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Misfolding‑induced chronic 
pancreatitis in CPA1 N256K mutant 
mice is unaffected by global 
deletion of Ddit3/Chop
Balázs Csaba Németh1,3, Alexandra Demcsák1,3, Andrea Geisz2 & Miklós Sahin‑Tóth1*

Genetic mutations in pancreatic digestive enzymes may cause protein misfolding, endoplasmic 
reticulum (ER) stress and chronic pancreatitis. The CPA1 N256K mouse model carries the human 
p.N256K carboxypeptidase A1 (CPA1) mutation, a classic example of a pancreatitis-associated 
misfolding variant. CPA1 N256K mice develop spontaneous, progressive chronic pancreatitis with 
moderate acinar atrophy, acinar-to-ductal metaplasia, fibrosis, and macrophage infiltration. 
Upregulation of the ER-stress associated pro-apoptotic transcription factor Ddit3/Chop mRNA was 
observed in the pancreas of CPA1 N256K mice suggesting that acinar cell death might be mediated 
through this mechanism. Here, we crossed the CPA1 N256K strain with mice containing a global 
deletion of the Ddit3/Chop gene (Ddit3-KO mice) and evaluated the effect of DDIT3/CHOP deficiency 
on the course of chronic pancreatitis. Surprisingly, CPA1 N256K x Ddit3-KO mice developed chronic 
pancreatitis with a similar time course and features as the CPA1 N256K parent strain. In contrast, 
Ddit3-KO mice showed no pancreas pathology. The observations indicate that DDIT3/CHOP plays no 
significant role in the development of misfolding-induced chronic pancreatitis in CPA1 N256K mice and 
this transcription factor is not a viable target for therapeutic intervention in this disease.

The exocrine pancreas produces and secretes a variety of digestive enzymes in large quantities. Rarely, genetic 
mutations can affect the proper folding of these enzymes in the endoplasmic reticulum (ER), which results in 
so-called “misfolding”1. The consequence of misfolding is decreased enzyme secretion from the acinar cells and 
accumulation and/or degradation of the misfolded protein inside the cells. Misfolding elicits ER stress, which trig-
gers signaling pathways designed to limit the harmful consequences of misfolding and restore the normal folding 
function of the ER2–5. Unresolved ER stress of the exocrine pancreas causes chronic pancreatitis, a progressive 
inflammatory disorder leading to permanent morphological and functional impairment1. Mutations associ-
ated with misfolding, ER stress, and chronic pancreatitis have been described in the serine protease 1 (PRSS1) 
gene that encodes human cationic trypsinogen6–8, the carboxypeptidase A1 (CPA1) gene9,10, the carboxyl ester 
lipase (CEL) gene11–16, the pancreatic lipase (PNLIP) gene17–21, and the chymotrypsin C (CTRC​) gene22,23. With 
the exception of CTRC, these digestive enzymes represent the most abundantly expressed secretory proteins of 
the pancreas24. Heterozygous misfolding variants in PRSS1, CPA1, and CTRC​ are associated with hereditary or 
sporadic idiopathic chronic pancreatitis. Heterozygous single-nucleotide deletions in CEL cause pancreatic insuf-
ficiency and the monogenic diabetes syndrome MODY8, whereas CEL-HYB1, a hybrid gene between CEL and its 
neighboring pseudogene increases risk for idiopathic chronic pancreatitis. Homozygous or trans-heterozygous 
misfolding PNLIP variants were reported in rare cases of inborn lipase deficiency17–19; whereas association of 
heterozygous misfolding PNLIP variants with chronic pancreatitis has remained uncertain20,21.

