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Abstract

COVID-19 had been declared a public health emergency by the World Health Organization in the early 2020. Since then, this
eadly virus has claimed millions of lives worldwide. Amidst its chaotic spread, several other diseases have faced negligence in
erms of treatment and care, of which one such chronic disease is Tuberculosis. Due to huge rise in COVID-19 cases, there had
een a drastic decrease in notification of TB cases which resulted in reversal of global TB target progress. Apart from these due
o the earlier co-infections of TB with SARS and MERS-CoV viruses, the TB-COVID-19 co-infection posed a severe threat in
he spread of the disease. All these factors backed to be major motivation factor in development of this model. Leading with
his concern, a TB - COVID-19 co-infection model is developed in this study, considering possibility of waning immunity of
oth diseases. Considering different epidemiological traits, an epidemiological model with 11 compartments is developed and
he co-dynamics is analysed. A detailed stability and bifurcation analysis is performed for the TB only sub-model, COVID-19
nly sub-model and the complete TB - COVID-19 model. Impact of key parameters namely, infection rate, waning immunity,
nd face mask efficacy on disease prevalence is discussed in detail. Sensitivity analysis by means of normalized forward
ensitivity index of the basic reproduction number and LHS-PRCC approach is carried to provide a thorough understanding
f significance of various parameters in accelerating as well as controlling the disease spread. Optimal control analysis is
resented extensively, incorporating controls related to timely and improved TB treatment, and enhanced COVID-19 tests and
solation facilities to curb the spread of these infectious diseases. The simulation results obtained from each of these analyses
tress on the importance of different control measures in mitigation of the diseases and are illustrated accordingly. The study
uggests that in the times of a pandemic, other disease treatment and care must not be neglected, and adequate care must be
aken so that mortality due to co-infection and unavailability of timely treatment can be avoided.

2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.

eywords: COVID-19; Tuberculosis; Co-infection; Sensitivity; Optimal control; Latin Hypercube Sampling (LHS); Partial Rank Correlation
oefficient (PRCC)

1. Introduction

Epidemiology is one of the most important branches in medical sciences which helps in providing an overall
nderstanding of the etiology and distribution of the disease. SARS-CoV-2 is a deadly virus which first originated in
hina [55] in the late 2019, and has claimed millions of lives since then. This virus spreads from person to person
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when an infected person sneezes or coughs via nasal discharge or saliva droplets which land on certain surfaces, and
the contacts touch eyes nose or mouth [1,23,35]. On the other hand TB is caused due to Mycobacterium tuberculosis
and its origin dates back to 1720 [10], and it spreads when a TB patient coughs or sneezes. Doing so these bacteria
remain suspended in the form of droplets in air for several hours [46]. The former spreads through direct breathing
of the droplets whereas in the latter in addition to direct contact the bacteria remains suspended for several hours
and if a person happen to inhale those, he or she might get infected. The studies in [14,43] state that TB infected
individuals possess higher susceptibility to COVID-19 as well as risk related to death and prolonged recovery. In
the course of COVID-19 pandemic, a reduction of 21% in TB care was estimated as per data received from 84
countries [52] for period between 2019 to 2020.

TB is a highly infectious disease, and though there is treatment available for it, the annual deaths reported
summed up to around 1.2 million as per [24]. Various works on TB compartmental models have been studied
considering possible features of the disease. The first TB model was developed in 1962 [50], in which the researchers
considered a 3 compartmental model of which one class represented latent TB infected individuals using linear
difference equations providing results based on TB data of India. In 1970, the authors in [51] developed a TB
model with aim to minimize the cost of TB related control interventions. In due course of times several works
based on classic SIR model [27] were built to analyse the dynamics of TB disease transmission, some of which
are [13,18,22,38,53], in which along with study of the disease prevalence, different controls strategies are also
incorporated. In the studies [16,17], the authors worked on TB model with multiple reinfection and media impact
respectively. In the former work, the authors have clearly laid out results on existence of backward bifurcation
suggesting reduction in the basic reproduction number much below one for eradication of TB. In the latter study
media intervention is included as a control variable to reduce disease prevalence. As of COVID-19 is concerned
several works based on SEIR models have been developed and a series of results on numerical simulations and
data analysis have been portrayed. The studies by [7,26,33,41] have provided a detailed analysis on the COVID-19
disease dynamics considering different regions and including control measures related to face mask, testing and
treatment so on to provide mitigation strategies. In [40], the effect of lockdown is studied by modification of the
disease transmission rate by including the effectiveness of individuals precautionary measures, along with COVID-19
dynamics prediction for 17 of the Indian states and the country itself. The studies [39,48] revolve around the notion
of awareness by means of social media advertisements, community and global campaigns in controlling the disease
transmission. The studies present a detailed analysis of the model considering the awareness efficacy parameters
along with numerical simulations in terms of sensitivity analysis, disease prevalence and data fitting for the case
of India. The studies by [8,42] have considered limited medical facilities factors by including treatment function to
bring out a well featured analysis.

COVID-19 has proved to be an obstacle in the care, detection and treatment of several diseases like malaria,
dengue, and TB etc. The report by [52] stresses on the reduction in TB detection and care with more than 1.4
million people having received no medical care for TB. The authors in [9] present a brief detail on the possibilities
of TB and COVID-19 co-infection, and stress on importance of remote tracking, isolation of TB patients so that risk
related to deaths can be diminished. The authors in [43] performed a detailed statistical analysis considering data
of Philippines, and concluded that the COVID-19 patients are at greater risk if co-infected with TB. The study also
suggested greater morbidity rates and urged on prioritizing TB medical care and detection. A similar conclusion is
drawn in [14], where the authors worked on data from China.

Considering the factors mentioned in literature, a TB - COVID-19 co-infection mathematical model is built in
this study and the dynamics is analysed thoroughly. The face mask factor is included in the model, as the study
by [21] reveals that the infection spread could be reduced to 70% if one uses a face mask effectively. A detailed
explanation on the model formulation is given is Section 2. The theoretical results on the disease dynamics based
on stability and bifurcation analysis of the equilibrium points is presented as well in Section 3. Sensitivity analysis
is performed to identify significant parameters in disease spread and control under Section 4. In Section 5 a detailed
optimal control analysis is done by including control measures related to TB treatment and counselling along with
COVID-19 detection and isolation facilities. The study ends with conclusion and a brief gist of the results.

2. Mathematical model formulation

In this research study we form an epidemiological model comprising of 11 compartments, considering co-
infection of two diseases namely COVID-19 and Tuberculosis. The compartments are Susceptible (S), population
2
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exposed to TB only (ET ), population exposed to COVID-19 only (EC ), population exposed to both TB and COVID-
19 (ET C ), only TB infected individuals (IT ), only COVID-19 infected individuals (IC ), population infected with
TB and exposed to COVID-19 (IT EC ), population infected with COVID-19 and exposed to TB (IC ET ), population
infected with both COVID-19 and TB (IT C ), population recovered from TB (RT ), and population recovered from
COVID-19 (RC ). The parameters involved in the model have unit as day−1. We consider natural birth and death in
his model and based on the below assumptions we obtain the model:

1. The transmission of disease occurs when the susceptible comes in contact with infected individuals, be it
COVID-19 infected, TB infected or both. We assume that with the rising COVID-19 cases and TB in the
corner, the susceptible population tends to wear face mask, thereby contributing in reducing the infection
rates. These forces of infections are given by λT and λC due to TB and COVID-19 respectively, in which
the face mask factor is represented by parameters α1 and α2.

2. It is possible that the individuals exposed to TB (ET ) only and COVID-19 only (EC ) come in contact with
COVID-19 infected population and TB infected population respectively, thereby getting exposed to both these
diseases.

3. The exposed population (ET ), and (EC ) move to their respective infected classes (IT ), and (IC ) at rates δ1,
and δ2 respectively.

4. Since both diseases have different incubation period, an individual exposed to both COVID-19 and TB (ET C )
being infectious of both diseases at same time is unlikely. Hence, we assume that these exposed individuals
move to classes IT EC and IC ET at rate ζ1 and ζ2 respectively. The individuals in IT EC and IC ET classes move
to the IT C class at rates ξ1 and ξ2 respectively.

5. We assume that the individuals infected with TB only can come in contact with COVID-19 infected
individuals, and become exposed to the latter. In this case we assume that an enhancement factor which
will act as a modification parameter in transmission of infection, would contribute in increasing the infection
rate, thereby the force of infection. This parameter is given by ϵ1 of which the value is greater than or equal
to 1. The same applies to the COVID-19 only infected individuals, in which case the modification parameter
is given by ϵ2.

6. Since, both these diseases have different infectious periods, the possibility of an individual recovering from
both the infections at once is neglected. Hence, an individual with this co-infection can recover from one
infection at a time and move to the infected class belonging to another disease at certain rates. These rates
are given by η1 and η2.

7. The TB only and COVID-19 only infected individuals move to their respective recovered class at rates γ1
and γ2 respectively.

8. Having recovered from these diseases does not guarantee lifelong immunity, hence the immunity wanes, and
the recovered individuals move to the susceptible class at rates σ1 and σ2.

9. The infected population die at respective disease induced death rates.

he schematic diagram of our proposed model is depicted in Fig. 1. The model is framed into the following system
f equations:

d S
dt

= ∧ + σ1 RT + σ2 RC − (λT + λC + µ)S (1)

d ET

dt
= λT S − (δ1 + λC + µ)ET (2)

d EC

dt
= λC S − (δ2 + λT + µ)EC (3)

d ET C

dt
= λC ET + λT EC − (ζ1 + ζ2 + µ)ET C (4)

d IT

dt
= δ1 ET + η1 IT C − (γ1 + ϵ1λC + µ1 + µ)IT (5)

d IC

dt
= δ2 EC + η2 IT C − (γ2 + ϵ2λT + µ2 + µ)IC (6)

d IT EC
= ϵ1λC IT + ζ1 ET C − (ξ1 + µ3 + µ)IT E (7)
dt C

3
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Fig. 1. Schematic diagram of the model.

d IC ET

dt
= ϵ2λT IC + ζ2 ET C − (ξ2 + µ4 + µ)IC ET (8)

d IT C

dt
= ξ1 IT EC + ξ2 IC ET − (η1 + η2 + +µ5 + µ)IT C (9)

d RT

dt
= γ1 IT − (σ1 + µ)RT (10)

d RC

dt
= γ2 IC − (σ2 + µ)RC , (11)

here

λT = β1(1 − α1)(IT + IT C + IT EC ) and λC = β2(1 − α2)(IC + IT C + IC ET )

. Analysis of the model

.1. TB only sub-model

The TB model is obtained by setting the following variables EC = ET C = IC = IT EC = IC ET = IT C = RC = 0.

d S
dt = ∧ + σ1 RT − β1(1 − α1)IT S − µS

d ET
dt = β1(1 − α1)IT S − (δ1 + µ)ET

d IT
dt = δ1 ET − (γ1 + µ1 + µ)IT

d RT
dt = γ1 IT − (σ1 + µ)RT

(12)

he total population from the model (12) is N = S + ET + IT + RT and hence we have d N
dt = ∧ − µN − µ1 IT .

