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Abstract 

The ATHLOS cohort is composed of several harmonized datasets of international groups related to health and aging. 
As a result, the Healthy Aging index has been constructed based on a selection of variables from 16 individual stud‑
ies. In this paper, we consider additional variables found in ATHLOS and investigate their utilization for predicting the 
Healthy Aging index. For this purpose, motivated by the volume and diversity of the dataset, we focus our attention 
upon data clustering, where unsupervised learning is utilized to enhance prediction power. Thus we show the predic‑
tive utility of exploiting hidden data structures. In addition, we demonstrate that imposed computation bottlenecks 
can be surpassed when using appropriate hierarchical clustering, within a clustering for ensemble classification 
scheme, while retaining prediction benefits. We propose a complete methodology that is evaluated against baseline 
methods and the original concept. The results are very encouraging suggesting further developments in this direc‑
tion along with applications in tasks with similar characteristics. A straightforward open source implementation for 
the R project is also provided (https:// github. com/ Petros‑ Barmp as/ HCEP).
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Introduction
Health Informatics has received much attention in the 
past years, since it permits Big Data collection and analy-
sis, as well as the extraction of patterns that are free of 
the strict methodological assumptions of statistical mod-
eling [1, 2]. Recent advances in the biomedical domain 
that contribute in the early and accurate disease detec-
tion, patient care and community services, generate data 

at an increasing rate. These complex datasets belong to 
the Big Data field, containing various variable types with 
different scales or experimental setups, in many cases 
incomplete [3]. The large data volume on each biomedi-
cal research field offers the opportunity to open new ave-
nues for exploring the various biomedical phenomena. 
Machine Learning (ML) methods are considered as the 
first choice for the analysis of this data, as they can tackle 
their volume and complexity. In recent years, both unsu-
pervised and supervised ML methods have been applied 
to biomedical challenges with reliable results.

A large category on this perspective is the population 
studies for aging and health analysis, where they offer a 
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plurality of large scale data with high diversity and com-
plexity. Aging and health indicators are an important 
part of such research as the population aging observed in 
most developed countries leads to an increasing interest 
in studying health and aging, since the elderly are nowa-
days the fastest-growing segment in large regions, such 
as Europe, Asia and the USA [4–8]. As such, discover-
ing health-related factors in an attempt to understand 
how to maintain a healthy life is of crucial importance. 
Meanwhile, it has long been reported that Sociodemo-
graphic factors are significant determinants of various 
health outcomes, such as healthy aging [9, 10], while evi-
dently aging involves interactions between biological and 
molecular mechanisms with the environment, and as a 
result, it is a multifactorial phenomenon that everyone 
experiences differently [11].

The EU-funded ATHLOS (Ageing Trajectories of 
Health: Longitudinal Opportunities and Synergies (EU 
HORIZON2020-PHC-635316, http://athlosproject.eu/)) 
Project produces a large scale dataset in an attempt to 
achieve a better understanding of aging. The produced 
harmonized dataset includes European and international 
longitudinal studies of aging to identify health trajecto-
ries and determinants in aging populations. Under the 
context of ATHLOS, a metric of health (the Healthy 
Aging index) has been created using an Item Response 
Theory (IRT) approach [12] delivering a common metric 
of health across several longitudinal studies considered 
in ATHLOS. Interestingly, there is a plethora of available 
variables within the harmonized dataset that have not 
been considered when generating the aforementioned 
metric of health, encouraging the further exploration of 
associated factors through the utilization of Pattern Rec-
ognition and ML approaches. Nevertheless, the imposed 
data volume and complexity generate challenges for ML 
related to Big Data management and analytics.

There exist many recently published studies based on 
the ATHLOS dataset with promising results in several 
scientific fields, such as cardiovascular disease evaluation 
[13–17], demographic studies about sociodemographic 
indicators of Healthy Aging index [18] and the impact 
of socioeconomic status [19–21], nutrition science stud-
ies such as nutrition effects on health [22–24], alcohol 
drinking patterns effects on health [25, 26] and even psy-
chology studies assessing the impact of depression and 
other psychological disorders related to aging and health 
[27–29]. Nevertheless, the ATHLOS data specifications 
require analysis through state of the art ML methods to 
uncover hidden patterns, tackle the data complexity and 
help to better interpret the characteristics that affect 
the state of human health. Predicting the Healthy Aging 
index can be considered one of the greatest challenges 
of ATHLOS projects in the health informatics domain. 

