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Active breeding programs specifically for root system architecture (RSA) phenotypes remain rare; however, breeding for branch
and taproot types in the perennial crop alfalfa is ongoing. Phenotyping in this and other crops for active RSA breeding has
mostly used visual scoring of specific traits or subjective classification into different root types. While image-based methods
have been developed, translation to applied breeding is limited. This research is aimed at developing and comparing image-
based RSA phenotyping methods using machine and deep learning algorithms for objective classification of 617 root images
from mature alfalfa plants collected from the field to support the ongoing breeding efforts. Our results show that
unsupervised machine learning tends to incorrectly classify roots into a normal distribution with most lines predicted as the
intermediate root type. Encouragingly, random forest and TensorFlow-based neural networks can classify the root types into
branch-type, taproot-type, and an intermediate taproot-branch type with 86% accuracy. With image augmentation, the
prediction accuracy was improved to 97%. Coupling the predicted root type with its prediction probability will give breeders
a confidence level for better decisions to advance the best and exclude the worst lines from their breeding program. This
machine and deep learning approach enables accurate classification of the RSA phenotypes for genomic breeding of climate-
resilient alfalfa.

1. Introduction

Alfalfa (Medicago sativa L., also known as lucerne) is a
widely grown perennial forage crop that provides multiple
years of soil coverage and accrual of belowground biomass.
This plant has a deep root system capable of extracting water
and nutrients from as deep as 6 meters ([1]). The extensive
crown (consisting of belowground stems) and the root sys-
tem actively sequester carbon throughout the life of the
stand. In addition to carbon sequestration, alfalfa can fix
about 200 (4 seasonal harvests) or 650 kg (7 seasonal har-
vests) of nitrogen ha-1 per year through biological nitrogen
fixation [2]. However, selection for root system architecture

(RSA) traits has lagged behind selection and breeding for
aboveground traits due to the high level of morphological
plasticity of roots in soil [3–6] and the difficulty of measur-
ing RSA traits [7].

RSA is defined as the spatial distribution of all root parts
of a plant over time in a particular growth environment [8].
RSA is controlled by heritable genetics of plants and non-
heritable external environmental conditions (soil moisture,
temperature, nutrients, and pH) and the microbial commu-
nities that impact how a plant detects and responds to its
surroundings [9, 10]. Different root characteristics enable
plants to respond, adapt, and thrive in different environ-
ments, influencing drought tolerance [11], heat tolerance

AAAS
Plant Phenomics
Volume 2022, Article ID 9879610, 15 pages
https://doi.org/10.34133/2022/9879610

https://orcid.org/0000-0002-7633-036X
https://orcid.org/0000-0002-1995-9479
https://orcid.org/0000-0003-0937-9128
https://doi.org/10.34133/2022/9879610


[12], lodging resistance [13], nutrient deficiency [8, 14], and
yield [15–17]. RSA determines the extent of the soil volume
from which water and nutrients may be acquired. As impor-
tant as the total volume of soil explored, the distribution of
roots in soil is essential for managing the costs of soil forag-
ing by roots [18]. As global climate change occurs, it will be
crucial to improve root systems to enhance plant responses
to abiotic and biotic stresses. However, using conventional
breeding based on phenotypic selection, it is challenging to
select breeding lines possessing promising RSA types
to adapt to environmental stresses because roots remain hid-
den underground.

To address the challenge of phenotyping RSA,
researchers have explored three strategies [19], including
(1) well-controlled laboratory methods [20, 21], moderately
controlled greenhouse methods [22, 23], and (3) open field
methods [24–26]. The significant challenges are the high
labor and time costs in RSA field phenotyping [27, 28] and
the generally low correlation between RSA of plants grown
in highly controlled growth chambers or greenhouse exper-
iments and plants grown in dynamic environments in the
field experiments [29].

To overcome the limitation of the low correlation
between field and greenhouse RSA data, many researchers
are developing technologies that enable high-throughput
phenotyping of RSA traits in the field. However, few low-
cost, high-throughput root phenotyping methods are avail-
able [30–32]. Shovelomics, or root crown phenotyping, is a
widely used method of digging up the root base of plants
grown in the field and measuring root characters [28,
33–36]. It is less expensive than some other methods but
may provide only limited information on the distal parts of
the root system or fine roots, not a picture of the whole root
system. Thus, it is still challenging to improve root traits by
phenotypic selection during the breeding process.

Results of marker-assisted selection and genomic predic-
tion have higher selection accuracy resulting in higher
genetic gains than phenotypic selection. In rice, five QTLs
associated with four seedling RSA traits from visual scores
and measurements from WinRhizo were identified from
both conventional linkage analysis and a machine learning
approach via a Bayesian network. Two extreme RSA groups
were successfully selected based on the genomic selection
rank-sum index [37]. The prediction accuracies of the 13
root architecture traits ranged from the lowest of 0.07 for
crossing root to the highest of 0.59 for lateral root tips. Eight
QTLs associated with narrow root cone angles of rice RSA
mapped with root trait data were stable across glasshouse
and three field locations [38]. In canola, 31 QTLs associated
with five RSA traits were mapped through genome wide
association mapping using visual RSA scoring [33]. Such
QTL studies suggest that many traits fundamental to RSA
are controlled by numerous small-effect loci [33, 39, 40].
Many QTL studies have relied on visual phenotyping root
features or subjective classification of root types. However,
these methods are subject to human error and rater bias.