Solving this we get lim supt→∞ N ≤
∧

µ
, which further implies the solution of model (12) is bounded by ∧

µ
. Therefore,

biologically feasible region for the system (12) is given by: ΩT =

{
(S, ET , IT , RT ) ∈ R4

: 0 ≤ S, ET , IT , RT ≤
∧

}
.

+ µ

4
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3.1.1. Equilibria and basic reproduction number
The disease-free equilibrium (DFE) of the system (12) is given by E0t

=

(
∧

µ
, 0, 0, 0

)
. Using Next Generation

Matrix Method [20,25,49] we find the basic reproduction number R0T .

F =

(
β1(1 − α1)IT S

0

)
V =

(
(δ1 + µ)ET

−δ1 ET + (γ1 + µ1 + µ)IT

)
he Jacobian of F (representing new infection terms) and V (representing transition terms) are F and V respectively.

F =

(
0 β1(1 − α1)∧

µ

0 0

)
V =

(
δ1 + µ 0
−δ1 γ1 + µ1 + µ

)
.

We then obtain

FV −1
=

(
β1(1−α1)δ1∧

(δ1+µ)(γ1+µ1+µ)µ
β1(1−α1)∧

(γ1+µ1+µ)µ

0 0

)
from which we obtain the basic reproduction number which is the spectral radius of FV −1, given by

R0T =
β1(1 − α1)δ1∧

(δ1 + µ)(γ1 + µ1 + µ)µ

Theorem 3.1. The disease-free Equilibrium given by E0t is locally asymptotically stable when R0T < 1 and is
unstable otherwise.

Proof. The Jacobian matrix JE0t of the system (12) at the disease-free equilibrium point E0t is obtained as below:

JE0t =

⎛⎜⎜⎝
−µ 0 −β1(1 − α1)∧

µ
σ1

0 −(δ1 + µ) β1(1 − α1)∧

µ
0

0 δ1 −(γ1 + µ1 + µ) 0
0 0 γ1 −(σ1 + µ)

⎞⎟⎟⎠
he characteristic polynomial |JE0t − λI | = 0 is given by:

(λ+µ)×(λ+(σ1+µ))×
(

λ2
+ ((δ1 + µ) + (γ1 + µ1 + µ))λ + (δ1 + µ)(γ1 + µ1 + µ) − β1(1 − α1)δ1

∧

µ

)
= 0

Therefore, the eigenvalues are −µ < 0, − (σ1 + µ) < 0, and remaining are the roots of the following(
λ2

+ ((δ1 + µ) + (γ1 + µ1 + µ))λ + (δ1 + µ)(γ1 + µ1 + µ) − β1(1 − α1)δ1
∧

µ

)
= 0.

Hence, the two roots are:

−
1
2

((δ1+µ)+(γ1+µ1+µ))±
1
2

√
((δ1 + µ) + (γ1 + µ1 + µ))2 − 4

(
(δ1 + µ)(γ1 + µ1 + µ) − β1(1 − α1)δ1

∧

µ

)
which are both negative or have negative real part when R0T < 1 since,

R0T < 1 H⇒ (δ1 + µ)(γ1 + µ1 + µ) − β1(1 − α1)δ1
∧

µ
> 0.

herefore, the disease-free equilibrium is locally asymptotically stable when R0T < 1.
The endemic equilibrium E∗

= (S∗, E∗

T , I ∗

T , R∗

T ) of the system (12) is obtained to be as follows:

S∗
=

(δ1)(γ1 + µ1 + µ)
β1δ1(1 − α1)

, I ∗

T =
(σ1 + µ)(δ1 + µ)(γ1 + µ1 + µ)(R0T − 1)

β1(1 − α1)((δ1 + µ)(γ1 + µ1 + µ)(σ1 + µ) − σ1γ1δ1)
,

E∗

T =
(γ1 + µ1 + µ)

δ1
I ∗

T , and R∗

T =
γ1

(σ1 + µ)
I ∗

T .

Clearly, the endemic equilibrium exists and is positive when R > 1 and is unique for the TB only model.
0T

5
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3.1.2. Bifurcation and stability analysis of the endemic equilibrium
Let us denote S = x1, ET = x2, IT = x3, RT = x4, so that the TB only model (12) can be written as

follows:

dx1
dt = f1 = ∧ + σ1x4 − β1(1 − α1)x3x1 − µx1

dx2
dt = f2 = β1(1 − α1)x3x1 − (δ1 + µ)x2

dx3
dt = f3 = δ1x2 − (γ1 + µ1 + µ)x3

dx4
dt = f4 = γ1x3 − (σ1 + µ)x4

(13)

he Jacobian of the above system (13) at the DFE E0t at the chosen bifurcation parameter β1, obtained by equating
R0T = 1 is

JE0t (β1=β∗
1 ) =

⎛⎜⎜⎜⎝
−µ 0 −

(δ1+µ)(γ1+µ1+µ)
δ1

σ1

0 −(δ1 + µ) (δ1+µ)(γ1+µ1+µ)
δ1

0
0 δ1 −(γ1 + µ1 + µ) 0
0 0 γ1 −(σ1 + µ)

⎞⎟⎟⎟⎠
Here, β∗

1 =
(δ1+µ)(γ1+µ1+µ)µ

(1−α1)∧δ1
obtained by equating R0T = 1. The above linearized system with β1 = β∗

1 has a zero
eigenvalue. We therefore use centre manifold theory [12,13] to analyse the dynamics of the system near β1 = β∗

1 .
We use the theorem in [13], which we have stated in the Appendix section as Theorem A.1, to show the stability
of TB only endemic equilibrium point (E∗). We now obtain the left and the right eigenvectors associated to the
zero eigenvalue of the Jacobian, JE0t (β1=β∗

1 ).
Using the same notation as in Theorem A.1, we denote the right eigenvector (the column matrix) as w =

[w1, w2, w3, w4]T , where

w1 =
−((δ1 + µ)(γ1 + µ1 + µ)(σ1 + µ) − σ1γ1δ1)w4

µγ1δ1
, w2 =

(γ1 + µ1 + µ)(σ1 + µ)w4

δ1γ1

w3 =
(σ1 + µ)w4

γ1
, and w4 = w4 > 0,

nd the left eigenvector (the row matrix) associated with the zero eigenvalue as v = [v1, v2, v3, v4], where
1 = 0 = v4, v2 =

δ1
δ1+µ

v3, and v3 = v3 > 0. Continuing as per the theorem, we now compute a and b
to do the bifurcation analysis by finding the non-zero partial derivatives associated with the system (13) at the
disease-free equilibrium point (E0t ). These partial derivatives are:

∂2 f2

∂x1∂x3
= β∗

1 (1 − α1) =
(δ1 + µ)(γ1 + µ1 + µ)µ

∧δ1
=

∂2 f2

∂x3∂x1
,

∂2 f2

∂x3∂β1
= (1 − α1)

∧

µ

∴ a = −
2v3w

2
4((γ1 + µ1 + µ)(δ1 + µ)(σ1 + µ) − γ1δ1σ1)(γ1 + µ1 + µ)(σ1 + µ)

∧δ1γ
2
1

< 0

and b =
δ1 ∧ v3w4(1 − α1)(σ1 + µ)

µγ1(δ1 + µ)
> 0.

ince a < 0 and b > 0, from the theorem in [13] (Theorem A.1), it implies that the unique TB only endemic
quilibrium point (E∗) which exists when R0T > 1 will be locally asymptotically stable and the system will not
xhibit any backward bifurcation at R0T = 1. Therefore we have the following theorem established.

heorem 3.2. The unique endemic equilibrium (E∗) of the system (12) is locally asymptotically stable when
R > 1.
0T

6
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3.2. COVID-19 only sub-model

The COVID-19 model is obtained by setting the following variables ET = ET C = IT = IT EC = IC ET = IT C =

RT = 0.

d S
dt = ∧ + σ2 RC − β2(1 − α2)IC S − µS

d EC
dt = β2(1 − α2)IC S − (δ2 + µ)EC

d IC
dt = δ2 EC − (γ2 + µ2 + µ)IC

d RC
dt = γ2 IC − (σ2 + µ)RC

(14)

he total population from the model (14) is N = S+EC + IC +RC and hence we have d N
dt = ∧−µN −µ2 IC . Solving

his we get lim supt→∞ N ≤
∧

µ
, which further implies the solution of model (14) is bounded by ∧

µ
. Therefore, bio-

logically feasible region for the system (14) is given by: ΩC =

{
(S, EC , IC , RC ) ∈ R4

+
: 0 ≤ S, EC , IC , RC ≤

∧

µ

}
.

.2.1. Equilibria and basic reproduction number
The disease-free equilibrium (DFE) of the system (14) is given by E0c

=

(
∧

µ
, 0, 0, 0

)
. Using Next Generation

Matrix Method [20,25,49] we find the basic reproduction number R0C .

F =

(
β2(1 − α2)IC S

0

)
V =

(
(δ2 + µ)EC

−δ2 EC + (γ2 + µ2 + µ)IC

)
The Jacobian of F (representing new infection terms) and V (representing transition terms) are F and V respectively.

F =

(
0 β2(1 − α2)∧

µ

0 0

)
V =

(
δ2 + µ 0
−δ2 γ2 + µ2 + µ

)
We then obtain,

FV −1
=

(
β2(1−α2)δ2∧

(δ2+µ)(γ2+µ2+µ)µ
β2(1−α2)∧

(γ2+µ2+µ)µ

0 0

)
The basic reproduction number is the spectral radius of FV −1, which is given by

R0C =
β2(1 − α2)δ2∧

(δ2 + µ)(γ2 + µ2 + µ)µ

Theorem 3.3. The disease-free Equilibrium given by E0c is locally asymptotically stable when R0C < 1 and is
unstable otherwise.

