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Abstract 

Bone metastasis has a significant influence on the prognosis of prostate cancer(PCa) patients. In this review, we 
discussed the current application of PCa bone metastasis diagnosis with single-photon emission computed tomog-
raphy (SPECT) and positron emission tomography/computed tomography (PET/CT) computer-aided diagnosis(CAD) 
systems. A literature search identified articles concentrated on PCa bone metastasis and PET/CT or SPECT CAD 
systems using the PubMed database. We summarized the previous studies focused on CAD systems and manual 
quantitative markers calculation, and the coincidence rate was acceptable. We also analyzed the quantification 
methods, advantages, and disadvantages of CAD systems. CAD systems can detect abnormal lesions of PCa patients’ 
99mTc-MDP-SPECT, 18F-FDG-PET/CT, 18F-NaF-PET/CT, and 68 Ga-PSMA PET/CT images automated or semi-automated. 
CAD systems can also calculate the quantitative markers, which can quantify PCa patients’ whole-body bone metasta-
sis tumor burden accurately and quickly and give a standardized and objective result. SPECT and PET/CT CAD systems 
are potential tools to monitor and quantify bone metastasis lesions of PCa patients simply and accurately, the future 
clinical application of CAD systems in diagnosing PCa bone metastasis lesions is necessary and feasible.
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Introduction
Currently, prostate cancer (PCa) patients are the most 
common and the second leading death cancer among 
men in the United States; luckily, PCa survival is high-
est [1]. However, more than 90% of PCa patients could 
develop bone metastases [2], which may significantly 
reduce the survival time and affect the treatment [3]. 
Therefore, detecting metastases at an early phase of PCa 
is essential [4].

The PCa bone metastasis lesions progression and 
reactive sclerosis after treatment show similar perfor-
mance on CT images, both high-density lesions. Due to 

the osteoblastic feature of PCa bone metastasis [5], the 
RECIST 1.1 criteria proposed it as immeasurable lesions 
[6].

As a functional imaging technique, nuclear medicine 
imaging shows physiological processes, which may detect 
bone metastasis lesions earlier than CT and MRI, as the 
anatomical changes of bone lesions always lag behind the 
functional changes. Bone scintigraphy has been used for 
the detection and evaluation of bone metastasis lesions 
for many years, because it can evaluate the whole skel-
eton sensitively, quickly, and cheaply [7]. Another com-
monly used method to detect bone metastasis lesions 
is PET/CT, which has better image quality than bone 
scintigraphy and gives more information besides bone 
metastasis.

However, the clinicians always need to spend much 
time identifying bone metastasis lesions on SPECT or 
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PET/CT images, even though the results lack quantita-
tive diagnosis. The accuracy and sensitivity of defining 
bone metastasis lesions are relatively subjective and only 
depend on the experience of clinicians. In a study, the 
sensitivities of 37 clinical readers ranged from 52 to 100% 
[8]. In another survey, the kappa agreement among read-
ers varied from 0.16 to 0.82 [9]. CAD analyzes some data 
in case samples by developing various image processing 
algorithms and deep learning [10], and then develops a 
model to associate the extracted information with spe-
cific disease results. CAD is a tool rather than a doctor’s 
replacement, which is different from automated com-
puter diagnosis.

In recent years, artificial neural network (ANN) and 
convolutional Neural Networks (CNN) are commonly 
used deep learning models in medical image analysis 
[11, 12]. Besides gradient descent and backpropagation 
of ANN, CNN has an additional set and convolution 
layer. Nowadays, CNNs methods for medical images is 
widely be used, such as Xception [13]. Generally, CAD in 
medical imaging is divided into three steps [14]: the first 
step is to extract the lesions from the normal structure; 
The second step is the quantization of image features; 
The third step is to process the data and draw a conclu-
sion. Because the computer can make full use of image 
information for accurate quantitative calculation with-
out human subjectivity, and avoid different diagnostic 
results caused by different personal knowledge and expe-
rience; Therefore, its result is unambiguous and definite. 
It makes the diagnosis more accurate and scientific. To 
improve the stability and sensitivity of lesions evaluation, 
CAD systems for bone scintigraphy or PET/CT images 
have been developed and put into use [15].