Previously, members of the ATHLOS consortium pub-
lished studies [30, 31] by applying various supervised ML 
algorithms on part of ATHLOS data (ATTICA and ELSA 
study respectively). While these studies have shown 
remarkable results, a study of the Healthy Aging index 
prediction in the unified and harmonized ATHLOS data 
utilizing all additional information has not yet been done.

In this study, we proposed a hybrid framework that 
includes the integration of unsupervised and supervised 
ML algorithms to enhance prediction performance on 
large-scale complex data. More precisely, we developed 
a divisive hierarchical clustering framework for ensemble 
learning to enhance the prediction power on ATHLOS 
large-scale data regarding its Healthy Aging index. We 
focus our attention upon the clustering for the predic-
tion scheme. Evidently, unsupervised learning enhances 
the prediction power, exploiting the structure of the 
data. We show that imposed computation bottlenecks 
can be surpassed, when using appropriate hierarchical 
clustering within a clustering for ensemble classification 
scheme, while retaining prediction benefits. We propose 
a complete methodology that is evaluated against other 
baseline methods. The results are very encouraging, sug-
gesting further developments in this direction along with 
applications in tasks with similar characteristics.

Related work
In the last decade, several studies have been published 
regarding the integration of unsupervised and supervised 
learning strategies, most of which concern the incorpo-
ration of clustering models to classification algorithms 
for the improvement of the prediction performance. 
Although there has been a remarkable progress in this 
area, there is a need for more robust and reliable frame-
works under this perspective given the ever-increasing 
data generation in various domains. Clustering can be 
considered as a preprocessing step in a classification 
task, since in complex data with non-separable classes 
the direct application of a classifier can be ineffective. In 
[32] the authors provided evidence that the training step 
in separated data clusters can enhance the predictability 
of a given classifier. In their approach the k-means and a 
hierarchical clustering algorithm were utilized to sepa-
rate the data, while neural networks were applied for the 
classification process.

The utilization of clustering in an attempt to gain 
more information regarding the data and subse-
quently reducing errors in various prediction tasks 
has been previously explored. The clustering outcome 
can be considered as a compressed representation of 
the dataset and has the potential to exploit informa-
tion about its structure. In [33], the authors examine 
the extent to which analysis of clustered samples can 
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match predictions made by analyzing the entire data-
set at once. For this purpose, they compare prediction 
results using regression analysis on original and clus-
tered datasets. It turned out that clustering improved 
regression prediction accuracy for all examined tasks. 
Additionally, the authors in [34] also investigated 
whether clustering can improve prediction accuracy 
by providing the appropriate explanations. They pro-
posed the coordination of multiple predictors through 
a unified ensemble scheme. Furthermore, in [35], the 
authors integrated the semi-supervised fuzzy c-means 
(SSFCM) algorithm into the Support Vector Machine 
(SVM) classifier offering promising results regarding 
the improvement of SVM’s prediction power. Their 
hypothesis lies on the fact that unlabeled data include 
an inner structure, which can be efficiently uncov-
ered by data clustering tools. This has been shown to 
be a crucial preprocessing step to enhance the training 
phase of a given classifier.

Following a similar perspective, the SuperRLSC algo-
rithm utilizes a supervised clustering method to improve 
classification performance of the Laplacian Regularized 
Least Squares Classification (LapRLSC) algorithm [36]. 
Their motivation is based on the intuition that the clus-
tering process contributes to the identification of the 
actual data structure by constructing graphs that can 
reflect more refined structures. A step further is to incor-
porate ensemble clustering before the classification stage, 
since an ensemble approach can elucidate the data struc-
ture in a more realistic manner [37]. The authors applied 
this framework to identify breast cancer profiles and pro-
vide reliable results, since ensemble clustering algorithms 
capable to deal with the biological diversity are essential 
for clinical experts. Other approaches such as the work 
in [38] utilize a clustering process to reduce the num-
ber of instances used by the imputation on incomplete 
datasets. The unsupervised learning part in this method 
offered better results not only in the classification accu-
racy, but also in terms of computational execution time. 
Given that the most population-based studies include a 
plethora of missing values, this framework has a great 
potential to export reliable results in cases.