Proof. The Jacobian matrix JE0c of the system (14) at the disease-free equilibrium point E0c is obtained as below:

JE0c =

⎛⎜⎜⎝
−µ 0 −β2(1 − α2)∧

µ
σ2

0 −(δ2 + µ) β2(1 − α2)∧

µ
0

0 δ2 −(γ2 + µ2 + µ) 0
0 0 γ2 −(σ2 + µ)

⎞⎟⎟⎠
he characteristic polynomial |JE0c − λI | = 0 is given by:

(λ+µ)×(λ+(σ2+µ))×
(

λ2
+ ((δ2 + µ) + (γ2 + µ2 + µ))λ + (δ2 + µ)(γ2 + µ2 + µ) − β2(1 − α2)δ2

∧

µ

)
= 0

Therefore, the eigenvalues are −µ < 0, − (σ2 + µ) < 0, and remaining are the roots of the following(
λ2

+ ((δ2 + µ) + (γ2 + µ2 + µ))λ + (δ2 + µ)(γ2 + µ2 + µ) − β2(1 − α2)δ2
∧
)

= 0.

µ

7
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Hence the two roots are:

−
1
2

((δ2+µ)+(γ2+µ2+µ))±
1
2

√
((δ2 + µ) + (γ2 + µ2 + µ))2 − 4

(
(δ2 + µ)(γ2 + µ2 + µ) − β2(1 − α2)δ2

∧

µ

)
which are both negative or have negative real part when R0C < 1 since,

R0C < 1 H⇒ (δ2 + µ)(γ2 + µ2 + µ) − β2(1 − α2)δ2
∧

µ
> 0

herefore, the disease-free equilibrium is locally asymptotically stable when R0C < 1.
The endemic equilibrium E⋆

= (S⋆, E⋆
C , I ⋆

C , R⋆
C ) of the system (14) is obtained to be as follows:

S⋆
=

(δ2)(γ2 + µ2 + µ)
β2δ2(1 − α2)

, I ⋆
C =

(σ2 + µ)(δ2 + µ)(γ2 + µ2 + µ)(R0C − 1)
β2(1 − α2)((δ2 + µ)(γ2 + µ2 + µ)(σ2 + µ) − σ2γ2δ2)

,

E⋆
C =

(γ2 + µ2 + µ)
δ2

I ⋆
C , and R⋆

C =
γ2

(σ2 + µ)
I ⋆
C .

Clearly, the COVID-19 only endemic equilibrium (E⋆) exists when R0C > 1 and is unique for the COVID-19
only model (14).

3.2.2. Bifurcation and stability analysis of the endemic equilibrium
Let us denote S = x1, EC = x2, IC = x3, RC = x4, so that the COVID-19 only model can be written as

follows:

dx1
dt = f1 = ∧ + σ2x4 − β2(1 − α2)x3x1 − µx1

dx2
dt = f2 = β2(1 − α2)x3x1 − (δ2 + µ)x2

dx3
dt = f3 = δ2x2 − (γ2 + µ2 + µ)x3

dx4
dt = f4 = γ2x3 − (σ2 + µ)x4

(15)

he Jacobian of the system (15) at the DFE (E0c) at the chosen bifurcation parameter β2, obtained by equating
R0C = 1 is

JE0c(β2=β∗
2 ) =

⎛⎜⎜⎜⎜⎝
−µ 0 −

(δ2+µ)(γ2+µ2+µ)
δ2

σ2

0 −(δ2 + µ) (δ2+µ)(γ2+µ2+µ)
δ2

0

0 δ2 −(γ2 + µ2 + µ) 0
0 0 γ2 −(σ2 + µ)

⎞⎟⎟⎟⎟⎠
Here, β∗

2 =
(δ2+µ)(γ2+µ2+µ)µ

(1−α2)∧δ2
obtained by equating R0C = 1. The above linearized system with β2 = β∗

2 has zero
eigenvalue. We therefore use centre manifold theory [12,13] to analyse the dynamics of the system near β2 = β∗

2 .
We use the theorem in [13], which we have stated in the Appendix section as Theorem A.1, to show the stability
of COVID-19 only endemic equilibrium point (E⋆). We now obtain the left and the right eigenvectors associated
o the zero eigenvalue of the Jacobian JE0c(β2=β∗

2 ). Using the same notation as in Theorem A.1, we denote the right
igenvector (the column matrix) as w = [w1, w2, w3, w4]T , where

w1 =
−((δ2 + µ)(γ2 + µ2 + µ)(σ2 + µ) − σ2γ2δ2)w4

µγ2δ2
, w2 =

(γ2 + µ2 + µ)(σ2 + µ)w4

δ2γ2

w3 =
(σ2 + µ)w4

γ2
, and w4 = w4 > 0,

nd the left eigenvector (the row matrix) associated with the zero eigenvalue as v = [v1, v2, v3, v4], where
= 0 = v , v =

δ2 v , and v = v > 0.
1 4 2 δ2+µ 3 3 3

8
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Continuing as per the theorem, we now compute a and b to do the bifurcation analysis by finding the non-
zero partial derivatives associated with the system (15) at the disease-free equilibrium point (E0c). These partial
derivatives are:

∂2 f2

∂x1∂x3
= β∗

2 (1 − α2) =
(δ2 + µ)(γ2 + µ2 + µ)µ

∧δ2
=

∂2 f2

∂x3∂x1
,

∂2 f2

∂x3∂β2
= (1 − α2)

∧

µ
.

∴ a = −
2v3w

2
4((γ2 + µ2 + µ)(δ2 + µ)(σ2 + µ) − γ2δ2σ2)(γ2 + µ2 + µ)(σ2 + µ)

∧δ2γ
2
2

< 0

and b =
δ2 ∧ v3w4(1 − α2)(σ2 + µ)

µγ2(δ2 + µ)
> 0.

ince a < 0 and b > 0, from the theorem in [13] (Theorem A.1), it implies that the unique COVID-19 only endemic
quilibrium point (E⋆) which exists when R0C > 1 will be locally asymptotically stable and the system will not
xhibit any backward bifurcation at R0C = 1. Therefore we have the following theorem established.

heorem 3.4. The unique endemic equilibrium (E⋆) of the system (14) is locally asymptotically stable when
R0C > 1.

.3. TB - COVID-19 complete model

The TB - COVID-19 complete model is given by the system of Eqs. (1)–(11). The total population from the
odel (1)–(11) is N = S + ET + EC + ET C + IT + IC + IT EC + IC ET + IT C + RT + RC and hence we have

d N
dt = ∧−µN −µ1 IT −µ2 IC −µ3 IT EC −µ4 IC ET −µ5 IT C . Solving this we get lim supt→∞ N ≤

∧

µ
, which further

implies the solution of model (1)–(11) is bounded by ∧

µ
. Therefore, biologically feasible region for the system

1)–(11) is given by:

ΩT C =

{
(S, ET , EC , ET C , IT , IC , IT EC , IC ET , IT C , RT , RC ) ∈ R11

+

: 0 ≤ S, ET , EC , ET C , IT , IC , IT EC , IC ET , IT C , RT , RC ≤
∧

µ

}
.

Lemma 3.5. If S(0) ≥ 0, ET (0) ≥ 0, EC (0) ≥ 0, ET C (0) ≥ 0, IT (0) ≥ 0, IC (0) ≥ 0, IT EC (0) ≥

, IC ET (0) ≥ 0, IT C (0) ≥ 0, RT (0) ≥ 0, and RC (0) ≥ 0, then the solutions S, ET , EC , ET C , IT , IC ,
IT EC , IC ET , IT C , RT , RC are positive ∀ t > 0.

roof. We prove this lemma by method of contradiction by assuming that the total population N (t) ̸= 0 ∀ t ≥ 0.
e assume that ∃ a first time t1 such that:

S(t1) = 0, S′(t1) < 0, ET (t) ≥ 0, EC (t) ≥ 0, ET C (t) ≥ 0, IT (t) ≥ 0, IC (t) ≥ 0, IT EC (t) ≥ 0,

IC ET (t) ≥ 0, IT C (t) ≥ 0, RT (t) ≥ 0, and RC (t) ≥ 0 for t ≤ 0 ≤ t1,

∃ a first time t2such that :

ET (t2) = 0, E ′

T (t2) < 0, S(t) ≥ 0, EC (t) ≥ 0, ET C (t) ≥ 0, IT (t) ≥ 0, IC (t) ≥ 0, IT EC (t) ≥ 0,

IC ET (t) ≥ 0, IT C (t) ≥ 0, RT (t) ≥ 0, and RC (t) ≥ 0 for t ≤ 0 ≤ t2,

∃ a first time t3such that :

EC (t3) = 0, E ′

C (t3) < 0, S(t) ≥ 0, ET (t) ≥ 0, ET C (t) ≥ 0, IT (t) ≥ 0, IC (t) ≥ 0, IT EC (t) ≥ 0,

IC ET (t) ≥ 0, IT C (t) ≥ 0, RT (t) ≥ 0, and RC (t) ≥ 0 for t ≤ 0 ≤ t3,

∃ a first time t such that :
4

9
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e

ET C (t4) = 0, E ′

T C (t4) < 0, S(t) ≥ 0, ET (t) ≥ 0, EC (t) ≥ 0, IT (t) ≥ 0, IC (t) ≥ 0, IT EC (t) ≥ 0,

IC ET (t) ≥ 0, IT C (t) ≥ 0, RT (t) ≥ 0, and RC (t) ≥ 0 for t ≤ 0 ≤ t4,

∃ a first time t5such that :

IT (t5) = 0, I ′

T (t5) < 0, S(t) ≥ 0, ET (t) ≥ 0, EC (t) ≥ 0, ET C (t) ≥ 0, IC (t) ≥ 0, IT EC (t) ≥ 0,

IC ET (t) ≥ 0, IT C (t) ≥ 0, RT (t) ≥ 0, and RC (t) ≥ 0 for t ≤ 0 ≤ t5,

∃ a first time t6such that :

IC (t6) = 0, I ′

C (t6) < 0, S(t) ≥ 0, ET (t) ≥ 0, EC (t) ≥ 0, ET C (t) ≥ 0, IT (t) ≥ 0, IT EC (t) ≥ 0,

IC ET (t) ≥ 0, IT C (t) ≥ 0, RT (t) ≥ 0, and RC (t) ≥ 0 for t ≤ 0 ≤ t6,

∃ a first time t7such that :

IT EC (t7) = 0, I ′

T EC
(t7) < 0, S(t) ≥ 0, ET (t) ≥ 0, EC (t) ≥ 0, ET C (t) ≥ 0, IT (t) ≥ 0, IC (t) ≥ 0,

IC ET (t) ≥ 0, IT C (t) ≥ 0, RT (t) ≥ 0, and RC (t) ≥ 0 for t ≤ 0 ≤ t7,

∃ a first time t8such that :

IC ET (t8) = 0, I ′

C ET
(t8) < 0, S(t) ≥ 0, ET (t) ≥ 0, EC (t) ≥ 0, ET C (t) ≥ 0, IT (t) ≥ 0, IC (t) ≥ 0,

IT EC (t) ≥ 0, IT C (t) ≥ 0, RT (t) ≥ 0, and RC (t) ≥ 0 for t ≤ 0 ≤ t8,

∃ a first time t9such that :

IT C (t9) = 0, I ′

T C (t9) < 0, S(t) ≥ 0, ET (t) ≥ 0, EC (t) ≥ 0, ET C (t) ≥ 0, IT (t) ≥ 0, IC (t) ≥ 0,

IT EC (t) ≥ 0, IC ET (t) ≥ 0, RT (t) ≥ 0, and RC (t) ≥ 0 for t ≤ 0 ≤ t9,

∃ a first time t10such that :

RT (t10) = 0, R′

T (t10) < 0, S(t) ≥ 0, ET (t) ≥ 0, EC (t) ≥ 0, ET C (t) ≥ 0, IT (t) ≥ 0, IC (t) ≥ 0,

IT EC (t) ≥ 0, IC ET (t) ≥ 0, IT C (t) ≥ 0, and RC (t) ≥ 0 for t ≤ 0 ≤ t10,

∃ a first time t11such that :

RC (t11) = 0, R′

C (t11) < 0, S(t) ≥ 0, ET (t) ≥ 0, EC (t) ≥ 0, ET C (t) ≥ 0, IT (t) ≥ 0, IC (t) ≥ 0,

IT EC (t) ≥ 0, IC ET (t) ≥ 0, IT C (t) ≥ 0, and RT (t) ≥ 0 for t ≤ 0 ≤ t11.