The best characterized examples of misfolding digestive enzymes are the pancreatitis-associated CPA1 vari-
ants. In cell culture experiments, pathogenic mutants such as p.V251M, p.N256K, and p.S282P exhibit an essen-
tially complete secretion defect, intracellular retention of CPA1 and elevation of ER stress markers such as the 
mRNA for HSPA5, encoding a master chaperone called the Binding Immunoglobulin Protein (BiP), spliced XBP1 
encoding the transcription factor X-box-binding protein 1, and DDIT3 encoding the transcription factor C/EBP 
Homologous Protein (CHOP)9,10. Introduction of the p.N256K mutation into the mouse CPA1 reproduces the 
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human cellular phenotype25. Encouraged by this observation, we generated a mouse model which harbors the 
human p.N256K mutation in the endogenous mouse Cpa1 gene25. Although human carriers are heterozygous, the 
CPA1 N256K mice were bred to homozygosity to obtain a stronger phenotype. Remarkably, CPA1 N256K mice 
develop spontaneous chronic pancreatitis characterized by acinar atrophy, diffuse fibrosis, regenerative pseudo-
tubular complexes, macrophage infiltration and an increase in plasma amylase activity. The disease phenotype is 
relatively mild yet progressive over the 12-month time-course studied so far. Ethanol feeding accelerates disease 
progression26. Importantly, the pancreas also shows signs of chronic ER stress, indicated by small elevations in 
the mRNA levels of Hspa5/BiP, and more pronounced increases in the Ddit3/Chop transcript levels.

Since the pro-apoptotic transcription factor DDIT3/CHOP has been implicated in ER-stress associated cell 
death, we hypothesized that loss of pancreatic acinar cells may occur via this mechanism in the CPA1 N256K 
mice. In turn, acinar cell death may drive the fibro-inflammatory process of chronic pancreatitis. Consistent with 
this notion, a large number of studies reported that DDIT3/CHOP plays a role in various diseases and deletion 
of DDIT3/CHOP may be protective (reviewed in Ref.27). In the present study, we generated a CPA1 N256K strain 
with a global deletion of Ddit3/Chop, and studied the effect of DDIT3/CHOP deficiency in the development and 
course of chronic pancreatitis.

Materials and methods
All methods were performed in accordance with the relevant guidelines and regulations and were in accordance 
with the ARRIVE guidelines.

Accession numbers.  NM_007837.4, Mus musculus DNA-damage inducible transcript 3 (Ddit3), mRNA; 
NM_025350.4, Mus musculus carboxypeptidase A1 (Cpa1) mRNA.

Animals.  Homozygous CPA1 N256K mice containing the human pancreatitis-associated p.N256K CPA1 
mutation in the mouse Cpa1 locus were reported previously25. These mice are on the C57BL/6N genetic 
background. Genotyping was performed as described25. The Ddit3/Chop-deleted mouse strain B6.129S(Cg)-
Ddit3tm2.1Dron/J28 was purchased from The Jackson Laboratory (Bar Harbor, Maine). For simplicity, we refer to 
this strain as Ddit3-knockout (Ddit3-KO). The Ddit3-KO mice were backcrossed with C57BL/6N twice and then 
bred to homozygosity. To genotype for the Ddit3-KO and wild-type Ddit3 alleles, the following primers were 
used: Common forward primer 5′-ATG CCC TTA CCT ATC GTG-3′, KO reverse primer 5′-AAC GCC AGG 
GTT TTC CCA GTC A-3′, and Ddit3 reverse primer 5′-GCA GGG TCA AGA GTA GTG-3′. The KO reverse 
primer anneals to a NLS-lacZ cassette insert and yields a 320 bp fragment. The Ddit3 reverse primer generates 
a 544 bp product. The novel CPA1 N256K × Ddit3-KO strain was generated by crossing the respective parent 
strains and breeding both alleles to homozygosity. C57BL/6N mice were obtained from Charles River Laborato-
ries (Wilmington, MA) or produced in our breeding facility from the same stock.