Evidence acquisition
PubMed search of the English literature was performed 
using the following terms: ’bone scan’, ’bone scintigra-
phy’, ’SPECT’, ’PET/CT’, ’prostate cancer’, ’bone metasta-
sis’, ’computer-aided diagnose’, ’automatic’, ’deep learning’. 
The articles searched from PubMed and its reference list 
of the articles were reviewed. The studies concentrated 
on the relevant theme to this manuscript were synthe-
sized by the first author. Then a first draft was prepared 
and distributed to the corresponding author for critical 
review. After several iterations, a consensus was reached 
on the manuscript’s content and structure and submitted 
here.

SPECT
The principle of bone scintigraphy is the high uptake 
of technetium-99  m methylenediphosphonate (99mTc-
MDP), a bone-metabolism radionuclide other than a 
tumor-specific radionuclide, at the sites of bone repair 

where maybe the bone metastasis lesions. At 3  h post-
injection, only 3%-5% of 99mTc-MDP distributed in the 
blood [16], which makes the abnormal bone lesions eas-
ier to be detected.

Bone scan index (BSI) was proposed to quantify bone 
scintigraphy images [17]. However, the manual process of 
BSI calculation could take much time and the mistakes 
are hard to avoid. BSI calculation with CAD systems is 
fast, objective, and precise. It is necessary to apply CAD 
systems to quantify bone scintigraphy.

Bone scintigraphy quantification methods
Over the years, the semi-automatic bone scintigraphy 
images segmentation method [18], the characteristic 
point-based algorithm [19], the adaptive thresholding 
with different cut-offs segmentation algorithm [20], the 
temporal subtraction-based interval change detection 
algorithm [21], the features derived classification method 
[22] and the active shape model segmentation [15] were 
developed to quantify bone scintigraphy images. Nev-
ertheless, these methods are time-consuming and their 
accuracy is still low [23]. The possible reasons may be 
that they are sensitive to image noise and independently 
process anterior and posterior images. U-Net-type con-
volutional networks are applied to quantify bone metas-
tasis, which may contribute to detecting bone metastasis 
lesions more accurately than before [24]. The butterfly-
type network (BtrflyNet) can process anterior and pos-
terior bone scintigraphy images with two U-Nets at the 
same time [25]. Shimizu et al. [26] proposed that Btrfly-
Net combined with deep supervision (DSV) and residual 
learning is the most accurate system.

Currently, the widely used software package for calcu-
lating BSI is BONENAVI (FUJIFILM Toyama Chemical, 
Co. Ltd, Tokyo, Japan) and EXINI bone (EXINI Diag-
nostics AB, Lund, Sweden), which can identify, quantify 
and diagnose bone lesions. The detection sensitivity and 
specificity of bone metastasis lesions are almost 90% [15] 
and the correlation with manual calculated BSI is 0.80 
[27]. The software was based on ANN technology and 
Morphon registration, which can accord the in-built skel-
eton atlas to the anterior and posterior images [28]. All 
hot spots on anterior and posterior images were detected 
independently in the atlas. Therefore, ANN, ranging from 
0 (non-metastatic) to 1 (metastatic), was quantified on 
each hot spot. Then, BSI was calculated on each spot with 
ANN > 0.5. In recent years, some new procedures [29, 30] 
have shown good performance in automatic identifica-
tion of bone metastasis lesions in the bone scintigraphy 
images. Research [31] also proposed a CNN that can 
diagnose bone metastasis lesions automatically in bone 
scintigraphy images for the first time.
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BSI could change over time, because of the dynamic 
99mTc-MDP metabolism in the body, especially in pelvic 
and spine abnormal lesions. Recent literature [10] has 
confirmed that deep learning has high accuracy in iden-
tifying bone metastasis lesions of PCa. It is necessary to 
take bone scintigraphy regularly and calculate BSI accu-
rately. Only by this way, BSI can be a quantitative marker 
to monitor prostate patients’ bone metastasis dynamic 
changes.