The advent of machine learning (ML) and deep learning
(DL) has enabled trait extraction and high throughput phe-
notyping of many traits. ML has facilitated the development

of software tools that automate image processing or data
analysis to learn from hidden patterns and classify objects,
thus reducing variability in measurements and removing
subjectivity and biases [41–43]. Unsupervised learning is a
type of machine learning algorithm that learns patterns from
unlabeled data. Most unsupervised machine learning is
referred to as clustering [44]. For RSA, the expectation
is that the machine is forced to classify the roots into distinct
clusters based on the internal representation of RSA traits
without external interference and human biases. Supervised
machine learning is accomplished by various algorithms that
can learn the hidden patterns and rules from labeled or
tagged training data to predict outcomes for unforeseen
data. In supervised learning, the machine is trained using
data that is well “labeled” as the ground truth of the data.
Kumar et al. (2014) trained their model to recognize and dif-
ferentiate root tips from 2D images in an automated process
[45]. With the power of ML classification and computer
vision technology “Zernike Moment Descriptors,” the pre-
diction accuracies were 97% for primary roots and 96% for
lateral roots. In pea, by combining random forest and sup-
port vector machine models, prediction accuracy for distin-
guishing cultivars was up to 86% based on the top five RSA
traits measured from a greenhouse experiment [46]. In rice,
support vector machine (SVM) with 16 image-based RSA
traits successfully differentiated 118 genotypes [21].

Most phenotyping of RSA derives from the relatively
simple root traits in annual crops, including maize [47,
48], soybean [49–52], rice [21], and Arabidopsis [53], with
comparatively little known about the substantially more
complicated RSA of perennial plants such as alfalfa (Medi-
cago sativa L.). The roots of alfalfa can grow to depths of 6
meters or more [1] and are important for winter survival
[54] and persistence during periods of heat and drought
[55, 56]. Previously, branch rooted and taprooted RSA were
classified by visual scoring and populations developed for
each RSA through two cycles of divergent selection. Herita-
bility of 21 to 48% was attained for branch roots and 11 to
43% for lateral root number [57]. In this study, populations
selected for greater root mass had higher forage yields while
a deep taproot increased potential access to water resources
to improve drought tolerance. Root traits such as taproot
diameter or root dry matter may increase winter survival
and persistence in alfalfa. The taproot classification implies
that the taproot is prominent with few, fine lateral roots,
while the branched root system also has a taproot, but it
may be less prominent and with more thicker lateral roots.
We hypothesize that branched alfalfa roots may be especially
important for topsoil foraging [58], while the dominant tap-
root systems may allow more allocation to deeper root sys-
tems [59].

In order to advance root-based breeding in alfalfa, we
aimed to develop an imaging protocol based on root crown
phenotyping [60] that would allow subsequent automated
classification into taproot, branched, and intermediate root
types. The objective of this study was to compare unsuper-
vised and supervised machine learning methods as well as
deep learning to identify the most promising methods to
incorporate into breeding programs for root traits in alfalfa.
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2. Material and Methods

2.1. Plant Materials, Image Capture, and Phenotyping. Five
alfalfa populations that were created based on selection for
RSA types were used for this study. Starting from a parental
population UMN2892, the population UMN3233 was the
result of three cycles of phenotypic selection for branch (thin
taproot with thicker laterals) roots and UMN3234 the result
of three cycles of selection for taprooted (dominant taproot)
plants [17, 57]. The selected plants were randomly inter-
mated after each selection cycle, and the resulting progeny
was evaluated for the desired root phenotypes. The popula-
tion UMN4561 (fourth cycle of selection) was developed
from UMN 3233 for branch roots using a seedling selection
method [61]. Similarly, a fourth cycle of selection was done
using the same seedling selection method to produce
UMN4563 from UMN3234 for taprooted plants.

The five populations were individually hand seeded into
1:4m × 0:9m plots with 28 plants per plot. The plants were
equally spaced within the plot using a 13 cm × 13 cm grid.
All grid positions were seeded with two to four seeds and
thinned to one plant at 21 days after seeding. Each plot
was surrounded by a border row of the alfalfa cultivar Agate.
Six replicated plots per population were randomly spaced
within the field. Planting was done on 1 June 2016 at the
University of Minnesota St. Paul Experiment Station (Wau-
kegan fine-silty loam: sandy-skeletal, mixed, superactive,
mesic Typic Hapludoll). The plant root system was exca-
vated 20 weeks after planting by digging individual plants
to a depth of about 30 cm using a shovel on 12 October
2016. The foliage was removed 4 cm above the crown. Roots
were washed to remove soil and stored at 4°C. Root systems
were photographed using a Panasonic DMC-FZ30 digital
camera held approximately 30 cm above the roots placed
on a black background under ambient lighting in a labora-
tory. The lens was not zoomed so focal length was 35mm.
Root phenotypes were categorized based on visual inspec-
tion of the images by an experienced researcher. The branch
root (B) phenotype was classified as producing 4-6 thick lat-
eral roots along the taproot at 1 to 2 cm intervals. The tap-
root (T) phenotype was categorized as having less than
four lateral roots emerging from the taproot that were
spaced 3 to 4 cm apart. Intermediate phenotypes (TB) had
four or more lateral roots spaces more than 2 cm apart and
any others neither T nor B types. The total number of indi-
vidual roots evaluated for each population ranged from 94 to
129, with a total of 617 images. Among the 617 images, 237
or 38.41% of the images are B type, 245 or 39.71% are T type,
and 135 or 21.88% are TB type. The detailed information of
these 617 images can be found in supplemental Table 1.