Study approval.  Animal experiments were performed at the University of California Los Angeles with the 
approval and oversight of the Animal Research Committee, including protocol review and post-approval moni-
toring. Initial breeding was carried out at Boston University with the approval and oversight of the Institutional 
Animal Care and Use Committee. The animal care programs at these institutions are managed in full compliance 
with the US Animal Welfare Act, the United States Department of Agriculture Animal Welfare Regulations, the 
US Public Health Service Policy on Humane Care and Use of Laboratory Animals and the National Research 
Council’s Guide for the Care and Use of Laboratory Animals. The University of California Los Angeles and 
Boston University have approved Animal Welfare Assurance statements (A3196-01 and A3316-01, respectively) 
on file with the US Public Health Service, National Institutes of Health, Office of Laboratory Animal Welfare. 
Both institutions are accredited by the Association for Assessment and Accreditation of Laboratory Animal Care 
International (AAALAC).

Histology.  Pancreas tissue was fixed in 10% neutral buffered formalin, paraffin-embedded, sectioned, and 
stained with hematoxylin–eosin or Masson’s trichrome staining, or analyzed by immunohistochemistry (IHC), 
as indicated, at the Translational Pathology Core Laboratory of UCLA. IHC staining for F4/80, SOX9, and alpha 
smooth muscle actin (alpha-SMA) was performed using the following antibodies: rabbit monoclonal anti-
F4/80 antibody  1:200 dilution for 1 h (Cell Signaling, catalog number 70076), recombinant rabbit monoclonal 
anti-SOX9 antibody  1:800 dilution for 1 h (Abcam, catalog number ab185230), and  rabbit polyclonal anti-
alpha-SMA antibody 1:500 dilution for 1 h (Abcam, catalog number ab5694).

Plasma amylase and lipase assays.  Blood was collected through cardiac puncture and plasma was iso-
lated by centrifugation at 2000g for 15  min, at 4  °C. Enzyme activity of amylase in 1 µL blood plasma was 
then determined with the 2-chloro-p-nitrophenyl-α-d-maltotrioside substrate, as reported previously29. Lipase 
activity in blood plasma (1 µL assayed) was measured with the 1,2-O-dilaurylrac-glycero-3-glutaric acid-(6′-
methylresorufin)-ester substrate, using the Diazyme Lipase Assay Kit (Diazyme Laboratories, Poway, California, 
USA, catalog number DZ132A), according to the manufacturer’s instructions. Rates of substrate cleavage were 
expressed in mOD/min units.

RNA isolation and reverse transcription PCR.  Total RNA was extracted from mouse pancreas using 
approximately 20  mg freshly isolated tissue with the RNeasy Plus Mini Kit (Qiagen, Valencia, CA). Two μg 
of RNA was reverse-transcribed using the High Capacity cDNA Reverse Transcription Kit (catalog number 
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4368814, Thermo Fisher Scientific). Complementary DNA for Ddit3 was amplified using the following prim-
ers, which yield a 286 nt amplicon: Ddit3 mouse sense primer: 5′-CAC ATC CCA AAG CCC TCG CTC TC-3′ 
and Ddit3 mouse antisense primer: 5′-TCA TGC TTG GTG CAG GCT GAC CAT-3′. As a house-keeping gene 
control, reverse-transcribed mouse 18S RNA was amplified, as reported previously29.

Hydroxyproline assay.  The hydroxyproline content of the pancreas was determined by the reaction of 
oxidized hydroxyproline with 4-(dimethylamino)benzaldehyde (Millipore Sigma, catalog number MAK008), as 
described previously25. Values were normalized to the total protein concentration and expressed in units of ng 
hydroxyproline per µg protein.

Pancreatic trypsinogen and chymotrypsinogen content.  Pancreas tissue (30–40 mg) was homog-
enized in 300–400 μL 20 mM Na-HEPES (pH 7.4), and the homogenate was cleared by centrifugation (850g, 
10 min, 4  °C). Levels of protease zymogens were then measured after maximal activation using trypsin and 
chymotrypsin specific substrates, as described previously30.

Statistics.  Experimental results were graphed as individual data points. Where graphically feasible, the 
mean and standard deviation were also indicated. Differences of means between the groups were analyzed by 
one-way ANOVA followed by Tukey’s post-hoc test. P < 0.05 was considered statistically significant.