Clinical application and advantages of bone scintigraphy 
CAD systems in PCa
The quantitative markers to judge bone lesions whether 
metastases are ANN value and BSI, which are analyzed 
by per region or per patient.

ANN value is related to the bone metastasis possibil-
ity, which is a good parameter to detect bone metastasis 
[32]. There are two types of ANN value: region-based 
ANN value and patient-based ANN value [33]. Both of 
them range from 0 to 1. Region-based ANN value range 
between 0.5 and 1 means the bone lesion is suspected 
to metastasize, and patient-based ANN value range 
between 0.5 and 1 means the case is considered to have 
bone metastasis. When ANN value range from 0 to 0.5, 
the conclusion converses.

BSI is indicated to the bone metastasis extent of PCa 
patients, which may be associated with the progression, 
remission [34], and prognosis [27] of PCa patients. BSI is 
the percentage of the suspected bone metastasis lesions 
total count to that of the whole skeleton. BSI > 0 means 
the patient probably has done bone metastasis [35]. 
BSI > 1 indicates the 5-year probability of survival is very 
low, even 0% for those BSI > 5 [36]. The diagnostic bone 
metastasis accuracy of BSI is based on ANN. A study [37] 
reported that BSI may be better than TLG in predicting 
the prognosis of patients, CAD systems can also quantify 
potential metastatic lesions from multiple bone scintigra-
phy images of a patient, which is of great significance for 
evaluating the condition of patients, adjusting treatment 
plans and predicting the prognosis.

The bone metastasis of PCa is almost osteoblastic [5], 
which is easy to be detected by bone scintigraphy. The 
sensitivity of bone scintigraphy is high and the bone 
metastasis lesions could be discovered earlier than skele-
tal radiograms. Tokuda et al. [38] reported CAD systems’ 
positive predictive value of bone metastasis of the PCa 
group was much higher than other cancer groups. Takuro 
et al. [39] advanced the ANN of the PCa group were the 
highest in their survey, which means the accuracy of BSI 
is acceptable in PCa patients. BSI has been proposed to 
improve PCa patients’ bone metastasis diagnostic accu-
racy [40]. The deep learning model has good accuracy in 
identifying metastatic lesions independently [10, 41].

Moreover, compared with manual BSI calculation, the 
deep learning model takes less time to calculate BSI and 
has better repeatability [31, 34, 42, 43]. According to lit-
erature reports [15, 33], some CAD systems have been 
applied in clinical practice, but they have not been used 
on a large scale. A study [37] reported that BSI may be 
better than TLG in predicting the prognosis of patients. 
CAD systems can also quantify potential metastatic 
lesions from multiple bone scans, which is of great signif-
icance for evaluating the condition of patients, adjusting 
treatment plans, and predicting the prognosis. Therefore, 
bone scintigraphy CAD systems may have great potential 
application value in PCa patients with bone metastasis.

Limitation of bone scintigraphy CAD systems in PCa
At the process of hot spot detection, bone and other 
organs’ normal high uptake sites may be detected as 
bone lesions, such as bladder, and kidneys. 5% of patients’ 
automated detection needs to be manually corrected 
[27].

Even for typical bone metastasis lesions, the diagnosis 
criteria of BSI > 0 had a low specificity and positive pre-
dictive value, and the diagnosis criteria of BSI > 1 had low 
sensitivity [44].