2.2. Segmentation of Roots and Image Analysis for Feature
Extraction. The working distance of the camera was not con-
stant during imaging; therefore, before batch image analysis,
the pixel width of the circular scale in each image was
recorded using ImageJ [62], and the circular tag and ID tag
were erased by filling the area with a black background.
Since distortion of the root images was minimal because
the sample was always in the center of the image where

distortion had little effect, no distortion correction to the
root images was applied during image processing. To seg-
ment the roots from the background, the RootPainter soft-
ware [63] was used to partially annotate 10 images,
focusing on annotating root and background edges as well
as the fine lateral roots. The software used built-in neural
networks to train the segmentation model over 60 epochs
based on these annotations. The resulting network was then
used for batch segmentation of all 617 images. The seg-
mented images were further converted to black-on-white
binary PNG images using the RootPainter menu item “Con-
vert segmentations for RhizoVision Explorer (Figure 1).”

These binary images were batch analyzed in RhizoVision
Explorer v2.0.2 [64] using feature extraction algorithms
described and validated by Seethepalli et al. [65]. Analysis
settings were “Whole root” mode, no physical unit conver-
sion (left in pixel values), thresholding at 200, root pruning
on and set at 2, and with 3 diameter ranges 0-10, 11-20,
and 21 and above. The resulting feature data file included
measures in pixel values. Using the previously measured cir-
cular scales in each image, the number of pixels per mm was
computed; then, pixel values were converted to mm, mm2,
and mm3 as appropriate. This resulted in 38 computed root
traits including tip number; branch number; branching den-
sity; length; area; volume; number of roots; root system
width and depth; convex hull area; number and area of
holes; angle frequencies; average, median, and maximum
diameter; and then the length, surface area, and volume
within each diameter range that are described more fully in
Seethepalli et al. [65].

2.3. Image Augmentation. In order to increase the size of the
image set to test improved accuracy through image augmen-
tation, we developed a Python script to automatically create
10 more transformations of each of the 617 segmented
images. The functions “getRotationMatrix2D()” and “war-
pAffine()” from the OpenCV library were used to rotate
and scale the images. Rotation was constrained between
-20 and 20 degrees, and scaling was limited to between 80%
and 120% of the pixel dimensions of the original images.
This resulted in realistic images that maintained the overall
vertical orientation important for angle measures, similar
to simulating arbitrary placement of the root crown by a
researcher. For each image, the rotation and scale factors
were randomly pulled from the constrained distributions,
the original segmented image was transformed, and the
resulting image was saved along with a log file of the trans-
formation factors used. This process was repeated 10 times
for each original segmented image, resulting in 6,170 aug-
mented images that were processed using RhizoVision
Explorer as described above to generate the augmented data-
set. To save computation time, we use the augmented images
for only deep learning with TensorFlow and RF.

2.4. Machine Learning. Unsupervised ML was carried out
with k-means clustering [66]. We used k = 3 for the three
groups of RSA types: B, T, and TB. Each of the 38 RSA traits
was normalized 0 to 1 by ynor = ðy − yminÞ/ðymax − yminÞ
because k-means clustering is sensitive to the measurement
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units and numeric values. All the RSA traits were treated
with equal weight to calculate the Euclidean distances for
classification.

For the centroid-based k-means clustering (Model 1),
the parameters used for the study were as follows: the num-
ber of centers was set as 3 for three clusters of B, T, and TB
(centers = 3); the maximum number of iterations to find the
best three centroids allowed was set to 100 (iter:max = 100);
and the algorithm of Hartigan-Wong was chosen for the
k-means clustering (algorithm = “Hartigan-Wong”). The
k-means clustering was implemented with R package “stats”
[67]. Partitioning of the data into k clusters “around
medoids” (PAM; Model 2) is a more robust version of k
-means unsupervised ML [68]. The clustering function
“pam” from R package “cluster” [69] was employed to clas-
sify the 617 roots into three root types. PAM clustering is
also sensitive to unnormalized numeric values. The same
normalized data set was used for classification with the
same parameters: k = 3 for three clusters of B, T, and TB,
and “euclidean” distance was used for the parameter metric
(metric = “euclidean”).