Results
Global deletion of Ddit3/Chop in CPA1 N256K mice.  To render the CPA1 N256K strain deficient 
in DDIT3/CHOP, we crossed these mice with a commercially available Ddit3-KO strain. Mice were bred to 
homozygosity for both alleles. RT-PCR analysis of the pancreas for Ddit3 transcripts confirmed the absence of 
Ddit3 expression in Ddit3-KO and CPA1 N256K × Ddit3-KO mice, whereas Ddit3 was readily detectable in the 
pancreas of C57BL/6N and CPA1 N256K mice (Fig. 1A, Supplementary Fig. 1). As described previously, pancre-
atic Ddit3 levels were higher in CPA1 N256K mice versus C57BL/6N mice. CPA1 N256K × Ddit3-KO mice had 
no discernible phenotype and grew and bred normally. When the body weight of C57BL/6N, Ddit3-KO, CPA1 
N256K and CPA1 N256K × Ddit3-KO mice was compared at 1, 3, and 6 months of age, no significant differences 
were observed (Fig. 1B).

Pancreas atrophy in CPA1 N256K × Ddit3‑KO mice.  One of the easily measurable hallmarks of chronic 
pancreatitis is the atrophy of the exocrine pancreas which results in reduced pancreatic weight. Assessment of the 
pancreas weight of C57BL/6N, Ddit3-KO, CPA1 N256K and CPA1 N256K × Ddit3-KO mice at 1, 3, and 6 months 
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Figure 1.   Pancreatic Ddit3 expression and body weight in CPA1 N256K × Ddit3-KO mice. (A) Reverse-
transcription PCR analysis of Ddit3 mRNA expression in the pancreas of C57BL/6N, Ddit3-KO, CPA1 N256K, 
and CPA1 N256K × Ddit3-KO mice at 6 months of age. A representative agarose gel picture is shown. See 
“Methods” for details. (B) Body weight of mice at 1, 3, and 6 months of age. C57BL/6N (n = 23, 15, and 25), 
Ddit3-KO (n = 10, 17, and 12), CPA1 N256K (n = 25, 16, and 25), CPA1 N256K x Ddit3-KO (n = 18, 16, and 16).
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of age revealed significant atrophy in CPA1 N256K and CPA1 N256K × Ddit3-KO mice relative to the C57BL/6N 
and Ddit3-KO mice (Fig. 2A). There was no difference between the pancreas weight of C57BL/6N and Ddit3-KO 
mice. When CPA1 N256K and CPA1 N256K × Ddit3-KO mice were compared, pancreatic weight loss was slightly 
more pronounced in CPA1 N256K x Ddit3-KO at 1 month and 3 months of age. The pancreas atrophy in CPA1 
N256K and CPA1 N256K × Ddit3-KO mice remained significant even after normalization of the pancreas weight 
to body weight (Fig. 2B). The findings indicate that genetic deletion of Ddit3/Chop in the CPA1 N256K mice does 
not protect against onset and progression of chronic pancreatitis, as judged by pancreatic atrophy.

To assess whether digestive protease expression might be altered by Ddit3/Chop deficiency, we compared 
the trypsinogen (Fig. 3A) and chymotrypsinogen (Fig. 3B) content in the pancreas of C57BL/6N, Ddit3-KO, 
CPA1 N256K, and CPA1 N256K × Ddit3-KO mice at 1 month of age, when disease activity was only incipient. 
Interestingly, protease zymogen levels were slightly (by about 10–15%) elevated in CPA1 N256K mice relative to 
C57BL/6N mice, and this trend reached statistical significance for trypsinogen. A non-significant decrease (about 
10%) was apparent in Ddit3-KO mice, while the CPA1 N256K × Ddit3-KO cross had normal protease zymogen 
levels. We consider the observed changes small and biologically not relevant.

