TME and oncogenic signatures.  To investigate the effect 
of MSI status on TME and oncogenic signatures, Spearman correlation analysis was performed between the MSI 
probability of each sample from the MAPsig model and the signature features of the MAPsig model. Statistically 
significant features have P < 0.01 and |correlation coefficient (rho)|> 0.3.

Statistical analysis.  Comparisons of two groups were conducted using the Wilcoxon rank-sum test, while 
comparisons of multiple groups were performed using the Kruskal–Wallis test. All statistical analyses were con-
ducted using R language software (https://​www.r-​proje​ct.​org/).

Ethics approval and consent to participate.  Not applicable. No permissions were required to use any 
of the repository data. All methods were performed in accordance with the PRISMA guidelines.

https://sourceforge.net/p/mapmsi/wiki/MAP/
http://www.cbs.dtu.dk/biotools/jetset/
https://portal.gdc.cancer.gov/
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9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6283  | https://doi.org/10.1038/s41598-022-10182-3

www.nature.com/scientificreports/

Data availability
All relevant datasets used in the current study are available in the TCGA (https://​www.​cancer.​gov/​about-​nci/​
organ​izati​on/​ccg/​resea​rch/​struc​tural-​genom​ics/​tcga) and GEO (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). This study 
analysis used all publicly available datasets, and the dataset accession numbers included in Table S1. The software 
is available at https://​sourc​eforge.​net/p/​mapmsi/​wiki/​MAP/.
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