Two supervised ML algorithms, random forest (RF,
Model 3) and naïve Bayes (NB, Model 4), were selected to
analyze the root image data for this research. RF trained
the prediction model by constructing multiple decision trees

with the 38 RSA traits. After constructing the RSA root type
trees, the RF method determined the mode of the classes
(classification) or mean prediction among all possible deci-
sion trees (regression) or the frequency of the correctly pre-
dicted RSA type (probability). Random forest classification
was conducted with R package “randomForest” [70]. Two
parameters, “mtry” (number of variables randomly selected
to construct the decision tree) and “ntree” (number of trees
to calculate the accuracy and probabilities), were tuned for
the RF model. The “mtry” was estimated using formula
mtry = floorðsqrtðncolðroot:data:setÞÞÞ, and in our analysis,
6 was the best number of variables for each split. The “ntree”
of 500 and 1000 was compared; 500 was selected since it is
the default number of trees.

Naive Bayes (NB) is a supervised ML algorithm based on
the Bayes Theorem to solve classification problems by
following a probabilistic approach [71]. It is based on the
assumption that the predictor variables in an ML model
are independent. The probability for each of the three RSA
types, B, T, and TB, was calculated using the equation of
Nwanganga (2020) [72].

NB utilized training data to calculate an observed prob-
ability of each of the three RSA types, B, T, and TB, based
on the evidence provided by the 38 predicters. NB classifi-
cation was conducted via R package “e1071” [73]. The

Scale: 10 cm

(b)

(a)

(c)

Figure 1: Representative images of (a) branch rooted type, (b) tap rooted type, and (c) intermediate tap-branch root type. For each root type the
original raw digital image, segmentation from the background with RootPainter and feature images from RhizoVision Explorer are shown.
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parameter of positive double controlling Laplace smoothing
was set as 1.

2.5. Deep Learning with Neuralnet and TensorFlow. Two DL
models, the traditional artificial neural network (ANN)
(Model 5) and the TensorFlow-based neural network
(Model 6), were used to study the 617 alfalfa root images.

Artificial neural network (ANN) is an ML technique
inspired by the biological neural network in the human
brain [74]. ANN sends the weight values of each artificial
neuron as output to the next layer after processing with
inputs from neurons in the previous layer. The backpropa-
gation algorithm is the most widely used training technique
to optimize the weights of the neurons. The number of
layers, the number of neurons in each hidden layer, and
the connection between them were optimized for high pre-
diction accuracy as well as low overfitting. The artificial neu-
ral network model forming our system is shown in Figure 2
with five layers: 1 input layer, 3 hidden layers, and 1 output
layer. Predicator names and definitions can be found in the
supplemental files.

The parameters used for the ANN are “hidden = c
ð15, 10, 5Þ” for three hidden layers with 15, 10, and five
neurons for three layers. Cross-entropy “ce” is used to cal-
culate the error to evaluate the ANN model (err:fct = “ce”).
Resilient backpropagation with weight backtracking algo-
rithm, “rpop+”, was selected to optimize the neuron’s weight
matrix of hidden layers (algorithm = “rprop+”). Rectified
Linear Unit, “relu,” is an activation function defined as the
positive part of its argument, f ðxÞ =max ð0, xÞ, where x
is the input to a neuron is not available for the traditional
ANN, so the “logistic” is selected as the activation function
to smooth the results of the cross product of the neurons
and weights (act:fct = “logistic”). The maximum number of
steps was 100,000 to train the neural network (stepmax =
100000). Reaching this maximum leads to stopping the
neural network’s training process without converging to
find a reasonable minimum in its loss function. ANN
computation was carried out with the R package “neural-
net” [75].

The same neural network structure with the same neu-
rons and layers as in Figure 2 was used to analyze the 617
root image data with TensorFlow [76]. The parameters to
run the TensorFlow neural networks were as follows: the
activation functions “relu” and “softmax” were selected for
the hidden and the output layers, respectively. The loss func-
tion “categorical_crossentropy,” the “Adam” optimizer, and
quality metrics “accuracy” were selected to train the model.
Both ANN and TensorFlow neural networks used 70% and
30% of the data to estimate the prediction accuracy
and model stability. The computation of the TensorFlow
neural network was carried out using the R package “Keras”
Version 2.3.0.0 [77].

2.6. Accuracy Metrics. Sensitivity is the estimated frequency
of correctly predicted B, T, or TB root types [78]. Sensitivity
is calculated as follows:

Sensitivity = Σ true positives TPð Þ
Σ true positives TPð Þ + Σ f alse negatives FNð Þ

=
Σ true B orT orTB

Σtrue root types + Σ f alse root types
:

ð1Þ

Specificity is the estimated frequency of correct identifi-
cation as not B or not T or not TB [78]. Specificity is calcu-
lated as follows:

Specificity =
Σ true negatives TNð Þ

Σ true negatives TNð Þ + Σ false positives FPð Þ
= Σ true not B, T, or TB
Σ true not B, T, or TB + Σ false B, T, or TB

:

ð2Þ

Precision is used to evaluate the ability to identify the
correct root type from among a group consisting of both
true root types and falsely identified root types. The higher
precision (closer to 1), the lower risk of advancing plants
with undesired root types.

Precision =
Σ true positives TPð Þ

Σ true positives TPð Þ + Σ f alse positive FPð Þ
=

Σ true root types
Σtrue root types + Σ f alse predicted root types

:

ð3Þ

Prevalence is the proportion of a population who have a
specific characteristic, and it is the percentage of positive of
all the data and defined as below:

Prevalence =
Σ positives

Σ positives + Σ negatives
: ð4Þ

Positive predictive value (PPV) is the percentage of the
true positives of all the positive calls.

