Table 3.
Metric | Model 5: neuralnet | Model 6: Keras/TensorFlow | ||||||
---|---|---|---|---|---|---|---|---|
B | T | TB | μ | B | T | TB | μ | |
Sensitivity | 0.194 | 0.296 | 0.591 | 0.36 | 0.917 | 0.761 | 0.295 | 0.658 |
Specificity | 0.957 | 0.543 | 0.524 | 0.675 | 0.757 | 0.871 | 0.923 | 0.85 |
Positive predictive value | 0.737 | 0.284 | 0.277 | 0.432 | 0.702 | 0.783 | 0.542 | 0.675 |
Negative predictive value | 0.655 | 0.558 | 0.806 | 0.673 | 0.935 | 0.856 | 0.81 | 0.867 |
Precision | 0.737 | 0.284 | 0.277 | 0.432 | 0.702 | 0.783 | 0.542 | 0.675 |
Prevalence | 0.385 | 0.38 | 0.235 | 0.333 | 0.385 | 0.38 | 0.235 | 0.333 |
Balanced accuracy | 0.575 | 0.419 | 0.558 | 0.518 | 0.837 | 0.816 | 0.609 | 0.754 |