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Background
LncRNA is a type of ncRNA with a length of more than 200 nucleotides, which plays 
essential roles in various biological processes, such as gene transcription regulation, gene 
post-transcriptional regulation, epigenetic regulation, and cancer [1–5]. lncRNA–pro-
tein interactions (LPIs) is one of the critical mechanisms to conduct multiple essential 
functions of lncRNAs [6]. Therefore, it is necessary and fundamental to explore LPIs for 
understanding the molecular mechanism and function of lncRNAs involved in the entire 
biological system. At present, immunoprecipitation [7], high-throughput sequencing [8], 
analysis of experimental data based on CLIP-seq [9, 10] and sequence prediction [11] are 
used to analyze LPIs.
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With the exponential growth of biomedical texts, numerous biological entity rela-
tion extraction models from the biomedical literature have been widely studied by inte-
grating natural language processing techniques and machine learning models, such as 
protein–protein interactions (PPIs) [12], drug–drug interactions (DDIs) [13] and chemi-
cal–protein interactions [14]. All these different interaction extraction models have cor-
responding labeled corpora. The reason why there are few text mining models for LPI 
extraction [15] is that there is no highly reliable labeled corpus of LPI. It is significant to 
build a computational model to automatically extract LPIs from biomedical texts. Li Ao 
extracted LPIs by using traditional features and the corpus constructed from PubMed, 
but it does not provide source code [15]. There is no online webserver for large-scale 
LPI prediction based on biological literature. We propose a computational model for LPI 
extraction from biomedical literature.

The naming conventions for biomedical entities can be complicated. For example, 
the naming conventions for lncRNAs are a complex process. There are nine rules that 
need to be followed to reasonably name lncRNAs [16]. The three strategies for biomedi-
cal named entry recognition (Bio-NER) are rule-based methods [17], dictionary-based 
methods [18], and machine learning based methods [19]. The rule-based Bio-NER 
methods separate different classes using a large number of rules, but it does not perform 
well on larger scale datasets. Dictionary-based Bio-NER methods contain a large collec-
tion of names that accurately match entities in the text. In the case of rapidly increas-
ing biomedical texts, this approach is unlikely to uncover emerging categories. Machine 
learning-based Bio-NER methods utilize statistical-based classification models for 
named entity recognition, while no longer requiring the researcher to write a large num-
ber of rules. [20]. In LPInsider, the dictionary-based named entity identification method 
is used. However, this method cannot include the latest entity names, so we allow users 
to upload new entity names for lncRNAs and proteins in our webserver to improving 
the performance of named entity recognition. The NER model of Stanford CoreNLP 
uses Conditional Random Fields (CRFs) [21]. We use the tools provided by Stanford 
CoreNLP [22] to train a named entity recognition method for lncRNAs and proteins. 
In the Webserver we developed, users can choose one of two methods for named entity 
recognition.

Text relation extraction can be transformed into text classification. Initially, rule-
based methods are used for relationship extraction [23]. This approach requires not only 
experts but also a lot of detailed rules. For example, rule-based methods may contain 
rules for prefix and suffix of words and dependency parse trees [24, 25]. To overcome 
the drawbacks of the rule-based methods, machine learning methods and deep learning 
methods are used to solve this problem. Relation extraction methods based on machine 
learning and deep learning are classified as: supervised learning methods [26–28], semi-
supervised learning methods [29, 30], and unsupervised learning methods [31–34]. In 
the LPInsider we developed, after comparing the common deep learning and machine 
learning based relation extraction methods, we chose a logistic regression classifier [35] 
using multiple text features for relationship extraction.

The main contributions of LPInsider include: (1) LPInsider for LPIs relation extrac-
tion model is constructed by integrating multiple text features (semantic word vectors, 
syntactic structure vectors, distance vectors and part of speech vector) into logistic 
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regression model. (2) To maximize the feasibility of LPInsider, a webserver with user-
friendly interface is developed to free non-experts from programming burden. (3) LPIn-
sider provides a highly reliable LPIs corpus. Positive samples in the corpus are obtained 
by comparing abstracts on lncRNAs in PubMed with experimentally validated LPIs in 
LncRInter [36]. Meanwhile, the negative samples in the corpus must match one of the 
specified two conditions. The corpus of LPI will be a great promotion for ongoing study 
on LPI extraction. Bioinformatics research has experienced explosive growth in the past 
decades, demanding higher requirements for permanent data preservation and repro-
ducibility of programs. MIABi [37] represents minimum information about a bioinfor-
matics investigation. LPInsider meets the requirements of MIABi in terms of algorithms, 
analysis, source code, and webserver.