Plasma amylase and lipase in CPA1 N256K × Ddit3‑KO mice.  As described previously, there was a 
significant increase in plasma amylase activity in CPA1 N256K mice at 1 month of age, relative to C57BL/6N 
mice, and the same degree of elevation was observed in CPA1 N256K × Ddit3-KO mice as well (Fig. 4A). Despite 
the onset of acinar atrophy, the higher plasma amylase activity in these two strains remained detectable even at 
3 months of age. There was no appreciable difference between CPA1 N256K and CPA1 N256K × Ddit3-KO mice, 
indicating similar severity of pancreatitis. As expected, plasma amylase levels of Ddit3-KO mice were compara-
ble to those of C57BL/6N mice. Similar tendencies were apparent when lipase activity was measured on a subset 
of blood samples from the four mouse strains studied (Fig. 4B).

Pancreas histology in CPA1 N256K × Ddit3‑KO mice.  To evaluate the histological progression of 
chronic pancreatitis in CPA1 N256K and CPA1 N256K × Ddit3-KO mice, pancreas sections were stained with 
hematoxylin–eosin at 1, 3, and 6 months of age (Fig. 5) and compared to similarly treated pancreas sections 
from C57BL/6N and Ddit3-KO mice. Predictably, pancreas histology was completely normal for C57BL/6N and 
Ddit3-KO mice at 6 months of age. In contrast, the previously described progressive histological changes were 
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Figure 2.   Pancreas weight in CPA1 N256K × Ddit3-KO mice. (A) Pancreas weight of mice at 1, 3, and 6 months 
of age. C57BL/6N (n = 23, 15, and 25), Ddit3-KO (n = 10, 17, and 12), CPA1 N256K (n = 25, 16, and 25), CPA1 
N256K × Ddit3-KO (n = 18, 16, and 16). (B) Pancreas weight expressed as percent body weight. Individual data 
points are shown.
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evident in CPA1 N256K and CPA1 N256K × Ddit3-KO mice. These included scattered acinar cell dropouts and 
appearance of pseudotubular complexes, with consequent disorganization of the normally tightly packed acinar 
cell compartment. Relative to 1 month, significantly more histological lesions were apparent at 3 months of age, 
whereas by 6 months of age fatty replacement was also seen. Importantly, there was no significant difference in 
disease progression or severity between the CPA1 N256K and CPA1 N256K × Ddit3-KO mice.

Macrophage infiltration, acinar‑to‑ductal metaplasia, and fibrosis in CPA1 N256K × Ddit3‑KO 
mice.  To visualize macrophage infiltration, pancreas sections were stained for the F4/80 marker using IHC 
(Fig.  6A). Widespread positivity was detected in pancreas sections of 3-month-old CPA1 N256K and CPA1 
N256K × Ddit3-KO mice, with comparable intensity and distribution. Pseudotubular complexes due to acinar-
to-ductal metaplasia are hallmark signs of chronic pancreatitis. IHC staining for the ductal cell marker SOX9 
revealed widespread positivity in pancreas sections from 3-month-old CPA1 N256K and CPA1 N256K × Ddit3-
KO mice, while the pancreas of C57BL/6N and Ddit3-KO mice showed only scattered staining of normal ducts 
(Fig. 6B). Finally, fibrosis was first investigated using Masson’s trichrome staining, which indicated the presence 
of diffuse fibrosis in 3-month-old CPA1 N256K and CPA1 N256K × Ddit3-KO mice but not in C57BL/6N and 
Ddit3-KO mice (Fig. 7A). Measurement of pancreatic hydroxyproline content confirmed the increased collagen 
levels in the pancreas of 3-month-old as well as 6-month-old CPA1 N256K and CPA1 N256K x Ddit3-KO mice 
relative to C57BL/6N and Ddit3-KO mice (Fig. 7B). We also performed IHC for alpha-SMA, however, only weak 
and scattered positivity were observed in the pancreas of CPA1 N256K and CPA1 N256K × Ddit3-KO mice, indi-
cating a moderate extent of stellate cell activation (not shown). Taken together, the observations indicate similar 
severity of chronic pancreatitis in CPA1 N256K and CPA1 N256K × Ddit3-KO mice with respect to macrophage 
infiltration, acinar-to-ductal metaplasia, and fibrosis.
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Figure 3.   Protease zymogen content of the pancreas from CPA1 N256K × Ddit3-KO mice. (A) Trypsinogen, 
and (B) chymotrypsinogen content was measured from pancreas homogenates of 1-month-old C57BL/6N, 
Ddit3-KO, CPA1 N256K, and CPA1 N256K × Ddit3-KO mice by enzymatic assays after full activation to trypsin 
and chymotrypsin. Results were expressed as percent of the average C57BL/6N values. Individual data points 
with mean (horizontal bar) and standard deviation are shown.
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Discussion
In this study, we demonstrate that the transcription factor DDIT3/CHOP plays no significant role in the onset, 
progression and severity of chronic pancreatitis in CPA1 N256K mice harboring a misfolding CPA1 variant. Since 
the Ddit3/Chop mRNA is significantly upregulated in the pancreas of CPA1 N256K mice and DDIT3/CHOP 
is known to mediate ER-stress associated apoptosis; it seemed reasonable to assume that pancreatic acinar cell 
death might occur through this mechanism. Therefore, the negative results of our experiments are surprising. 
We found that CPA1 N256K mice with a global deletion of Ddit3/Chop developed chronic pancreatitis with 
essentially identical features and timeline as the CPA1 N256K parent strain. Comparative evaluation of pancreas 
atrophy, plasma amylase elevations, histological damage, acinar-to-ductal metaplasia, macrophage infiltration, 
and fibrosis indicated no discernible differences. As expected, C57BL/6N and Ddit3-KO mice did not develop 
chronic pancreatitis and showed none of the morphological and biochemical changes described above.