From the above equations, we verify that, S′(t1) = ∧ + σ1 RT (t1) + σ2 RC (t1) > 0,
E ′

T (t2) = β1(1 − α1)(IT (t2) + IT C (t2) + IT EC (t2))S(t2) ≥ 0 and similarly we verify that E ′

C (t3) ≥ 0, E ′

T C (t4) ≥ 0,
I ′

T (t5) ≥ 0, I ′

C (t6) ≥ 0, I ′

T EC
(t7) ≥ 0, I ′

C ET
(t8) ≥ 0, I ′

T C (t9) ≥ 0, R′

T (t10) ≥ 0 and R′

C (t11) ≥ 0.
Each of these are contradicting with our assumption. Therefore, we conclude that for t ≥ 0 we have S(t) ≥

, ET (t) ≥ 0, EC (t) ≥ 0, ET C (t) ≥ 0, IT (t) ≥ 0, IC (t) ≥ 0, IT EC (t) ≥ 0, IC ET (t) ≥ 0, IT C (t) ≥ 0, RT (t) ≥

, and RC (t) ≥ 0. Hence, the solutions of the system (1)–(11) remain positive ∀ t ≥ 0.

.3.1. Equilibria and basic reproduction number
The TB-COVID-19 model has 4 equilibrium points namely the disease-free equilibrium E0

=

∧

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
, TB only equilibrium E∗

= (S∗, E∗

T , 0, 0, I ∗

T , 0, 0, 0, 0, R∗

T , 0), COVID-19 only
quilibrium E⋆

= (S⋆, 0, E⋆ , 0, 0, I ⋆ , 0, 0, 0, 0, R⋆ ) and the endemic equilibrium (coexistence of both the disease)
C C C

10
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E∗∗
= (S∗∗, E∗∗

T , E∗∗

C , E∗∗

T C , I ∗∗

T , I ∗∗

C , I ∗∗

T EC
, I ∗∗

C ET
, I ∗∗

T c, R∗∗

T , R∗∗

C ). The coexistence endemic equilibrium is given by:

S∗∗
=

∧ + A1 I ∗∗

T + A2 I ∗∗

C

A3z1 + A4z2 + µ
, E∗∗

T =
A3z1S∗∗

A4z2 + (δ1 + µ)
, E∗∗

C =
A4z2S∗∗

A3z1 + (δ2 + µ)
,

E∗∗

T C =
A4z2 E∗∗

T + A3z1 E∗∗

C

ζ1 + ζ2 + µ
, I ∗∗

T EC
=

ϵ1 A4z2 I ∗∗

T + ζ1 E∗∗

T C

ξ1 + µ3 + µ
, I ∗∗

C ET
=

ϵ2 A3z1 I ∗∗

C + ζ2 E∗∗

T C

ξ2 + µ4 + µ
,

I ∗∗

T C =
ξ1 I ∗∗

T EC
+ ξ2 I ∗∗

C ET

η1 + η2 + µ5 + µ
, R∗∗

T =
γ1T ∗∗

T

σ1 + µ
, R∗∗

C =
γ2T ∗∗

C

σ2 + µ
.

The above expressions are in z1, z2, IT , and IC , where z1 = IT + IT C + IT EC and z2 = IC + IT C + IC ET .
This implies that these variables are in terms of IT , IC , IT EC , and IC ET . Using these we get four equations as
below, which when solved gives us I ∗∗

T , I ∗∗

C , I ∗∗

T EC
, I ∗∗

C ET
and hence we get the endemic equilibrium E∗∗. These

four equations are,

{[A4(IC + C1 IT EC + (C2 + 1)IC ET ) + (δ1 + µ)][A3(IT + (C1 + 1)IT EC + C2 IC ET )

+ A4(IC + C1 IT EC + (C2 + 1)IC ET ) + µ]} × [IT EC (η1C1 − ϵ1β2(1 − α2)C1 IT )

+ IC ET (η1C2 − ϵ1β2(1 − α2)(C2 + 1)IT ) − ϵ1β2(1 − α2)IT IC − (γ1 + µ1 + µ)IT ]

+ δ1 A3[IT + (C1 + 1)IT EC + C2 IC ET ](∧ + A1 IT + A2 IC ) = 0

{[A3(IT + (C1 + 1)IT EC + C2 IC ET ) + (δ2 + µ)][A3(IT + (C1 + 1)IT EC + C2 IC ET )

+ A4(IC + C1 IT EC + (C2 + 1)IC ET ) + µ]} × [IT EC (η2C1 − ϵ2β1(1 − α1)(C1 + 1)IC )

+ IC ET (η2C2 − ϵ2β1(1 − α1)C1 IC ) − ϵ2β1(1 − α1)IT IC − (γ2 + µ2 + µ)IC ]

+ δ2 A4[IC + C1 IT EC + (C2 + 1)IC ET ](∧ + A1 IT + A2 IC ) = 0

[ϵ1β2(1 − α2)(IC + C1 IT EC + (C2 + 1)IC ET )IT − (ξ1 + µ3 + µ)IT EC ]

× {[A3(IT + (C1 + 1)IT EC + C2 IC ET ) + A4(IC + C1 IT EC + (C2 + 1)IC ET ) + µ]

× [A4(IC + C1 IT EC + (C2 + 1)IC ET ) + (δ1 + µ)] × [A3(IT + (C1 + 1)IT EC + C2 IC ET )]}

+ (∧ + A1 IT + A2 IC ){[A3(IT + (C1 + 1)IT EC + C2 IC ET ) + (δ2 + µ)]

× [A3(IT + (C1 + 1)IT EC + C2 IC ET )] × [ζ1G1(IC + C1 IT EC + (C2 + 1)IC ET )]

+ [A4(IC + C1 IT EC + (C2 + 1)IC ET ) + (δ1 + µ)]

× [A4(IC + C1 IT EC + (C2 + 1)IC ET )] × [ζ1G2(IT + (C1 + 1)IT EC + C2 IC ET )]} = 0

[ϵ2β1(1 − α1)(IT + (C1 + 1)IT EC + C2 IC ET )IC − (ξ2 + µ4 + µ)IC ET ]

× {[A3(IT + (C1 + 1)IT EC + C2 IC ET ) + A4(IC + C1 IT EC + (C2 + 1)IC ET ) + µ]

× [A4(IC + C1 IT EC + (C2 + 1)IC ET ) + (δ1 + µ)] × [A3(IT + (C1 + 1)IT EC + C2 IC ET )]}

+ (∧ + A1 IT + A2 IC ){[A3(IT + (C1 + 1)IT EC + C2 IC ET ) + (δ2 + µ)]

× [A3(IT + (C1 + 1)IT EC + C2 IC ET )] × [ζ2G1(IC + C1 IT EC + (C2 + 1)IC ET )]

+ [A4(IC + C1 IT EC + (C2 + 1)IC ET ) + (δ1 + µ)]

× [A4(IC + C1 IT EC + (C2 + 1)IC ET )] × [ζ2G2(IT + (C1 + 1)IT EC + C2 IC ET )]} = 0
11
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where A1 =
γ1

σ1 + µ
, A2 =

γ2

σ2 + µ
, A3 = β1(1 − α1), A4 = β2(1 − α2), G1 =

A4

ζ1 + ζ2 + µ
, G2 =

A3

ζ1 + ζ2 + µ
, C1 =

ξ1

η1 + η2 + µ5 + µ
, C2 =

ξ2

η1 + η2 + µ5 + µ
, To show the existence of a unique TB - COVID-

19 endemic equilibrium point we set the parameter values as follows: ∧ = 5679, β1 = 1.5 × 10−6, β2 =

.8 × 10−5, α1 = 0.0001, α2 = 0.001, σ1 = 0.0005, σ2 = 0.001, δ1 = 0.07, δ2 = 0.071, ζ1 = 0.01, ζ2 =

.07, η1 = 0.07, η2 = 0.0714, ϵ1 = 1.5, ϵ2 = 1.1, γ1 = 0.006, γ2 = 0.0714, ξ1 = 0.033, ξ2 = 0.01, µ1 =

.69 × 10−4, µ2 = 0.8 × 10 − 4, µ3 = 0.7 × 10−4, µ4 = 0.9 × 10−4, µ5 = 0.9 × 10−4, µ = 0.0000425, and
btain the TB-COVID-19 endemic equilibrium point (E∗∗) numerically by using fsolve in MATLAB software.
e get the endemic equilibrium point to be E∗∗

= (250.96, 14.85, 4757.06, 19211.94, 155.51, 10023.43,

09 971.88, 336 642.98, 50 810.22, 3930.57, 430 234.93).

.3.2. Stability analysis of the disease free equilibrium E0

The DFE of the TB-COVID-19 model is E0
=

(
∧

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
. We have obtained the basic

eproduction numbers of the TB only sub-model and COVID-19 only sub-model in the previous sections. Using
he theorem in [49], the basic reproduction number (R0) of the TB-COVID-19 complete model is given as:

R0 = max{R0T , R0C }.

heorem 3.6. The disease-free Equilibrium given by E0 is locally asymptotically stable when R0 < 1 and is
nstable otherwise.