Implementation
To extract lncRNA–protein interaction, there are four major steps in LPInsider: (1) 
preprocessing users’ typed literature, (2) named entity recognition, (3) computing mul-
tiple text features, (4) building logistic regression model. The flowchart of LPInsider is 
depicted in Fig. 1.

Collection of LncRNA and protein library

The names of lncRNAs and proteins are extracted from multiple databases, including 
RAID v2.0 [38], LncRInter, HGNC [39], GENCODE [40], LncRNADisease [41], UniProt 
[42], Lnc2Cancer [43], NPInter [44], RPISeq [45] and STRING [46]. Table 1 shows the 
number of lncRNA and protein in these databases. The names of some entities appear 
in multiple databases, so the names of this part are only counted once. Finally, there are 
92596 names of lncRNAs and 21187257 names of proteins.

Construction of LPIs Corpus

The biomedical literatures in PubMed are retrieved, using the query words, such as 
‘long noncoding RNA’, ‘lncRNA’, ‘long non-coding RNA’ and ‘lincRNA’. A total of 18788 
abstracts of lncRNA are downloaded. The second step is to break the abstract into sen-
tences. To create highly reliable positive samples, biomedical literatures in PubMed 
and the experimentally validated and highly reliable LncRInter are used as follows: the 
sentences containing both lncRNA and protein are found directly in the downloaded 
abstracts in PubMed, which are subsequently compared with the samples in LncRInter, 
and select the positive samples.

Negative samples do not exist in LncRInter and match one of the following two condi-
tions: (1) sentences that contain both lncRNA and protein do not contain keywords of 
interaction, and negative word has no effect on the judgment of negative samples. (2) 
Sentences contain lncRNA, protein, keywords of interaction, and negative words. Inter-
action keywords include the verb forms and noun forms of associate, correlate, bind, 
interact, and enrich. Additional file  1 describes the acquisition of negative samples in 
more detail. Table 2 hows the comparison of the two types of negative samples of LPIn-
sider. In the table, “True” means the sample contains the item; “False” means the sample 
does not contain the item; “/” in the first of the two conditions means negative word is 
included or not included does not affect the judgment of negative sample.
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The LPIs corpus is constructed manually with 397 high-quality negative samples and 
412 high-quality positive samples. Additional file 2 describes the construction of LPIs 
corpus in detail.

Typing literature

The webserver allows users multiple ways to enter biomedical text. The users can 
input PMID or a list of PMID, and then the webserver will automatically download the 
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Fig. 1  The flowchart of LPInsider. The flowchart consists of six parts: (1) typing literature, (2) text 
preprocessing, (3) named entity recognition, (4) Extracting text features, (5) classification by logistic 
regression, (6) outcome including entity information and the judgment of positive or negative samples. For 
example, after users type “BC1 RNA associates with Pura”, webserver recognizes that BC1 is lncRNA and Pura is 
protein, and finds the interac-tion between BC1 and Pura. Users get the result returned by webserver
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abstract of the corresponding paper. The user can also enter the PMCID, and then the 
webserver will automatically download the full text of the corresponding paper. And 
users can directly input the biomedical text in a specific format. Only English words and 
common punctuation are allowed. Special characters will be filtered by webserver and 
will not be included in the result. Additionally, users can upload file containing PMID 
lists or biomedical texts. This file must be in text format. The PMID list in the file must 
be separated by the enter key, and cannot contain characters other than numbers.

Text preprocessing

The abstracts are divided into sentences by tokenizing using nltk toolkit [47]. Stop words 
and punctuation are removed. Then the remained words in a sentence are lemmatized 
by the nltk toolkit and are converted into lowercase.

Named entity recognition

After text processing, the names of LncRNA and protein in the text need to be located, 
unified and standardized. Stanford CoreNLP [22] allows users to train their own Named 
Entity Recognition (NER). The corpus of the interaction of lncRNA and protein that we 
constructed is used to train our NER model. The IntAct [48] dataset is used to verify the 
precision, recall, and f1-score of the protein identified on our trained NER model, and 
the LncRNADisease dataset [49] is used to verify the precision, recall, and f1-score of 
lncRNA identified on our trained NER model. Table 3 shows the results of tenfold cross-
validation verification on the corpus we created, IntAct and LncRNADisease. PPInter-
Finder [50], a tool for extracting causal relations on human proteins from literature, 