PPV =
Σ true positives TPð Þ

Σ true positives TPð Þ + Σ f alse positive FPð Þ
=

Σ true root types
Σtrue root types + Σ f alse predicted root types

:

ð5Þ

Negative predictive value (NPV) is the probability that
plants with a negative screening test truly do not have the
target root type.

NPV = Σ true negative TNð Þ
TN + false negative FNð Þ : ð6Þ

Balanced accuracy is the proportion of true positives and
true negatives of the three RSA types of B, T, and TB.

5Plant Phenomics



Balanced accuracy =
Σ true positive + Σ true negatives

total
: ð7Þ

3. Results

3.1. Unsupervised ML Models Return Similar Results. The
two unsupervised ML models generated equivalent classifi-
cation accuracy of around 70% (Table 1). Both models had
higher sensitivity for the B root type and T type than the
intermediate TB root type. In Model 2, the sensitivity was
0.738 for the B root type but was only 0.229 for the TB root
type. The low sensitivity of TB is consistent with the visual
phenotyping in which the TB root types are more difficult
and subjective to score. The specificity of Model 1 for TB
is larger than that of B and T, but the differences among
the three root types are not significant (p value > 0.05).
The negative predictive values for the B root types are the
largest among the seven quality metrics, 0.942 and 0.889
for Models 1 and 2, respectively. Positive predictive values
are all close to 0.5, with a mean of 0.5539. High negative
and low positive predictive values indicate that predicting
the true RSA types will be more challenging than deselecting
undesired. The pattern of prevalence from Models 1 and 2
was identical, which the frequency of B ð20:7%Þ < T ð31:4%
Þ < TB ð47:8%Þ from Model 1 in the same order for Model
2 with B ð25:9%Þ < T ð30:5%Þ < TB ð43:6%Þ. The predicted
prevalence pattern showed that unsupervised classification
intends to predict the root types as a normal distribution,
more for the intermediate TB, and less for B and T root
types. Overall, the patterns of the balanced accuracies of

the two unsupervised machine learning models were similar.
The two unsupervised models grouped more plants into TB
than T or B clusters, which was not desired.

3.2. Supervised Outperformed Unsupervised Machine
Learning. Supervised outperformed unsupervised ML with
prediction accuracy around 80% (Table 2), and RF had higher
prediction accuracy than the NB model. The RF, the Model 3,
had the highest specificity for the B root types among the
seven quality metrics, 0.951. TB has the lowest sensitivity
among the three root types, as expected in selecting the desired
root type, 0.600 and 0.364 for RF and NBmodels, respectively.
Model 3 predicted a much higher frequency (prevalence) of T
or B than TB root type. In contrast, the predicted prevalence of
root types from the NB for root type B had the lowest fre-
quency of the three root types. Overall, the RF and NB
model’s balanced accuracies were 0.811 and 0.730, respec-
tively, and RF was significantly better than the naïve Bayes
model, with a p value of 0.0295.

3.3. Deep Learning with Neural Networks Have Potential but
with Overfitting Risk. DL models showed the advantage of
the TensorFlow from the Google Keras application pro-
gramming interface (API) compared to the traditional neu-
ral network implemented from the R package “neuralnet”
[79]. The balanced accuracies for B, T, and TB were 0.837,
0.816, and 0.609, respectively (Table 3) from Model 6
Keras/TensorFlow, significantly higher than 0.575, 0.419,
and 0.558 from Model 5 neuralnet (p value = 0.031).
Another noticeable result is severe overfitting of the neural
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Figure 2: ANN with three hidden layers. The letter “I” stands for the input layer, I1 to I38 are the 38 input predictors: H for hidden layers.
H1 to H15 are the 15 neurons of the first hidden layer, 10 neurons in the second hidden layer, and five neurons in the third hidden layer. B1,
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network from the non-tensor-based neuralnet compared
with the TensorFlow-based model. The sensitivity, specific-
ity, and balanced accuracy of the training data sets from
the three times repeated 5-fold cross-validation were all
close to or equal to 100% (Figure 3). Additionally, the sensi-
tivity of the testing data was only about 0.30 from Model 5,
and the differences between training and test metrics were
highly significant (p < 0:01). In contrast, there was no over-
fitting of the neural network model with the TensorFlow
from Keras. The overall mean balanced accuracies from the
two DL neural networks were 0.518 and 0.754 for Models
5 and 6, respectively (Table 3), and the TensorFlow neural
network outperformed the non-TensorFlow neural network
significantly (p value < 0.01).

3.4. Comparisons among the Unsupervised ML, Supervised
ML, and Deep Learning Algorithms. The six models
generated a similar pattern for B and T root types from three
times repeated 5-fold cross-validation. Decision tree-based
random forest had the highest balanced accuracy, 0.843,
0.852, and 0.703 for B, T, and TB root types, respectively
(Table 4). In contrast, the unsupervised ML from the parti-
tioning around medoids (PAM) had the lowest balanced
accuracy for B root type (0.447) and the largest standard
deviations (SD) of 0.180 for T type (Table 4). The consider-
able variation (Figure 4) of the sensitivity, specificity, and
balanced accuracy of the k-means and PAM indicates that
the unsupervised ML algorithm for the root architecture
classification is not stable.