The Jacobian matrix JE0 of the system (1)–(11) at the disease-free equilibrium point E0 is obtained as below:

JE0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µ 0 0 0 −a15 −a16 −a15 −a16 −a17 σ1 σ2
0 −a22 0 0 a15 0 a15 0 a15 0 0
0 0 −a33 0 0 a16 0 a16 a16 0 0
0 0 0 −a44 0 0 0 0 0 0 0
0 δ1 0 0 −a55 0 0 0 η1 0 0
0 0 δ2 0 0 −a66 0 0 η2 0 0
0 0 0 ζ1 0 0 −a77 0 0 0 0
0 0 0 ζ2 0 0 0 −a88 0 0 0
0 0 0 0 0 0 ξ1 ξ2 −a99 0 0
0 0 0 0 γ1 0 0 0 0 −(σ1 + µ) 0
0 0 0 0 0 γ2 0 0 0 0 −(σ2 + µ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

here

a15 = β1(1 − α1)
∧

µ
, a16 = β2(1 − α2)

∧

µ
, a17 = (β1(1 − α1) + β2(1 − α2))

∧

µ

a22 = δ1 + µ, a33 = δ2 + µ, a44 = ζ1 + ζ2 + µ, a55 = γ1 + µ1 + µ, a66 = γ2 + µ2 + µ

a77 = ξ1 + µ3 + µ, a88 = ξ2 + µ4 + µ, a99 = η1 + η2 + µ5 + µ.

The characteristic polynomial is given by:

(λ+a44)×(λ+a77)×(λ+a88)×(λ+a99)×(λ+(σ1+µ))×(λ+(σ2+µ))×(λ2
+M1λ+Q1)×(λ2

+M2λ+Q2) = 0,

here

M1 = (δ1 + µ) + (γ1 + µ1 + µ), Q1 = (δ1 + µ)(γ1 + µ1 + µ) − β1(1 − α1)δ1
∧

µ

M2 = (δ2 + µ) + (γ2 + µ2 + µ), Q2 = (δ2 + µ)(γ2 + µ2 + µ) − β2(1 − α2)δ2
∧

µ

We observe that all the eigenvalues will be negative or will have negative real part when R0 < 1. Since R0 is
maximum of R0T and R0C , clearly the roots of both the quadratic polynomials will be either negative or have

egative real part when the basic reproduction number is lesser than 1. The explanation stands same as in previous

wo sections.

12
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3.3.3. Bifurcation and stability analysis of endemic equilibrium E∗∗

Let us denote S = x1, ET = x2, EC = x3, ET C = x4, IT = x5, IC = x6, IT EC = x7, IC ET = x8, IT C =

x9, RT = x10, RC = x11, so that the TB-COVID-19 model can be written as follows:
dx1
dt = f1 = ∧ + σ1x10 + σ2x11 − (λT + λC + µ)x1

dx2
dt = f2 = λT x1 − (δ1 + λC + µ)x2

dx3
dt = f3 = λC x1 − (δ2 + λT + µ)x3

dx4
dt = f4 = λC x2 + λT x3 − (ζ1 + ζ2 + µ)x4

dx5
dt = f5 = δ1x2 + η1x9 − (γ1 + ϵ1λC + µ1 + µ)x5

dx6
dt = f6 = δ2x3 + η2x9 − (γ2 + ϵ2λT + µ2 + µ)x6

dx7
dt = f7 = ϵ1λC x5 + ζ1x4 − (ξ1 + µ3 + µ)x7

dx8
dt = f8 = ϵ2λT x6 + ζ2x4 − (ξ2 + µ4 + µ)x8

dx9
dt = f9 = ξ1x7 + ξ2x8 − (η1 + η2 + +µ5 + µ)x9

dx10
dt = f10 = γ1x5 − (σ1 + µ)x10

dx11
dt = f11 = γ2x6 − (σ2 + µ)x11,

(16)

where

λT = β1(1 − α1)(x5 + x9 + x7) and λC = β2(1 − α2)(x6 + x9 + x8)

The Jacobian of the above system at the DFE E0 at the chosen bifurcation parameter β2, obtained by equating
R0C = 1 is

JE0(β2=β∗
2 ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µ 0 0 0 −a15 −a∗

16 −a15 −a∗

16 −a∗

17 σ1 σ2
0 −a22 0 0 a15 0 a15 0 a15 0 0
0 0 −a33 0 0 a∗

16 0 a∗

16 a∗

16 0 0
0 0 0 −a44 0 0 0 0 0 0 0
0 δ1 0 0 −a55 0 0 0 η1 0 0
0 0 δ2 0 0 −a66 0 0 η2 0 0
0 0 0 ζ1 0 0 −a77 0 0 0 0
0 0 0 ζ2 0 0 0 −a88 0 0 0
0 0 0 0 0 0 ξ1 ξ2 −a99 0 0
0 0 0 0 γ1 0 0 0 0 −(σ1 + µ) 0
0 0 0 0 0 γ2 0 0 0 0 −(σ2 + µ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

here

a15 =β1(1 − α1)
∧

µ
, a∗

16 = β∗

2 (1 − α2)
∧

µ
, a∗

17 = (β1(1 − α1) + β∗

2 (1 − α2))
∧

µ

a22 = δ1 + µ, a33 = δ2 + µ, a44 = ζ1 + ζ2 + µ, a55 = γ1 + µ1 + µ, a66 = γ2 + µ2 + µ

a77 = ξ1 + µ3 + µ, a88 = ξ2 + µ4 + µ, a99 = η1 + η2 + µ5 + µ

ere, β∗

2 =
(δ2+µ)(γ2+µ2+µ)µ

(1−α2)∧δ2
obtained by equating R0 = R0C = 1. The above linearized system with β2 = β∗

2
as zero eigenvalue. We then analyse the dynamics of the system near β2 = β∗

2 by using the theorem in [13]

s mentioned in the previous two sections. We now obtain the left and the right eigenvectors associated to

13



S.R. Bandekar and M. Ghosh Mathematics and Computers in Simulation 200 (2022) 1–31

[

a
v

C
p
d

S
e

f

the zero eigenvalue of the Jacobian JE0(β2=β∗
2 ). We denote the right eigenvector (the column matrix) as w =

w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11]T , where

w2 = w4 = w5 = w7 = w8 = w9 = w10 = 0,

w1 =
−((δ2 + µ)(γ2 + µ2 + µ)(σ2 + µ) − σ2γ2δ1)w11

µγ2δ2
, w3 =

(γ2 + µ2 + µ)(σ2 + µ)w11

δ2γ2

w6 =
(σ2 + µ)w11

γ2
, and w11 = w11 > 0,

nd the left eigenvector (the row matrix) associated with the zero eigenvalue as
= [v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11], where

v1 = v2 = v5 = v10 = v11 = 0

v6 =
δ2 + µ

δ2
v3, v9 =

(δ2 + µ)(γ2 + µ2 + µ + η2)
δ2(η1 + η2 + µ5 + µ)

v3, v7 =
ξ1(δ2 + µ)(γ2 + µ2 + µ + η2)

δ2(η1 + η2 + µ5 + µ)(ξ1 + µ3 + µ)
v3

v4 =
1

(ζ1 + ζ2 + µ)

[
ζ1ξ1(δ2 + µ)(γ2 + µ2 + µ + η2)

δ2(η1 + η2 + µ5 + µ)(ξ1 + µ3 + µ)
+

ζ2

(ξ2 + µ4 + µ)

×

(
ξ2(δ2 + µ)(γ2 + µ2 + µ + η2)

δ2(η1 + η2 + µ5 + µ)
+

(δ2 + µ)(γ2 + µ2 + µ)
δ2

)]
v3

v8 =
1

(ξ2 + µ4 + µ)

(
ξ2(δ2 + µ)(γ2 + µ2 + µ + η2)

δ2(η1 + η2 + µ5 + µ)
+

(δ2 + µ)(γ2 + µ2 + µ)
δ2

)
v3, and v3 = v3 > 0

ontinuing as per the theorem in [13], we compute a and b to do the bifurcation analysis by finding the non-zero
artial derivatives associated with the system (16) at the disease-free equilibrium point (E0). These non-zero partial
erivatives are :

∂2 f3

∂x1∂x6
= β∗

2 (1 − α2) =
(δ2 + µ)(γ2 + µ2 + µ)µ

∧δ2
=

∂2 f3

∂x6∂x1
,

∂2 f3

∂x6∂β2
= (1 − α2)

∧

µ

∴ a = −
2V3W 2

11((γ2 + µ2 + µ)(δ2 + µ)(σ2 + µ) − γ2δ2σ2)(γ2 + µ2 + µ)(σ2 + µ)(δ2 + µ)
∧δ2

2γ
2
2

< 0

and b =
δ1 ∧ V3W4(1 − α1)(σ1 + µ)

µγ1(δ1 + µ)
> 0

ince a < 0 and b > 0, from the theorem in [13] (Theorem A.1) it implies that the unique co-existence endemic
quilibrium point (E∗∗) which exists when R0 = R0C > R0T > 1 will be locally asymptotically stable and the

system will not exhibit any backward bifurcation at R0 = 1. Therefore we have the following theorem established.

Theorem 3.7. The unique endemic equilibrium (E∗∗) of the system (1)–(11) is locally asymptotically stable when
R0 = R0C > R0T > 1.

4. Numerical simulation

To achieve a better insight on the dynamics of the model, the illustration of the model solution and disease
prevalence is provided graphically along with sensitivity analysis by means of forward sensitivity index and PRCC
in this section. The values of few parameters in the model are obtained from the literature and the rest are assumed
in a realistic manner to carry out the simulations. We consider the data related to India to perform the simulations,
as India is one of the worst affected country due to COVID-19 as well as TB disease is prevalent in the country. As
per the data from [2,3], during the period between 19 September 2020 to 2021 a total of 23.2 million COVID-19
cases were confirmed in India, and as per [4,5] total TB cases ranging between 0.4 million to 0.58 million have
been reported in 2021. To set the value of β2, we use the TB provisional data from [6,46], wherein a total of 1.6
million plus TB cases were reported in 2020 in India. The total population of India equals near 1397 million, and
by applying the unit conversion we get the TB infection rate (β1) to be 7 × 10−6 and COVID-19 infection rate (β2)
as 5 × 10−5. The recruitment rate (∧), natural death rate (µ) are demographic and the other parameters are taken
rom several studies and few are realistically assumed. The remaining parameters are listed in Table 1.
14
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Table 1
Model parameters.