Table 1  Statistics of lncRNAs and proteins

Database lncRNAs Proteins

HGNC 11,513 0

GENCODE 6424 0

LncRNADisease 373 0

Lnc2Cancer 1618 0

RAID v2.0 3460 10,968

LncRInter 277 318

NPInter 76,870 7442

RPISeq 0 2043

UniProt 0 83,692

STRING 0 21,129,733

Table 2  The comparison of the two types of negative samples

lncRNA Protein Interaction 
keyword

Negative word Example

True True False / There was no significant change in
Igf2 or H19 expression in brain

True True True True We found no association between
the FISH resultsand MALAT1
expression in patients
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annotates biomedical texts in IntAct and allows researchers to use it. Therefore, we used 
this annotated IntAct dataset to validate the NER model we created. How to evaluate the 
NER model using the datasets is explained in detail in Additional file 3.

The collection of lncRNAs and proteins is the main method used for NER, and the 
trained Stanford NER is used as a complementary method to extend the lookup of 
lncRNA and protein. To facilitate researchers to read and use the program to process 
the results, two blank lines are added to the query results to distinguish the two different 
NER methods.

Extraction of multiple text features

Semantic word vector

Semantic word vectors are used to maintain the linear relationship of the words in the 
sentences. The embedding representations for the majority of words are pretrained 
from a large-scale text of about 5 billion words found from the titles and abstracts of 
about 14 million articles in PubMed and the full text of about 700,000 articles in Pub-
Med Central using the word2vec tool contained in NLPLab’s trained word vector model 
[51], which can be download at http://​bio.​nlplab.​org/. The word2vec tool computes 
word embedding using the skip-gram model with a window size of 5, hierarchical soft-
max training, and a frequent word subsampling threshold of 0.001 to create 200-dimen-
sional vectors. The word2vec tool provided by NLPLab is trained from a huge number 
of biomedical texts in PubMed, but there are still some words in LPI corpus that are not 
included. Therefore, based on the word2vec tool provided by NLPLab, we use the tool 
provided by gensim [52] to retrain the word2vec tool specifically for the extraction of 
LPI can have a more accuracy description of the words.

When users submit biomedical texts, the online webserver prioritizes the use of the 
retrained word2vec tool. If there are some words in the text that are not included in our 
trained word2vec tool, then the word2vec tool provided by NLPLab is used to find the 
word vectors. Finally, if the word2vec tool provided by NLPLab also does not have the 
word vectors for those words, then zero representation will be used.

Syntactic structure vector

The integration of syntactic structure information containing a higher-order syntactic 
relationship in the sentence into the LPI prediction model can improve the performance 
of the model. The Stanford Parser of Stanford CoreNLP is used to obtain the syntactic 
structure of the sentence. The obtained syntactic structure is used to generate the short-
est dependency path ordered sequence instead of the original linear order of a sentence. 

Table 3  The results of tenfold cross-validation verification on LPIs Corpus, IntAct and 
LncRNADisease

Database Type Precision Recall f1-score

LPIs Corpus lncRNA 0.9541 0.9836 0.9686

protein 0.71857 0.8727 0.7881

LncRNADisease lncRNA 0.5597 0.5174 0.5378

IntAct protein 0.4555 0.2300 0.3057

http://bio.nlplab.org/
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The shortest dependency path ordered sequences as the syntax word vectors are fed into 
the LPIs prediction model.

Distance vector

The next necessary step is to calculate the distance vector between the two entities 
lncRNA and protein. In a sentence containing both lncRNA and protein entities, we cal-
culate the distance vectors of the three words to the left of the entity and the three words 
to the right of the entity by calculating the cosine distance between the words and the 
entity. If the number of words close to the entity is less than three, the distance vector is 
calculated according to the actual number of words.

For example, in the sentence “Bc1 RNA binds to Eif4a1 with high affinity”, “Eif4a1” is 
protein, and the three nearest words to the left of “Eif4a1” are “RNA”, “binds” and “to”, 
while the three words closest to “Eif4a1” on the right are “with”, “high” and “affinity”. We 
calculate the cosine distances of these six words from “Eif4a1” as distance vectors. The 
left side of the entity Bc1 has no words and no distance vector is calculated.

Part of speech vector

The part of speech corresponding to the word in a sentence is calculated by using the 
POS_TAG of Stanford CoreNLP. Here 11 types of parts of speech are considered. The 
one-hot method is used to encode 11 types of parts of speech. The encoding results 
are shown in Additional file 4. For example, if the part of speech of lncRNA is NN, its 
encoding for part of speech is [01000000000]. Additional file 5 shows the full form of 
each abbreviation in Additional file 4. For example, NN is abbreviation for noun.

