Table 2.
Cases | Parameters | Various convolutional algorithms | ||
---|---|---|---|---|
Conventional CNN | Attention-based CNN | Proposed hierarchical Attention-based CNN | ||
Case I | Accuracy (%) | 96.19 | 97.2826 | 98.33 |
Sensitivity | 0.9474 | 0.9780 | 0.9800 | |
Specificity | 0.9775 | 0.9677 | 0.9700 | |
Precision | 0.9783 | 0.9674 | 0.9780 | |
F-measure | 0.9626 | 0.9727 | 0.9800 | |
MCC | 0.9244 | 0.9457 | 0.9600 | |
Case II | Accuracy (%) | 95.11 | 95.11 | 95.56 |
Sensitivity | 0.9368 | 0.9462 | 0.9667 | |
Specificity | 0.9663 | 0.9560 | 0.9444 | |
Precision | 0.9674 | 0.9565 | 0.9457 | |
F-measure | 0.9519 | 0.9514 | 0.9560 | |
MCC | 0.9027 | 0.9022 | 0.9113 | |
Case III | Accuracy (%) | 95.65 | 96.20 | 97.21 |
Sensitivity | 0.9375 | 0.9570 | 0.9775 | |
Specificity | 0.9773 | 0.9670 | 0.9667 | |
Precision | 0.9783 | 0.9674 | 0.9667 | |
F-measure | 0.9574 | 0.9622 | 0.9721 | |
MCC | 0.9139 | 0.9240 | 0.9442 |