Parameters Meaning Value Reference

∧ Recruitment rate 5 Varies
α1 TB Mask usage parameter [0,1] Varies
α2 COVID-19 Mask usage parameter 0.05 [19,34]
σ1 Waning rate from RT to S 0.0005 Assumed
σ2 Waning rate from RC to S 0.001 Assumed
δ1 Rate at which TB exposed become TB infectious [0.01,0.071] [46,47]
δ2 Rate at which COVID-19 exposed become COVID-19 infectious [0.071,0.33] [29,31]
ζ1 Progression from ET C to IT EC 0.01 Assumed
ζ2 Progression from ET C to IC ET 0.07 Assumed
η1 Rate at which co-infected individuals (IT C ) recover from COVID-19 only 0.0714 [44,54]
η2 Rate at which co-infected individuals (IT C ) recover from TB only [0.004,0.07] [46,47]
ϵ1 Factor that enhances acquiring of COVID-19 infection after being infected with TB 1.5 Assumed
ϵ2 Factor that enhances acquiring of TB infection after being infected with COVID-19 1.1 Assumed
γ1 Recovery rate of IT [0.004,0.07] [46,47]
γ2 Recovery rate of IC 0.0714 [44,54]
ξ1 Progression from IT EC to IT C 0.033 Assumed
ξ2 Progression from IC ET to IT C 0.033 Assumed
µ1 Death rate of IT 0.69 × 10−4 Assumed
µ2 Death rate of IC 0.8 × 10−4 Assumed
µ3 Death rate of IT EC 0.7 × 10−4 Assumed
µ4 Death rate of IC ET 0.9 × 10−4 Assumed
µ5 Death rate of IT C 0.9 × 10−4 Assumed
µ Natural death rate 0.0000425 Demographic

The model solution is presented in Fig. 2, from which we observe the variation in each variable over a time
eriod of 400 days. The parameter values are as in Table 1. Fig. 3 represents the variation in total infected and
otal recovered population with increase or decrease in the respective parameter values. In Fig. 3, we showcase
he impact of simultaneous change key parameters on the total infected and recovered population. Fig. 3(a) clearly
ignifies importance of the face mask factor in reducing the number of infections. We note that with increase in
he values of α1 and α2 by greater margin, there is a huge fall in the total number of infected population. Use of
ace mask efficiently will help control the spread or virus in case of COVID-19 as well as the TB bacilli suspended
n air in the form of droplet significantly. Fig. 3(b) shows that with increase in infection rates, the spread will be
ccelerated as higher infection rate imply occurrence of more effective contacts with infectious individuals. This
eeds to be taken seriously as this situation demands implementation of necessary interventions to reduce the spread
f infection. Fig. 3(c) shows that if the immunity wanes quickly, the recoveries will reduce as this suggests that
fter recovery, the individuals soon become susceptible towards the disease again.

.1. Sensitivity analysis

In this section we illustrate sensitivity analysis by means of forward sensitivity index [15] of the basic
eproduction number (R0) as well as we apply the approach of LHS-PRCC (i.e. Latin Hypercube Sampling -
artial Rank Correlation Coefficient) [11,32] on our model given by Eqs. (1)–(11) to study the influence on
ifferent infected population class of different parameters involved in the model. In the study [28], the authors
orked on global dynamics of a HTLV-I infection model and have performed detailed sensitivity analysis by
eans of normalized forward sensitivity index to bring out the relative significance of certain parameters in disease

ransmission. Basic reproduction number (R0) is very crucial in signifying the number the secondary cases arising
from a single infected primary case and checks on whether the situation is under control or not. The normalized
forward sensitivity index of a variable with respect to a parameter is the ratio of the relative change in the variable
to the relative change in the parameter [15]. Therefore, if for say b represents a parameter, then the normalized
forward sensitivity index of R0 with respect to b is given by

r R0
b =

∂ R0
×

b
.

∂b R0

15
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Fig. 2. Solution curves of the TB-COVID-19 co-infection model.

From Fig. 4 we note that R0 shares negative indices with α2 and γ2 and positive indices with ∧ and β2. This
implies the negative and positive correlation with the former and latter parameters respectively. This indicates that if
larger fraction of population is using the mask efficiently then the spread of virus and the bacteria can be diminished.
Higher recovery rates directly imply a shorter infectious period, which further suggests that period to make effective
contacts is less, thereby reduction in the spread of infection and hence the basic reproduction number. In Fig. 4, the
sensitivity indices respective to each parameter. These indices values further suggest that if there is a 10% increase
in infection rate (β2), then there will be a rise in the R0 value by 10% as the respective index value is 1 for this
parameter. In a similar way we note that the r R0

γ2 = −0.99992. This implies that a 10% increase in the recovery
rate (γ2) will decrease the R0 by 9.9992%. Similarly it applies to the remaining set of parameters. In a similar
context, we study the impact of two parameters at once on the basic reproduction number (R0)in Fig. 5. Fig. 5(a)
shows that with the increase in the infection rate (β2), the R0 value increases and it decreases with increase in
α2 value. Fig. 5(b) shows a similar behaviour with β2 and γ2. In Fig. 5(c) we clearly witness the decrease in the
R0 value with increase in face mask factor (α2) and recovery rate (γ2) values. This is evident as higher recovery
ates implies shorter infectious period and thereby implying lesser chances of disease transmission. We obtain for
specific range of these parameters, the R0 value can be brought below 1. The analysis on reproduction number is

rucial as R0 value is highly significant in determining the state of an epidemic. The value greater than 1 implies
idespread of the disease in an uncontrolled manner. Hence from these two illustrations we conclude that usage of

ace mask correctly and efficiently will help in bringing down the basic reproduction number value thereby reducing
he spread of disease vastly.

Sensitivity analysis following the approach of Latin Hypercube Sampling and Partial Rank Correlation Coefficient
s employed to understand the complete parameter space on the different infected population variables of the model,
nd is illustrated in Fig. 6. The parameters are assumed to be uniformly distributed and the different response
unctions considered to perform the analysis are IT , IC , IT EC , IC ET , and IT C . The effectiveness of this approach
s tested by determining the PRCC values and further examining the sensitivity of the parameters of the developed
odel. To get the PRCC values, at first Latin Hypercube Sampling (LHS) method is applied to stratify the sample

16
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v

Fig. 3. Variation in total infected population with respect to (a) α1, α2, (b) β1, β2, and variation in total recovered population with respect
to (c) σ1, σ2.

Fig. 4. Normalized forward sensitivity index of the basic reproduction number of the TB-COVID-19 co-infection model. The parameter
alues are as in Table 1.
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Fig. 5. Contour plots showing the effect of (a) β2, α2, (b) β2, γ2, and (c) γ2, α2 on the basic reproduction number.

without replacement. This is followed by setting the baseline values of the parameters and then the simulations are
carried out for PRCC analysis. The set parameter values range between ±25% from the baseline value which are
listed in Table 2, and the simulations are run for 500 days per LHS.

The PRCC value for each parameter corresponding to the respective response function is provided in Table 2.
The magnitude as well as the direction of PRCC values of the distinct parameters are of prime importance in
determining a respective parameter’s contribution in model prediction and level of exactness. The PRCC values
which are greater than 0.5 (closer to 1) and lesser than −0.5 (closer to −1) are quite important [45], as this implies
stronger influence of LHS parameter on the outcome measure. From the Fig. 6, we clearly notice that the parameters
β1, β2, γ1, γ2, η, η2, ϵ1, ϵ2, ξ1, ξ2, σ2, δ1, δ2 are having a stronger influence on each of the infected population
onsidered. It is clearly observed that TB infection rate (β1) has PRCC values very close to 1, signifying a higher
evel uncertainties or variations in infected population (IT , IT EC , IC ET and IT C ) with change in its values. Surely,

in case of the COVID-19 only infected population, the respective β2 PRCC value is closer to 1 signifying a strong
positive correlation. The similar explanation goes for the other such significant parameters. We observe that the
recovery rates γ1 and γ2, and the enhancement factors ϵ1, ϵ2 and ϵ3 have negative and positive PRCC values
respectively with respect to the exposed and co-infected population IT EC , IC ET and IT C . We also note that in each

f these figures, either one of the parameters α and α or both which signify product of face mask efficacy and
1 2

18
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Fig. 6. PRCC results showing sensitivity indices of the model parameters with (a) TB only infected (IT ), (b) COVID-19 only infected (IC ),
(c) TB infected COVID-19 exposed (IT EC ), (d) COVID-19 infected TB exposed (IC ET ), and (e) TB and COVID-19 co-infected (IT C ).
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Table 2
PRCC values of the model parameters.

Parameters Baseline value Range PRCC (IT ) PRCC (IC ) PRCC (IT EC ) PRCC (IC ET ) PRCC (IT C )

∧ 2 1.5–2.5 0.0158 0.5987 0.2875 0.1962 0.2968
β1 7 × 10−6 5.25 × 10−6–8.75 × 10−6 0.8960 −0.2017 0.8655 0.9202 0.9060
β2 5 × 10−5 3.75 × 10−5–6.25 × 10−5

−0.7046 0.7854 0.2692 −0.2717 0.0020
α1 0.05 0.0375–0.0625 −0.0567 0.0059 −0.0759 −0.1636 −0.1950
α2 0.05 0.0375–0.0625 −0.0152 −0.0661 −0.0387 0.0402 −0.0156
σ1 0.0005 3.75 × 10−4–6.25 × 10−4

−0.0541 0.0519 −0.0368 −0.0178 0.0210
σ2 0.001 0.00075–0.0013 0.3499 0.9321 0.7623 0.6233 0.6571
δ1 0.03 0.0225–0.0375 0.0227 −0.0410 −0.0481 −0.1052 −0.0189
δ2 0.071 0.0532–0.0887 −0.4075 0.2250 −0.3565 −0.6160 −0.5699
ζ1 0.01 0.0075–0.0125 0.0371 −0.0258 0.1113 −0.0902 −0.0950
ζ2 0.07 0.0525–0.0875 0.0407 0.0816 −0.1442 0.0232 −0.1332
η1 0.04 0.03–0.05 0.6535 −0.0468 0.5468 0.2936 −0.0807
η2 0.0714 0.0536–0.0893 −0.8180 0.1113 −0.7595 −0.6782 −0.8872
ϵ1 1.5 1.125–1.875 0.0681 0.0099 0.6170 0.2307 0.4251
ϵ2 1.1 0.825–1.375 0.3765 −0.1046 0.3530 0.5742 0.5122
γ1 0.04 0.03–0.05 −0.9093 −0.0857 −0.8418 −0.6079 −0.7352
γ2 0.0714 0.0536–0.0893 0.1770 −0.9617 −0.6669 −0.5705 −0.6239
ξ1 0.033 0.0248–0.0413 −0.5962 0.1245 −0.8860 −0.5685 −0.6096
ξ2 0.01 0.0075–0.0125 −0.8501 −0.0614 −0.8481 −0.9849 −0.9549
µ1 0.000069 5.175 × 10−5–8.625 × 10−5

−0.0267 −0.0055 0.0048 0.0225 −0.0234
µ2 0.00008 6 × 10−5–1 × 10−4 0.0059 −0.0039 0.0256 −0.0151 0.0091
µ3 0.00007 5.25 × 10−5–8.75 × 10−5

−0.0976 0.0787 −0.0238 −0.0197 −0.0077
µ4 0.00009 6.75 × 10−5–1.125 × 10−4

−0.0828 −0.0372 −0.1033 0.0033 −0.0955
µ5 0.00009 6.75 × 10−5–1.125 × 10−4

−0.0345 −0.0411 −0.0397 −0.0650 −0.1212
µ 0.0000425 3.1875 × 10−5–5.3125 × 10−5

−0.0156 −0.1137 −0.0828 −0.0172 −0.0099

fraction of population wearing it precisely, have negative PRCC values with respect to each infected population
class, thereby signifying the crucial role of correct face mask usage in reduction of infections. The progression
rates δ1 and δ2 are quite significant, since their values are either greater than 0.5 or lesser that −0.5, suggesting

igher level of uncertainty in the rise and fall of the infected cases. Overall, we observe that the correlation between
he respective variable and the parameter based on PRCC values, justifies with the respective model equations.