PET/CT
The commonly used radionuclides for detecting PCa 
bone metastasis lesions are radionuclide fluorine-
18-fluorodeoxyglucose(18F-FDG), gallium 68 prostate-
specific membrane antigen (68  Ga-PSMA) and fluorine 
18 sodium fluoride(18F-NaF). 68  Ga-PSMA is a tumor-
specific radioactive probe. The expression of PSMA in 
normal prostate tissue is low, but in PCa and metastasis 
lesions, PSMA expression is 1000 times higher than nor-
mal tissue [45]. 18F-NaF is similar to 99mTc-MDP, which 
can reflect the repair of bone. But the widely used PET/
CT 18F-FDG shows limited value in PCa because most 
PCa bone metastasis lesions have low glycolytic rates 
[46].

Due to more information given by PET/CT, readers 
need more time to assess every possible metastasis lesion. 
Furthermore, visual assessment of PET/CT images is 
always based on every lesion independently, and the 
standard uptake values(SUV) of every single lesion can-
not reflect the general condition of the patient. Nowa-
days, metabolic tumor volume(MTV) and total lesion 
glycolysis(TLG) are widely used as PET/CT quantitative 
markers to assess whole-body tumor burden. Besides, 
manual whole-body quantification is time-consuming. 
It is essential to develop CAD systems for quantifying 
whole-body tumor burden. Previous studies [47] verified 
that the manual and semi-automatic quantification were 
highly consistent. The step of using CAD system for PET 
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/ CT images [14] is to segment and extract the features 
of CT images and PET images respectively. After extract-
ing features from CT and PET images, they are sent to 
the classification respectively. If necessary, the PET/CT 
images will be sent to the mixed classification.

PET/CT image quantification methods
In the CAD system, the development of quantification 
system is very important. In the past few years, 18F-FDG-
PET/CT semi-automated quantify system PERCIST and 
18F-NaF-PET/CT semi-automated system proposed by 
Etchebere et  al. [48] showed limited value in the appli-
cation of PCa bone metastasis lesions assessment. Cur-
rently, semi-automatic [49] and automated [50] bone 
metastasis lesions quantify systems were proposed based 
on 68 Ga-PSMA-PET/CT. Gafita et al. developed a whole-
body semi-automatic system named aPSMA based on 
the original semi-automatic system, which can assess the 
lymph node and organ metastasis condition besides bone 
[51].

Quantitative markers of 68  Ga-PSMA-PET/CT were 
proposed by imitating the calculation of BSI [49], MTV, 
and TLG [52]. The process of quantitative markers calcu-
lation is as follows: Firstly, CT and PET images are to be 
read by the system. The segmentation of CT images and 
PET images are independent, with CT images used for 
locating and PET images used for detecting bone lesions. 
Global thresholding, local thresholding, and morpho-
logical hole closing are used to segment the bone mask 
from CT images. The high uptake sites where SUV values 
are above the threshold are supposed as bone metasta-
sis lesions in PET images. The way of distinguishing bone 
metastasis lesions by SUV values has high accuracy, as 
68 Ga-PSMA is a tumor-specific radionuclide. The thresh-
old is chosen by analyzing PET images of the patients 
without bone metastasis lesions. Finally, quantitative 
markers calculation is based on the tumor volume and 
SUV values segmented by the system.

Clinical application and advantages of PET/CT CAD systems 
in PCa
Currently, whole-body total-lesion PSMA(TL-PSMA) 
and whole-body PSMA-tumor volume(PSMA-TV) are 
commonly applied as 68  Ga-PSMA-PET/CT quantita-
tive markers. Whole-body PSMA-TV is the percentage 
of the suspected bone metastasis lesions total volume to 
that of the whole skeleton. Whole-body TL-PSMA is the 
sum of all bone metastasis lesions volume and SUVmean 
values multiplication. The quantitative markers show 
higher concordance with Gleason score results [53] and 

PSA levels [54]. The higher the values of the quantitative 
markers means the worse the prognosis.

Different segmentation and correction methods will 
not affect the diagnostic and predictive value of PET/
CT [55]. The quantification markers of PET/CT have 
good repeatability and stability.