The mechanistic role of DDIT3/CHOP in chronic pancreatitis has not been investigated before, although 
persistent activation in cerulein-induced disease was documented31. There are two published studies on acute 
pancreatitis in Ddit3/Chop-deleted mice32,33. The papers report somewhat more severe disease in the knockout 
strain, indicating a possible protective role of DDIT3/CHOP in acute pancreatitis. The mechanism of protec-
tion may be related to induction of apoptosis, which has been shown to mitigate inflammation by preventing 
pro-inflammatory necrosis34.

Transcription factor DDIT3/CHOP is ubiquitously expressed at relatively low levels and becomes significantly 
upregulated as a result of cellular stress, such as ER stress, nutrient deprivation, DNA damage, hypoxia or growth 
arrest (reviewed in27). Although it can affect a multitude of cellular functions, its best characterized role is the 
mediation of apoptotic cell death associated with chronic, unresolved ER stress35–37. DDIT3/CHOP upregula-
tion is primarily driven by the PERK-eIF2α-ATF4 signal transduction pathway, however, the ATF6 and IRE1 
pathways also contribute27. Activated PERK phosphorylates eIF2α, which results in reduced protein translation 
but paradoxically promotes translation of ATF4, which binds to the DDIT3/CHOP promoter in the nucleus. 
DDIT3/CHOP promotes apoptosis by altering the expression, directly or indirectly, of a variety of pro-apoptotic 
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and anti-apoptotic genes (reviewed in27,36,37). The most pronounced effect, however, is the stimulation of protein 
synthesis, in concert with ATF4, which results in oxidative stress and cell death38,39.