. Optimal control

.1. Optimal control problem

Optimal control analysis is of great importance in determining significant control strategies in infectious disease.
s per the report by WHO [52], the TB care was reduced by 21% in low-income countries amid the COVID-19
andemic. Since TB has a varied incubation as well as infectious period, in due time if treatment is provided and
wareness is spread through counselling, risks related to chronic illness and development of COVID-19 disease along
ith TB can be avoided. It is also witnessed that COVID-19 can spread easily through the unidentified infectives.
herefore, it is of utmost significance for these exposed individuals to be isolated so that their contact with TB

nfectives can also be reduced. Being exposed to both of the diseases can be avoided if proper care is taken in
ontrolling the spread of both diseases. Contemplating this, we include 2 control parameters in the TB-COVID-19
odel represented by the system of Eqs. (1)–(11) which are:

• u1: This control relates to improved and early detection of the exposed COVID-19 individuals by setting up
rigorous testing drives, investing on home testing kits, and isolation facilities. This control is incorporated with
a vision towards reduction of exposed COVID-19 individuals coming in contact with TB infected patients. This
could help in reducing the population from getting exposed to both the diseases.

• u2: This control relates towards improvement of TB recovery period. This is equated towards implementation
of proper treatment and counselling policies for TB care, so that recovery period can be improved by providing
right treatment and counselling at the initial stage, thereby reducing the negligence in taking treatment.
20
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These two control functions are bounded and Lebesgue integrable on [0, t f ], where t f is the pre-fixed time period
to which these two controls are applied. It is assumed that u1 and u2 lie between 0 and 1, the reason being, if
these two equal zero, it simply infers no efforts being placed in these controls. Similarly, utmost effort implies to
these values being 1. As per the above explanation we include the two controls in the model (1)–(11) and obtain
the following optimal control model:

d S
dt

=∧ + σ1 RT + σ2 RC − (λT + λC + µ)S (17)

d ET

dt
=λT S − (δ1 + λC + µ)ET (18)

d EC

dt
=λC S − (δ2 + λT (1 − u1(t)) + µ)EC (19)

d ET C

dt
=λC ET + λT (1 − u1(t))EC − (ζ1 + ζ2 + µ)ET C (20)

d IT

dt
= δ1 ET + η1 IT C − (ϵ1λC + µ1 + µ)IT − (γ1 + u2(t))IT (21)

d IC

dt
= δ2 EC + η2 IT C − (γ2 + ϵ2λT + µ2 + µ)IC (22)

d IT EC

dt
= ϵ1λC IT + ζ1 ET C − (ξ1 + µ3 + µ)IT EC (23)

d IC ET

dt
= ϵ2λT IC + ζ2 ET C − (ξ2 + µ4 + µ)IC ET (24)

d IT C

dt
= ξ1 IT EC + ξ2 IC ET − (η1 + η2 + +µ5 + µ)IT C (25)

d RT

dt
= (γ1 + u2(t))IT − (σ1 + µ)RT (26)

d RC

dt
=γ2 IC − (σ2 + µ)RC , (27)

where

λT = β1(1 − α1)(IT + IT C + IT EC ) and λC = β2(1 − α2)(IC + IT C + IC ET )

The objective functional for the fixed t f is given by

J =

∫ t f

0
C1 IT + C2 IC + C3 IT EC + C4 IC ET + C5 IT C +

1
2

C6u2
1 +

1
2

C7u2
2, (28)

here C1, C2, C3, C4, C5, C6, C7 ≥ 0 are the weight constants.
Objective is to find the control parameters u1∗, u2∗ such that

J (u1∗, u2∗) = min
u1,u2∈Ω

J (u1, u2) (29)

where Ω is the control set, defined as

Ω = {u1, u2 : measurable and 0 ≤ u1, u2 < 1} and t ∈ [0, t f ]

The Lagrangian of this problem is:

L(IT , IC , IT EC , IC ET , IT C , u1, u2) = C1 IT + C2 IC + C3 IT EC + C4 IC ET + C5 IT C +
1
2

C6u2
1 +

1
2

C7u2
2

he Hamiltonian H formed for our problem is :

H= (IT , IC , IT EC , IC ET , IT C , u1, u2) + λ1
d S
dt

+ λ2
d ET

dt
+ λ3

d EC

dt
+ λ4

d ET C

dt
+ λ5

d IT

dt
+ λ6

d IC

dt

+ λ7
d IT EC

+ λ8
d IC ET

+ λ9
d IT C

+ λ10
d RT

+ λ11
d RC
dt dt dt dt dt
21
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where λ′

i s are the adjoint variables (i = 1 to 11). The adjoint variables are written in the form of differential
equations as follows:

dλ1

dt
=−

∂H
∂S

= (λ1 − λ2)β1(1 − α1)(IT + TT C + IT EC ) + (λ1 − λ3)β2(1 − α2)(IC + TT C + IC ET )

+λ1µ (30)
dλ2

dt
=−

∂H
∂ ET

= (λ2 − λ4)β2(1 − α2)(IC + TT C + IC ET ) + (λ2 − λ5)δ1 + λ2µ (31)

dλ3

dt
=−

∂H
∂ EC

= (λ3 − λ4)(1 − u1(t))β1(1 − α1)(IT + TT C + IT EC ) + (λ3 − λ6)δ2 + λ3µ (32)

dλ4

dt
=−

∂H
∂ ET C

= (λ4 − λ7)ζ1 + (λ4 − λ8)ζ2 + λ4µ (33)

dλ5

dt
=−

∂H
∂ IT

= −C1 + (λ1 − λ2)β1(1 − α1)S + (λ3 − λ4)β1(1 − α1)(1 − u1(t))EC

+ (λ5 − λ10)(γ1 + u2(t)) + (λ5 − λ7)ϵ1β2(1 − α2)(IC + TT C + IC ET )

+ (λ6 − λ8)ϵ2β1(1 − α1)IC + λ5(µ1 + µ) (34)
dλ6

dt
=−

∂H
∂ IC

= −C2 + (λ1 − λ3)β2(1 − α2)S + (λ2 − λ4)β2(1 − α2)ET + (λ6 − λ11)γ2

+ (λ5 − λ7)ϵ1β2(1 − α2)IT + (λ6 − λ8)ϵ2β1(1 − α1)(IT + IT C + IT EC )
+ λ6(µ2 + µ) (35)

dλ7

dt
=−

∂H
∂ IT EC

= −C3 + (λ1 − λ2)β1(1 − α1)S + (λ3 − λ4)β1(1 − α1)(1 − u1(t))EC

+ (λ6 − λ8)ϵ2β1(1 − α1)IC + (λ7 − λ9)ξ1 + λ7(µ3 + µ) (36)
dλ8

dt
=−

∂H
∂ IC ET

= −C4 + (λ1 − λ3)β2(1 − α2)S + (λ2 − λ4)β2(1 − α2)ET + (λ8 − λ9)ξ2

+ (λ5 − λ7)ϵ1β2(1 − α2)IT + λ8(µ4 + µ) (37)
dλ9

dt
=−

∂H
∂ IT C

= −C5 + (λ1 − λ2)β1(1 − α1)S + (λ1 − λ3)β2(1 − α2)S

+ (λ3 − λ4)β1(1 − α1)(1 − u1(t))EC + (λ2 − λ4)β2(1 − α2)ET

+ (λ5 − λ7)ϵ1β2(1 − α2)IT + (λ6 − λ8)ϵ2β1(1 − α1)IC

+ (λ5 − λ9)η1 + (λ6 − λ9)η2 + λ9(µ5 + µ) (38)
dλ10

dt
=−

∂H
∂ RT

= (λ10 − λ1)σ1 + λ10µ (39)

dλ11

dt
=−

∂H
∂ RC

= (λ11 − λ1)σ2 + λ11µ (40)

Let S̃, ẼT , ẼC , ẼT C , ĨT , ĨC , ĨT EC , ĨC ET , ĨT , R̃T , R̃C be optimum values of S, ET , EC , ET C ,
IT , IC , IT EC , IC ET , IT C , RT , and RC respectively. Let λ̃1, λ̃2, λ̃3, λ̃4, λ̃5, λ̃6, λ̃7, λ̃8, λ̃9, λ̃10, and λ̃11

be solution of system of Eqs. (30)–(40). By using [30,36,37] we state and prove the below theorem.

Theorem 5.1. There exist optimal controls u1∗, u2∗ ∈ Ω such that J (u1∗, u2∗) = min J (u1, u2) subject to extended
system of Eqs. (17)–(27).