Table 2: Summary of the quality metrics of the supervised machine learning models RF and NB to distinguish root system architecture in
alfalfa. B is for branch rooted type, T is for tap rooted type, and TB is intermediate. μ is the mean for each metric.

Metric
Model 3: random forest Model 4: naïve Bayes

B T TB μ B T TB μ

Sensitivity 0.779 0.803 0.600 0.727 0.817 0.727 0.364 0.636

Specificity 0.951 0.910 0.821 0.894 0.779 0.850 0.843 0.824

Positive predictive value 0.931 0.859 0.341 0.710 0.582 0.784 0.496 0.621

Negative predictive value 0.835 0.871 0.930 0.879 0.918 0.806 0.757 0.827

Precision 0.931 0.859 0.341 0.710 0.582 0.784 0.496 0.621

Prevalence 0.460 0.406 0.134 0.333 0.274 0.428 0.298 0.333

Balanced accuracy 0.865 0.856 0.711 0.811 0.798 0.789 0.604 0.730

Table 1: Summary of the quality metrics of the unsupervised machine learning models centroid k-means and medoid-PAM to distinguish
root system architecture in alfalfa. B is for branch rooted type, T is for tap rooted, and TB is intermediate. μ is the mean for each metric.

Metric
Model 1: centroid k-means Model 2: medoid-PAM

B T TB μ B T TB μ

Sensitivity 0.828 0.763 0.305 0.632 0.738 0.658 0.229 0.541

Specificity 0.732 0.771 0.860 0.788 0.740 0.805 0.786 0.777

Positive predictive value 0.447 0.604 0.667 0.573 0.498 0.722 0.319 0.513

Negative predictive value 0.942 0.876 0.575 0.798 0.889 0.753 0.699 0.780

Precision 0.447 0.604 0.667 0.573 0.498 0.722 0.319 0.513

Prevalence 0.207 0.314 0.478 0.333 0.259 0.436 0.305 0.333

Balanced accuracy 0.780 0.767 0.583 0.710 0.739 0.731 0.507 0.659

Table 3: Summary of the quality metrics of the deep learning neural network models neuralnet and Keras/TensorFlow to distinguish root
system architecture in alfalfa. B is for branch rooted type, T is for tap rooted type, and TB is for an intermediate type. μ is the mean for each
metric.

Metric
Model 5: neuralnet Model 6: Keras/TensorFlow

B T TB μ B T TB μ

Sensitivity 0.194 0.296 0.591 0.36 0.917 0.761 0.295 0.658

Specificity 0.957 0.543 0.524 0.675 0.757 0.871 0.923 0.85

Positive predictive value 0.737 0.284 0.277 0.432 0.702 0.783 0.542 0.675

Negative predictive value 0.655 0.558 0.806 0.673 0.935 0.856 0.81 0.867

Precision 0.737 0.284 0.277 0.432 0.702 0.783 0.542 0.675

Prevalence 0.385 0.38 0.235 0.333 0.385 0.38 0.235 0.333

Balanced accuracy 0.575 0.419 0.558 0.518 0.837 0.816 0.609 0.754
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Root type TB had different patterns from that of T and
B. Both supervised and unsupervised ML had small standard
variations, and all six models for TB root type prediction
were stable but small.

All six models except the neuralnet model have the same
pattern that the accuracy of B and T root types is larger than
that of TB. Neuralnet has the largest balanced accuracy,
0.5146, for the TB of the three root types, which is unex-
pected. The reason for this exceptional observation may be
because of the overfitting of the neuralnet model. Random
forest outperformed unsupervised ML models because ran-
dom forest treats each RSA trait with different weights and
some of the decision trees use part of the RSA traits as pre-
dictors. In contrast, PAM and k-means clustering algorithms
use all 38 traits with equal weights for clustering.

3.5. Prediction Accuracy Was Improved with Image
Augmentation. Prediction accuracies were substantially
increased using image augmentation where 6,170 additional
images were created from the original 617 by randomly
rotating and scaling. The mean balanced accuracies of the

RSA types were 0.938 and 0.957 (Table 5), 18.0% and
24.4% higher than those without augmentation for models
using TensorFlow-based neuralnet and random forest,
respectively. The improved accuracy indicates that DL with
TensorFlow had prediction advantages over the ML models
when large data sets were used to train the DL model. With
improvement from image augmentation, the difference in
the prediction accuracy between TensorFlow and RF is not
significant, with a p value of 0.166. Another noticeable result
is the prediction accuracy for the TB root types, the most
challenging images to score, is significantly improved (p
value < 0.01). Overall, image augmentation improves the
prediction accuracy for the alfalfa RSA types, and Tensor-
Flow and RF can provide equivalent prediction power and
accuracy.