At the onset of these studies, we assumed that acinar cell death would play a key role in the fibro-inflammatory 
process and protection against acinar cell death by deletion of Ddit3/Chop would prevent the development and/
or progression of chronic pancreatitis. This assumption was also reinforced by the marked protective effect of 
Ddit3/Chop deletion against ER stress, β-cell apoptosis and diabetes in mouse models40–42. Clearly, this is not the 
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Figure 5.   Histology of chronic pancreatitis in CPA1 N256K × Ddit3-KO mice. Representative hematoxylin–
eosin stained pancreas sections are shown from C57BL/6N and Ddit3-KO mice at 6 months of age and from 
CPA1 N256K and CPA1 N256K × Ddit3-KO mice at 1, 3, and 6 months of age. The scale bar corresponds to 
50 µm.
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Figure 6.   Macrophage infiltration and acinar-to-ductal metaplasia in the pancreas of CPA1 N256K × Ddit3-KO 
mice. (A) Immunohistochemistry staining of pancreas sections from 3-month-old C57BL/6N, Ddit3-KO, CPA1 
N256K, and CPA1 N256K × Ddit3-KO mice for the F4/80 macrophage marker. Macrophages are stained brown. 
(B) Immunohistochemistry staining of pancreas sections from 3-month-old C57BL/6N, Ddit3-KO, CPA1 
N256K, and CPA1 N256K × Ddit3-KO mice for the SOX9 ductal cell marker. Normal ductal cells and acinar cells 
that underwent ductal metaplasia are stained brown. The scale bar corresponds to 50 µm.
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case in the exocrine pancreas. One explanation might be that acinar cell death is not a requirement for disease 
initiation. Rather, stressed acini might secrete pro-inflammatory factors that attract macrophages and activate 
stellate cells. Extracellular ATP released by damaged acinar cells may mediate these events through calcium 
signaling43. Deletion of Ddit3/Chop has been shown to protect against fibrosis of various major organs such as 
the kidneys, lungs, liver, and heart (reviewed in27,44). In the pancreas, DDIT3/CHOP was implicated in protecting 
stellate cells from metabolic stressors and thereby promoting fibrosis45. We were unable to confirm the proposed 
pro-fibrotic role of DDIT3/CHOP, as Masson’s trichrome staining of pancreas sections and measurement of 
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Figure 7.   Fibrosis in the pancreas of CPA1 N256K × Ddit3-KO mice. (A) Masson’s trichrome staining of 
pancreas sections from 3-month-old C57BL/6N, Ddit3-KO, CPA1 N256K, and CPA1 N256K × Ddit3-KO mice. 
Collagen is stained blue. The scale bar corresponds to 50 µm. (B) Hydroxyproline content of the pancreas from 
C57BL/6N (n = 4 and 6), Ddit3-KO (n = 4 and 6), CPA1 N256K (n = 7 and 10), and CPA1 N256K × Ddit3-KO 
(n = 6 and 10) mice at 3 months and 6 months of age. Individual data points with mean (horizontal bar) and 
standard deviation are shown.
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pancreatic hydroxyproline content revealed no significant difference in the extent of fibrosis between the CPA1 
N256K and CPA1 N256K × Ddit3-KO mice. Deletion of Ddit3/Chop has been also associated with reduced mac-
rophage infiltration during the inflammatory diseases of various major organs27. An interesting exception is 
the experimental model of liver fibrosis induced by dietary steatohepatitis. In this case, fibrosis was increased 
in Ddit3/Chop-deleted mice, likely due to a defect in CHOP-induced apoptosis of activated macrophages46. In 
our experiments, using semi-quantitative immunohistochemistry staining of pancreas sections for the mac-
rophage marker F4/80, we did not observe a significant difference in macrophage infiltration between the CPA1 
N256K × Ddit3-KO mice versus the CPA1 N256K parent strain.

In summary, our study conclusively demonstrates that in the CPA1 N256K mice, onset and progression of 
chronic pancreatitis is not dependent on the upregulation of Ddit3/Chop. The findings raise the possibility that 
the mild ER stress observed in the pancreas of these mice may not be pathogenic and CPA1 misfolding causes 
pancreatitis via other mechanisms. Alternatively, other important aspects of ER stress, not investigated here, 
such as ATP depletion and calcium overload, might drive pathology47. Limitations of our study include the 
global nature of Ddit3/Chop deletion and reliance on morphological rather than molecular analysis. Despite 
these potential shortcomings, the conclusions of the study are straightforward and rule out DDIT3/CHOP as a 
potential therapeutic target in misfolding-induced chronic pancreatitis.

Data availability
Materials, data and protocols associated with this paper are available upon request.
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