Proof. We use [37] to prove this theorem. In this case, we observe that the controls are non-negative. The
necessary convexity of the objective functional in (u1, u2) is satisfied for minimizing the problem. The set of control
variable, u1, u2 ∈ Ω is convex and closed by definition. The state variables are bounded and the integrand of the
functional C1 IT + C2 IC + C3 IT EC + C4 IC ET + C5 IT C +

1
2 C6u2

1 +
1
2 C7u2

2 is convex on Ω . Since there exist optimal
ontrols for minimizing the functional subject to systems (17)–(27) and (30)–(40), we use Pontryagin’s maximum
rinciple [37] to derive the necessary conditions to find the optimal solutions in the following way: Suppose (z, u)
is an optimal solution of an optimal control problem, then this implies that there exists a non-trivial vector function

22



S.R. Bandekar and M. Ghosh Mathematics and Computers in Simulation 200 (2022) 1–31
λ = λ1, λ2, . . . , λn satisfying the following:

dz
dt

=
∂H(t, z, u, λ)

∂λ
, 0 =

∂H(t, z, u, λ)
∂u

at u∗,
dλ

dt
= −

∂H(t, z, u, λ)
∂z

Theorem 5.2. The optimal controls u1∗, u2∗ which minimize J over the region Ω is given by:

u1∗ = min {1, max(0, ũ1)} and u2∗ = min {1, max(0, ũ2)} ,

where

ũ1 =
(λ3 − λ4)β1(1 − α1)(IT + IT C + TT EC )EC

C6
and ũ2 =

(λ5 − λ10)IT

C7

Proof. We prove this theorem by using [36,37] and Theorem 5.1.
Using the optimally condition: ∂H

∂u1
= 0, ∂H

∂u2
= 0 we get,

∂H
∂u1

= C6u1 + (λ3 − λ4)β1(1 − α1)(IT + IT C + TT EC )EC = 0

H⇒ u1 =
(λ3 − λ4)β1(1 − α1)(IT + IT C + TT EC )EC

C6
= ũ1

and
∂H
∂u2

= C7u2 + (λ5 − λ10)IT = 0

H⇒ u2 =
(λ5 − λ10)IT

C7
= ũ2

Again the lower bound is 0 and upper bound is 1 for the controls u1 and u2. This suggests that u1 = u2 = 0 if
ũ1 < 0 and ũ2 < 0, also u1 = u2 = 1 if ũ1 > 1 and ũ2 > 1, otherwise u1 = ũ1 and u2 = ũ2. Therefore, for these
controls u1∗ and u2∗ we get optimum values of J .

5.2. Optimal control model simulation

In this section we perform simulations for a period of 400 days and illustrate analytical results using MATLAB
software, by setting the parameter values as in Table 1. The extended system of Eqs. (17)–(27) is solved
applying iterative method using forward and backward difference approximation as in [30]. The forward difference
approximation is applied to first solve the state equations (17)–(27), and then applying the backward difference
approximation, the adjoint equations (30)–(40) are solved. The positive valued constants C1, C2, C3, C4, C5 are
the weight constants which represent the weight which balance offs the TB only infected population, COVID-19
only infected population, TB infected COVID-19 exposed population, COVID-19 infected TB exposed population,
and co-infected population to both the diseases respectively. The positive constants C6, and C7 represent the
weight constants for improved testing and TB treatment, counselling respectively. The values assigned to the weight
constants are C1 = 1, C2 = 1, C3 = 1, C4 = 1, C5 = 1, C6 = 100, and C7 = 100. The initial values assigned
to the variables to perform the simulations are S = 10000, ET = 100, EC = 100, ET C = 100, IT = 100, IC =

100, IT EC = 100, IC ET = 100, IT C = 10, RT = 1, RC = ‘1. In this section, the impact on control profile with
variation in costs is studied. This is followed by studying the impact on the infected population with and without
the two controls as well considering specifically one control at a time.

The illustration on the control profiles over time as well the impact on the same due to variation in costs is
depicted in Fig. 7. It is clearly observed that the control u2 needs to be maintained at 1 for longer time compared
to that of control u1, implying that significance of control u2 is more compared to that of u1. From Fig. 7(c) and
(d) we observe that with the increase in the costs, the duration for which the control profile resides at 1 declines.
This is justified, as higher costs in the means of providing testing kits, conducting testing drives, counselling and
treatment facilities etc. call in for lesser duration of investments on those equipment and policies. In the coming
section we see the variation in infected population with and without application of controls parameters, and provide

a clarity on the significance of the controls individually as well as when applied together.
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Fig. 7. Control profile of (a) u1, (b) u2, (c) u1 with variation in costs and (d) u2 with variation in costs.

.2.1. Optimal control simulation when both controls are applied
When both controls relating to enhanced detection and isolation (i.e. u1 ̸= 0) and early TB treatment and

ounselling (i.e. u2 ̸= 0) are applied, it results in significant difference in the number of infectives under the
pplication of controls which is depicted in Fig. 8. We note that for each class of infected population there is huge
ecrease in the number of infectives when both controls are applied, and the number nears to zero in a shorter
eriod of time, except for COVID-19 only infected population. In the later case there is a very small difference,
ince the controls focus on minimizing exposure to both diseases with major insistence on TB treatment. As per the
eport [52] and the study in [14], it is conveyed that the TB infected individuals, both latent TB patients as well as
ith TB disease are at increased risk of getting COVID-19 as well as the severity of the COVID-19 symptoms in

hese patients would be more. Hence, our optimal control model which was framed keeping this into consideration
rovides desired results, stressing on the importance of both the control parameters when implemented at once.

.2.2. Optimal control simulation when exclusively one of the controls is applied
In the case when u1 = 0 and only the control related to improved TB treatment and counselling (u2 ̸= 0) is
pplied we see that there is a considerable decline in the number of infectives of each class when the control is
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Fig. 8. Variation in infected population with and without both the controls.
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Fig. 9. Variation in infected population with TB treatment and counselling (u2 ̸= 0, u1 = 0) control only.
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applied which is shown in Fig. 9. This suggests that the control u2 is quite important in controlling the disease
spread, since even when implemented alone it contributes towards reduction of infected cases. This is supported by
the studies [14,52] which suggests that TB infected patients are more vulnerable to COVID-19, implying higher
individuals with dual infections. On the other hand, from the Fig. 10 we note that there is barely any difference in
number of infectives with and without the control u1. This suggests that without improved TB care (u2 = 0) and
mere detection and isolation of exposed COVID-19 individuals (u1 ̸= 0) will not help in decline of co-infections,
single disease infection or simultaneous infection from one disease and exposure to another disease as per our
model. Though the control u1 is not significant compared to the control u2 when applied separately, however when
both controls are applied at once we notice that the decline in number of infected population is much higher when
mere one control is applied. Therefore, these simulations stress on the importance of both the controls in controlling
spread of co-infections when implemented together.

6. Conclusion

In this work we performed a detailed study on the deterministic epidemiological model comprising of 11
compartments. The study began with a detailed analysis covering equilibria, basic reproduction number, stability and
bifurcation analysis of the disease-free and endemic equilibrium. From the analysis on TB only model and COVID-
19 only model we prove that the disease-free equilibrium and the endemic equilibrium are locally asymptotically
stable when the respective basic reproduction numbers (R0T and R0C ) are less than 1 and greater than 1 respectively.
It is concluded that backward bifurcation does not exist in both models by applying centre manifold theory as in [13].
We obtain 4 equilibria for the TB - COVID-19 complete model, which are the disease-free equilibrium point, TB
only equilibrium point, COVID-19 only equilibrium point and TB - COVID-19 co-existence endemic equilibrium
point. The stability and bifurcation analysis are shown which prove the non-existence of backward bifurcation at
R0 = 1. These theoretical results are then followed by numerical simulations, sensitivity analysis and optimal control
analysis.

Time series behaviour of the total infected and total recovered population for a period of 400 days is studied
with respect to variation in two parameters at once, and it is witnessed that with increase in face mask efficacy and
fraction of population wearing it precisely, the infection spread can be curbed. On the other hand, if the immunity
wanes quickly, the recovered individuals move to being susceptible and hence at risk of infections. We note that
with increase in recovery rates, the number of infected reduces, since smaller recovery implies shorter infectious
period thereby nullifying the chance of spreading infections. Similarly, the impact of recovery rate, infection rate and
face mask factor on the basic reproduction number is illustrated through sensitivity analysis and similar results are
obtained. Using LHS-PRCC approach the significance and correlation of all the parameters with their respective
response functions which in our case of study were the different infected population classes were obtained and
analysed based on the PRCC values.

Optimal control analysis was then performed by including two control parameters, one is the enhanced detection
and isolation (u1(t)) and the other is early TB treatment and counselling (i.e. u2(t)). A significant difference in
the number of infectives under the application of controls was witnessed in the illustration. The effect of these
controls individually was also performed and when compared, the control u2(t) served to be more important than

1(t), but when applied together, the reduction in the number of infected population was quite huge. Therefore,
oing by the study in [14] and the report by WHO [52] both latent TB patients as well as with TB disease
re at increased risk of getting COVID-19. The controls which were included in the study provided desired
esults so as to combat the challenge of co-infection of these disease spread. Hence, this analysis focused on
he need of improved TB treatment and care as well as enhanced testing and isolation facilities for COVID-19
xposed population to combat the unforeseen spread of two deadly diseases. Hence, the results from the study
mplies acceleration in the disease spread if proper treatment and care for TB infectives is neglected and detection,
solation facilities are not implemented. On a concluding note, the study further suggests that in the times of a
andemic, other chronic diseases, specifically the ones which spread through close contacts must not be neglected
nd adequate care has to be taken so that mortality due to co-infection and unavailability of timely treatment can

e avoided.
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Fig. 10. Variation in infected population with testing drives for detection of exposed COVID-19 cases (u1 ̸= 0, u2 = 0) control only.
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ppendix

heorem A.1 (Castillo-Chavez and Song). Consider the following general system of ordinary differential equations
ith a parameter φ:

dx
dt

= f (x, φ), f : Rn
× R → R and C2(Rn

× R) (41)

where 0 is an equilibrium point of the system that is, f (0, φ) ≡ 0 for all φ and assume

1. A = Dx f (0, 0) =

(
∂ fi
∂x j

(0, 0)
)

is the linearization matrix of system (2) around the equilibrium 0 and φ

evaluated at 0. Zero is a simple eigenvalue of A and other eigenvalues of A have negative real parts;
2. Matrix A has a right eigenvector W and a left eigenvector V (each corresponding to the zero eigenvalue);

Let fk be the kth component of f and

a =

n∑
k, j,i=1

vkwiw j
∂2 fk

∂xi∂x j
(0, 0), b =

n∑
k,i=1

vkwi
∂2 fk

∂xi∂φ
(0, 0)

The local dynamics of the system around 0 is totally determined by the signs of a and b.

1. a > 0, b > 0. When φ < 0 with | φ |≪ 1, 0 is locally asymptotically stable and there exists a positive
unstable equilibrium; when 0 < φ ≪ 1, 0 is unstable and there exists a negative, locally asymptotically
stable equilibrium;

2. a < 0, b < 0. When φ < 0 with | φ |≪ 1, 0 is unstable; when 0 < φ ≪ 1, 0 is locally asymptotically stable
and there exists a positive unstable equilibrium;

3. a > 0, b < 0. When φ < 0 with | φ |≪ 1, 0 is unstable and there exists a locally asymptotically stable
negative equilibrium; when 0 < φ ≪ 1, 0 is stable and a positive unstable equilibrium appears;

4. a⟨0, b⟩0. When φ changes from negative to positive, 0 changes its stability from stable to unstable.
Correspondingly a negative unstable equilibrium becomes positive and locally asymptotically stable.
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