Pyka et al. [56] proposed the bone metastasis lesions 
diagnostic accuracy, sensitivity, and specificity of 
68  Ga-PSMA-PET/CT are better than bone scintigra-
phy. Because bone scintigraphy shows the bone reactive 
changes and 68  Ga-PSMA-PET/CT shows the specific 
PSMA expression on bone metastasis lesions. CAD 
systems calculate quantitative markers only need a few 
minutes, even the manual correction is very simple. 
And correction time required could be further reduced 
by some machine training [27]. By contrast, the manual 
whole-body tumor burden assessment required several 
hours. Quantitative markers had the consistency of 
PSV levels, BSI, and PERCIST results, and the chang-
ing trend of quantitative markers is different from SUV 
values in the treatment process [57], which may provide 
some information undiscovered yet.

Limitation of PET/CT CAD systems in PCa
Commonly, the PET/CT scan range does not include 
arms and legs. To standardize the calculation of BSIs, 
CAD systems only detect the range from the first tho-
racic vertebra to the bottom of the ischium, and the 
metastasis lesions on the skull and bone of limbs are 
ignored by CAD systems.

The manual correction of CT image segmenta-
tion is required when calcification is heavy or arti-
fact is existing, and the misalignment of ribs on CT 
and PET images needs to be corrected due to lack of 
respiratory gating devices [49]. Because of respira-
tion or movement, a bone mask segmented from CT 
images may exclude some bone lesions, which may be 
regarded as extra-bone metastasis lesions by CAD sys-
tems. Nowadays, an algorithm has been developed to 
correct these problems [51]. Some normal uptake soft 
tissue may be misdiagnosed as bone lesions by CAD 
systems when CT and PET images alignment was not 
accurate. A visual inspection is essential for CAD sys-
tems results.

Some benign bone lesions could also uptake 68  Ga-
PSMA at a high level, such as fracture repair, degen-
erative osteoarthropathy, and osteitis deformans [58]. 
Manual combination with CT images is necessary to 
improve the accuracy of CAD systems results. It is dif-
ficult to judge whether a lesion is benign or malignant 
when 68 Ga-PSMA PET shows high uptake but CT den-
sity and morphological features are normal.
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Discussion
Bone metastasis lesions are not demonstrated in the 
same way on bone scintigraphy. Some uncommon bone 
lesions should be diagnosed by experienced doctors, 
and CAD systems may give the wrong result. For exam-
ple, in some special super bone scan images, CAD sys-
tems may ignore the whole skeleton’s extremely average 
and symmetrical metastasis lesions, because no hot 
spot could be detected. However, experienced nuclear 
medicine doctors would diagnose bone metastasis by 
’absent kidney sign’ and a combination of PSA levels, 
CT, MRI, and clinical features. There are little research 
on the abnormal bone metastasis lesions diagnostic 
accuracy rate of CAD systems yet.

The bone scintigraphy and PET/CT have limited 
application value in bone metastasis lesions after treat-
ment because of the flare effect and reactive sclerosis. 
The sensitivity of bone scintigraphy is low in patients 
with low PSA values [59]. Currently, SPECT and PET/
CT are still considered as the gold standard of bone 
metastasis, as tissue biopsy is hard to accomplish.

The SPECT and PET/CT quantitative markers per-
formed well on the assessment of whole-body bone 
tumor burden, but have still not been widely applied 
yet. The most important reason is that manual calcula-
tion is time-consuming, which limits the application of 
patients with multiple bone metastases. CAD systems 
increase the clinical application possibilities of whole-
body tumor burden assessment. PET/CT may be wider 
used when it could be covered by medical insurance 
reimbursement.

Conclusion
SPECT and PET/CT, as multiple molecular imaging tech-
niques, with CAD systems are simple and accurate tools 
to assess PCa patients’ whole-body bone tumor burden, 
which is important to predict prognosis and guide treat-
ment of patients. Nowadays, the application of CAD 
systems is still limited to experimental research. Consid-
erable research will be needed to assess the sensitivity, 
specificity, and diagnostic accuracy of CAD systems and 
support the clinical application value of SPECT and PET/
CT CAD systems.
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