LPInsider

The multiple textual features and different machine learning models are integrated to 
comprehensively conduct feature selection and model evaluation. For each model, the 
statistical measures, including accuracy, precision, recall, and f1-score are used to evalu-
ate the performance. The classification results of various textual features are compared 
by tenfold cross-validation on traditional machine learning models (LGBM [53], SVM 
[54], Logistic Regression [35], Random Forest Classifier [55] and xgboost [56]) and com-
mon deep learning models (textCNN [57], LSTM [58] and capsule network [59]).

scikit-learn [60] is a Python module integrating classical machine learning algorithms, 
providing a variety of Application Programming Interfaces(APIs), including SVM, Logis-
tic Regression and Random Forest Classifier. We use version 0.23.2 of scikit-learn, ver-
sion 3.2.1 of lightGBM to provide the API for the LGBM classifier and version 1.4.0 of 
xgboost to provide the API for the classifier. Meanwhile, three common deep learning 
models are built based on version 1.12.0 of TensorFlow [61] and version 2.2.4 of Keras 
[62]. In addition, we optimize various hyperparameters for five machine learning models 
and three deep learning models. Logistic Regression with hyperparameter optimization 
is the best model.

We introduce separately the parameters of the classifier as LPInsider, and focused on 
adjusting the hyperparameters “C” and “max_iter” of the logistic regression classifier. 
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These two parameters represent the regularization factor and the maximum number of 
times the algorithm converges. All other parameters are default parameters.

It should be noted that the TextCNN, LSTM and capsule networks that participated 
in the comparison are created strictly as in the original article. The network architec-
ture is maintained as in the original article, with changes made only in the data input 
part. LSTM and TextCNN use binary cross-entropy as the loss function, and capsule 
networks use a self-defined loss function, while all three models use the Adam optimizer 
[63]. The machine learning model with the best performance is used to construct our 
tool LPInsider for LPI prediction.

Webserver interface and functions
The input of biomedical text and prediction of the results are the main functions of 
LPInsider’s web server. A screenshot of LPInsider’s webserver is shown in Fig. 2. When 
PMID, PMCID, PMID List or biomedical text is submitted, users will get a job ID. After 
waiting for a period of time, users can download or query the results online through this 
ID. Figure 3 shows a part of the results generated after the user submitted a single PMID 
of 28165553. The results generated by the webserver have a total of seven columns. The 
explanation for each column is as follows: 

1.	 The first column is whether the user uses the lncRNA and protein data set or Stan-
ford NER for named entity recognition.

2.	 The second column shows that the data comes from PMID, PMCID or biomedical 
text.

3.	 The third column shows the identified lncRNA.
4.	 The fourth column shows the identified protein.
5.	 The fifth column shows the sentences involved in relation extraction.
6.	 The sixth column is the type of sentences involved in relation extraction. Determine 

whether it is a positive sample or a negative sample.
7.	 The seventh column is the confidence of the judgment. In the downloaded file or 

query results, “Nan” means that this item is empty.

In the downloaded file or query results, “Nan” means that this item is empty.

Results
The text of LPIs corpus is converted into a digital representation that a computer can 
process. Additional file 6 describes an example of only the semantic word vector. The 
logistic regression classifier works best when only semantic word vectors are used. Fig-
ure 4 show an example of syntactic structure vector. The result of using depth-first search 
(DFS) to traverse “Bc1 RNA associates with Pura” is “associates RNA Bc1 Pura with”. 
Additional file 7 is an example of describes the data structure using semantic word vec-
tors and syntactic structure vectors. After using 2 types of features, we can find that the 
logistic regression classifier still works best. Additional file 8 is an example of describes 
the data structure using semantic word vectors, syntactic structure vectors, and distance 
vectors. With the addition of the location feature vector, the logistic regression classifier 
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Fig. 2  Screenshot of LPInsider’s webserver
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still performs remarkably well. Additional file  9 is an example of semantic word vec-
tor, syntactic structure vector, distance vector, and part of speech vector. The perfor-
mances of five machine learning models have been described in the Table 4. Meanwhile, 
the model of Logistic Regression is also compared with textCNN, capsule network, and 
LSTM, and the results are shown in Table 5.

From the statistical experimental results, it is clear that the performance of all five 
machine learning classifiers improves with the increasing number of features. For exam-
ple, a logistic regression classifier using four types of features is better than one using 
three types of features. Similarly, the logistic regression classifier using three types of 
features is also better than the one using two types of features. Other classifiers also per-
form better and better as features are added to the model. Four types of features are 
selected as inputs to the model. It is important to note that the logistic regression clas-
sifier performs best among all five machine learning classifiers regardless of which fea-
tures are fed into the model.