3.6. High Prediction Accuracy with High Confidence Level via
Prediction Probability. The default probability threshold for
classifying k clusters is ≥1/k, where k is the number of
groups and k = 3 for this research. Every root will be pre-
dicted to be either B or T or TB with three probabilities. If
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Figure 3: Boxplot of neural network and its overfitting. In each panel, there are four boxplots showing quality metrics from the TensorFlow
model implemented with Keras from training data; the TensorFlow model implemented with Keras from test data; the neural network (NN)
implemented from the package “neuralnet” from training data, and the neural network implemented from the package “neuralnet” from test
data.

Table 4: Mean and standard deviation (SD) of balanced accuracy from the three times repeated 5-fold cross-validation for the four machine
learning and two deep learning models.

Machine learning type Model name
Branch (B) Taproot (T)

Between T and B
(TB)

Mean SD Mean SD Mean SD

Unsupervised machine learning
k-Means 0.673 0.135 0.598 0.138 0.591 0.122

PAM 0.447 0.164 0.525 0.180 0.452 0.169

Supervised machine learning
Naïve Bayes 0.787 0.041 0.779 0.036 0.581 0.054

Random forest 0.843 0.029 0.852 0.031 0.703 0.071

Deep learning
Neuralnet 0.501 0.056 0.487 0.049 0.508 0.053

TensorFlow 0.789 0.029 0.791 0.037 0.623 0.068
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the predicted RSA type with a probability is >1/3, the pre-
dicted RSA type will be assigned to that root image. For
example, root image name Root002 was predicted with
probabilities 0.346, 0.335, and 0.319 for B, T, and TB, respec-
tively, from the RF model (Table 6). Root002 will be
assigned to RSA type B since it has the largest probability

(0.346) among the three possibilities. This prediction
resulted in an incorrectly labeling a TB as B type. The
probabilities of the predicted RSA types and predictions
were grouped into <0.400 as LLL (L for low confidence
level), 0.401 to 0.500 as LL, 0.501 to 0.600 as L, 0.601 to
0.700 as M (M for medium confidence level), 0.701 to
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Figure 4: Summary results of three times repeated 5-fold cross-validation from the six models. The values above each boxplot are the p
values for the pairwise t-test, and the value at the top of each boxplot is the p value comparing the six models, medoid-PAM (PAM),
centroid k-means (k-means), neuralnet (NN), Keras/TensorFlow (Keras), naïve Bayes (NB), and random forest (RF).

Table 5: Summary of the quality metrics from deep learning models using the neuralnet and TensorFlow with image augmentation to
distinguish RSA in alfalfa. B is for branch rooted type, T is for tap rooted type, and TB is intermediate. μ is the mean for each metric.

Metrics
TensorFlow Random forest

B T TB μ B T TB μ

Sensitivity 0.969 0.931 0.841 0.914 0.963 0.946 0.912 0.94

Specificity 0.952 0.968 0.969 0.963 0.981 0.970 0.969 0.973

Positive predictive value 0.930 0.950 0.878 0.919 0.971 0.953 0.884 0.936

Negative predictive value 0.979 0.956 0.958 0.964 0.975 0.965 0.977 0.972

Precision 0.930 0.950 0.878 0.919 0.971 0.953 0.884 0.936

Prevalence 0.398 0.392 0.210 0.333 0.402 0.395 0.203 0.333

Balanced accuracy 0.960 0.950 0.905 0.938 0.972 0.958 0.941 0.957
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0.800 as H (H for high confidence level), 0.810 to 0.900 as
HH, and 0.0901 to 1.00 as HHH. The distributions of the
probability from the incorrectly predicted RSA type
(Figure 5(a)) and the correct predictions (Figure 5(b)) show
that the majority of the incorrectly predicted RSA types have
low prediction probability with low confidence levels. The
percentage of the incorrectly predicted RSA types among
the probabilities less than 0.401 is as high as 75%
(Figure 5(c)). The percentage decreased to 3.86% for RSA
types with the predicted probabilities between 70 and 80%
and further decreased close to 0% for the RSA types with
prediction probabilities between 90 and 100%. Thus, by
retaining only those plants with roots predicted to be a par-
ticular type with a probability greater than 90%, breeders can
select the desired RSA types with nearly 100% accuracy.

4. Discussion

4.1. Selection of the Best Model for Alfalfa RSA Classification.
Overall, supervised models outperformed unsupervised ML
models for RSA classification in alfalfa. These results may
be because the supervised ML can learn the hidden pattern
and rules of the RSA root types from the human-created
labels and that the data from the 617 root images is highly
skewed to both left for B and right end for T root types.
The 617 plants are from four cycles of divergent recurrent
selection that selected the plants with extreme T or B and
discarded the plants with TB roots. The frequencies of the
T and B are much higher than that of TB root types due to
the breeder’s selection scheme. In terms of predicted preva-
lence, the deep neural network outperforms both unsuper-
vised and supervised ML. The two deep learning models
have the most accurate prediction (23.5% of TB type in
Table 3). In terms of balanced accuracy, RF was the best of

the six models in identifying T and B traits, and TensorFlow
fromKeras was the second best but the differences were not sig-
nificant (p value > 0.05). TensorFlow did not outperform RF,
probably because of the small number of images used for this
study. With more images used for the model training, DL can
be superior for RSA prediction for root breeding. With small
number of images available for an individual breeding program,
RF should be preferred due to its computational simplicity and
speed. In our study, image augmentation significantly improved
prediction accuracy, highlighting the potential of this approach,
also called few-shot learning, for plant phenotyping.

