Skip to main content
. 2022 Apr 16;26(11):5389–5397. doi: 10.1007/s00500-022-07122-8

Table 2.

The classification performance of different convolutional algorithms

Cases Parameters Various convolutional algorithms
Conventional CNN Attention-based CNN Proposed hierarchical Attention-based CNN
Case I Accuracy (%) 96.19 97.2826 98.33
Sensitivity 0.9474 0.9780 0.9800
Specificity 0.9775 0.9677 0.9700
Precision 0.9783 0.9674 0.9780
F-measure 0.9626 0.9727 0.9800
MCC 0.9244 0.9457 0.9600
Case II Accuracy (%) 95.11 95.11 95.56
Sensitivity 0.9368 0.9462 0.9667
Specificity 0.9663 0.9560 0.9444
Precision 0.9674 0.9565 0.9457
F-measure 0.9519 0.9514 0.9560
MCC 0.9027 0.9022 0.9113
Case III Accuracy (%) 95.65 96.20 97.21
Sensitivity 0.9375 0.9570 0.9775
Specificity 0.9773 0.9670 0.9667
Precision 0.9783 0.9674 0.9667
F-measure 0.9574 0.9622 0.9721
MCC 0.9139 0.9240 0.9442