Conclusion
LPInsider is an effective webserver for extracting LPIs based on multiple types of text 
features (semantic word vectors, syntactic structure vectors, distance vectors, and part 
of speech vectors), and logistic regression. The performance of LPInsider is not inferior 
to the traditional deep learning algorithm. At the same time, we can also find that the 

Fig. 3  Screenshot of a part of the result returned by webserver
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other four machine learning models are not weaker than the three deep learning mod-
els being used for classification on our Corpus. Figure 5 shows the P-R curves of LPIn-
sider with multiple machine learning and deep learning models when four text features 
are used, which proves the above conclusion. Through the cross-validation experiments 
and comparisons, the optimal textual feature combination including semantic word 
vectors, syntactic structure vectors, distance vectors and Part of Speech vector consist-
ently achieve the best and most robust performance for the above machine learning 

Table 4  Using multiple text features

Bold indicates the better experimental results

Features Classifier Accuracy Precision Recall f1-score

Semantic word vector LGBM 0.84920 0.86992 0.83037 0.84754

SVM 0.85534 0.95127 0.75734 0.84071

Logistic regression 0.88379 0.91635 0.85157 0.88140
Random forest 0.81373 0.84939 0.77344 0.80728

Xgboost 0.86683 0.87700 0.85637 0.86522

Semantic word vectors and syntactic struc-
ture vectors

LGBM 0.85659 0.88094 0.83152 0.85391

SVM 0.88173 0.94727 0.81453 0.87453

Logistic regression 0.89657 0.92684 0.86788 0.89485
Random forest 0.82158 0.86687 0.76823 0.81217

Xgboost 0.87882 0.89386 0.86452 0.87787

Semantic word vectors, syntactic structure 
vectors and distance vectors

LGBM 0.87476 0.89739 0.85298 0.87276

SVM 0.89080 0.95013 0.83035 0.88486

Logistic regression 0.90028 0.93218 0.86952 0.89838
Random forest 0.82360 0.86757 0.77133 0.81454

Xgboost 0.88382 0.90279 0.86435 0.88169

Semantic wordvector, syntactic structurevec-
tor, distance vector and part of speech vector

LGBM 0.89205 0.91488 0.87007 0.89046

SVM 0.91719 0.95286 0.88221 0.91513

Logistic regression 0.91758 0.93304 0.90380 0.91722
Random forest 0.84216 0.87469 0.80599 0.83753

Xgboost 0.89164 0.91930 0.86366 0.88926

Table 5  The performances of LPInsider and three deep learning methods

Bold indicates the better experimentalresults

Classifier Accuracy Precision Recall f1-score

textCNN 0.85935 0.86855 0.85747 0.86022

Capsule network 0.71352 0.71590 0.84718 0.75284

LSTM 0.89497 0.88557 0.92550 0.90181

LPInsider 0.91758 0.93304 0.90380 0.91722

Fig. 4  Example of syntactic structure vector
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models. The performance of logical regression classifier is best. Therefore, the logis-
tic regression classifier trained by LPI Corpus is used for lncRNA–protein interaction 
extraction.

Although the collection of lncRNA and protein library contains a large number of 
entity names, some entity names or new names of some entities are not included. Being 
able to identify the lncRNA and protein entities is crucial for LPIs. So users can submit 
new lncRNA and protein information to further improve the accuracy of the model [64]. 
When users submit enough entity names of lncRNAs and proteins, we will use these 
submitted entity names to retrain our NER model using Stanford CoreNLP, so the ability 
to identify NER will be improved.

In general, an effective tool for analyzing LPIs, LPInsider, can not only save research-
ers’ time and reduce resource consumption, but also help researchers to deepen their 
understanding of lncRNAs through text mining. Additional file 10 introduces a detailed 
tutorial on using LPInsider webserver. At the same time, a highly reliable corpus of LPI is 
proposed, which help LPInsider become a valuable text mining tool for ongoing research 
of LPI.

Availability and requirements

Project name: LPInsider
Project home page: http://​www.​csbg-​jlu.​info/​LPIns​ider/
Operating system(s): Platform independent
Programming language: Python 3.6.9, Django 2.2.5
Other requirements: Chrome, Firefox or IE
License: GNU GPL
Any restrictions to use by non-academics: None

Fig. 5  P-R curves of LPInsider with four machine learning and three deep learning models when using 
multiple text features

http://www.csbg-jlu.info/LPInsider/
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