4.2. Weight of RSA Trait Matters for Supervised and
Unsupervised ML. Different traits contribute to the predic-
tion accuracy of ML with varying levels of importance,
which may be the reason for low prediction accuracy of
unsupervised ML models. The mathematical calculation
of the unsupervised k-means and PAM models weigh all
the 38 RSA traits equally. In contrast, supervised ML
assigned different weights for the 38 traits. The importance
of the 38 predictors from the RF model ranged from 6 Gini
index reduction for the “number of holes” to 25 Gini index
reduction for the “lower root area” trait in the RSA structure
(supplemental Figure 1). One of the main advantages of DL
is optimizing the weights for the original 38 traits at the input
layer and the neurons in the hidden layers to increase
prediction accuracy. Our observations from this RSA
classification study are consistent with observations using
pea plants where selecting “top important” root traits
provided a significantly improved classification compared
to using all available traits or randomly selected trait sets
[46]. Another reason for the low classification accuracy of
the unsupervised ML is the collinearity of the 38 traits. The
correlation coefficients of four traits are highly correlated

Table 6: Prediction of RSA types, probabilities, and confidence levels from the RF model. Predictions with larger probabilities have higher
confidence level than those with lower probabilities.

Image name RSA type Prob for B Prob for T Prob for TB Max prob Predicted RSA type Correct (Y/N) Conf level

Root001 TB 0.340 0.325 0.335 0.340 B No LLL

Root002 TB 0.346 0.335 0.319 0.346 B No LLL

Root003 B 0.328 0.355 0.317 0.355 T No LLL

Root004 B 0.351 0.288 0.361 0.361 TB No LLL

Root005 B 0.362 0.282 0.356 0.362 B Yes LLL

Root006 TB 0.296 0.362 0.342 0.362 T No LLL

Root007 T 0.368 0.283 0.349 0.367 B No LLL

Root008 B 0.502 0.234 0.263 0.502 B Yes LL

Root009 B 0.503 0.237 0.260 0.503 B Yes LL

Root010 TB 0.508 0.286 0.206 0.508 B No LL

Root011 T 0.175 0.317 0.508 0.508 TB No LL

Root012 T 0.229 0.508 0.263 0.508 T Yes LL

Root013 T 0.130 0.362 0.509 0.508 TB No LL

Root014 B 0.820 0.041 0.139 0.820 B Yes HH

Root015 TB 0.820 0.071 0.109 0.820 B No HH

Root016 T 0.005 0.990 0.005 0.990 T Yes HHH

Root017 B 0.994 0.000 0.006 0.994 B Yes HHH
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with a value of 0.9999. ML can select significant predictors
and exclude collinear variables, whereas unsupervised ML
uses all the predictors with the same weights. Weights of
RSA traits affected ML models in numerous other studies
[80–83]. In this study, we segmented root crowns and used
RhizoVision Explorer to extract root traits for use in these
models. More recently, direct classification of images
without feature extraction has become more popular in
computer vision. This is an exciting opportunity to explore;
however, as the extracted root traits such as root length,
angles, diameters, and total size are important to consider
themselves, we believe the proposed pipeline considered
here is relevant and useful for breeding already.

This research focused on image classification for the RSA
types instead of treating RSA traits as the continuous
numeric measurements for ML regression. ML regression
approach could be used to predict the numeric values to
cross-validate the classification results if RSA traits were col-
lected as numeric variables. However, we are limited to this
approach because the historical visual approach used was

only based on categorical classification. But it is possible to
use score values for identifying extremes to converge on
the same roots and the probabilistic method we used here.

We are optimistic about the results and future applica-
tion of the approach developed in this research for RSA clas-
sification. With 97% prediction accuracy, we showed that
automated image analysis and ML could be used for peren-
nial alfalfa RSA prediction with high confidence. One caveat
is that alfalfa is a perennial crop that can be cultivated for
four to seven years with one planting. The RSA is continu-
ally growing and changing based on internal genetics, exter-
nal environments, and surrounding microbes across the
cultivation years. The root samples used in this research
are one-time sampling from the field. The prediction accu-
racy from this research may change due to the stage and
time the root samples are collected. More investigations are
needed to validate this approach with multiple sampling
dates, especially field sampling across years. The imaging
method could be improved using the RhizoVision Crown
platform that combines a monochrome camera and a
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backlight to capture root crown silhouettes that facilitates
downstream image analysis [84]. In the future, we envision
the possibility of using this imaging platform combined with
imaging software that contains the trait extraction algorithms
of RhizoVision Explorer along with the predicition models in
order to classify root types as they are imaged in the field. Stem
cuttings could be retrieved from the target plants for vegetative
propagation. This automated, unbiased root classification sys-
tem would be an unprecedented opportunity to breed for root
traits in alfalfa to support sustainable agroecosytems.

Data Availability

The original images with tags removed and segmented
images from RootPainter for data analysis are available on
Zenodo doi:10.5281/zenodo.5879778 [85].
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