Although several hybrid approaches, including super-
vised and unsupervised ML techniques, have been 
recently proposed, the rise of Big Data challenges along 
with the diversity issues on population studies, neces-
sitates further research in this direction. Since the 
ATHLOS dataset has a strong inherent complexity and 
diversity with a plethora of missing values, developments 
in clustering-assisted classification should be beneficial. 
Next, we will show that an incorporated clustering meth-
odology enhances the prediction power of various clas-
sification and regression tools.

Background material
Data description
The ATHLOS harmonized dataset [39] includes Euro-
pean and international longitudinal studies of aging. It 
contains more than 355,000 individuals who participated 
in 17 general population longitudinal studies in 38 coun-
tries. We specifically used 15 of these studies, which are 
the 10/66 Dementia Research Group Population-Based 
Cohort Study [40], the Australian Longitudinal Study of 
Aging (ALSA) [41], the Collaborative Research on Age-
ing in Europe (COURAGE) [42], the ELSA [43], the Study 
on Cardiovascular Health, Nutrition and Frailty in Older 
Adults in Spain (ENRICA) [44], the Health, Alcohol and 
Psychosocial factors in Eastern Europe Study (HAPIEE) 
[45], the Health 2000/2011 Survey [46], the HRS [47], the 
JSTAR [48], the KLOSA [49], the MHAS ([50]), the SAGE 
[51], the SHARE [52], the Irish Longitudinal Study of 
Ageing (TILDA) [53] and the Longitudinal Aging Study 
in India (LASI) [54].

Ensemble learning
Ensemble methods have seen rapid growth in the past 
decade within the ML community [55]. An ensemble is 
a group of predictors, each of which gives an estimate of 
a response variable. Ensemble learning is a way to com-
bine these predictions with the goal that the generaliza-
tion error of the combination is smaller than each of the 
individual predictors. The success of ensembles lies in 
the ability to exploit the predictors’ diversity. Thus, if 
a predictor exhibits enhanced generalization perfor-
mance regarding a class or subspace of the dataset, then 
the aggregated strength of all the predictors can form a 
global, more reliable one.

A significant portion of research outcomes in ensem-
ble learning aims towards finding methods that encour-
age diversity in the predictors. Mainly, there are three 
reasons for which ensembles perform better than the 
individual predictors [56]. The first reason is statistical. 
A learning algorithm can be considered a way to search 
the hypotheses space to identify the best one. The statis-
tical problem is caused due to insufficient data. Thus, the 
learning algorithm would give a set of different hypoth-
eses with similar accuracy on the training data. With 
ensembling, the risk of choosing the wrong hypothesis 
would be averaged out to an extend. The second reason 
is of computational nature. Often, while looking for the 
best hypothesis, the algorithm might be stuck in a local 
optimum, thus giving the inferior results. By considering 
multiple such hypotheses, we can obtain a much better 
approximation of the true function. The third reason is 
representational. Sometimes the underlining function 
might not be any hypothesis in the hypotheses space. 
With the ensemble method, the representational space 
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might be expanded to give a better approximation of the 
unknown function.

Ensemble learning also coincides with the task of clus-
tering, since the performance of most clustering tech-
niques is highly data-dependent. Generally, there is no 
clustering algorithm, or algorithm with distinct param-
eter settings, which performs well for every set of data 
[57]. To overcome the difficulty of identifying a proper 
alternative, the methodology of cluster ensemble has 
been continuously developed in the past decade.

Projection based hierarchical divisive clustering
Hierarchical clustering algorithms create clusters either 
in a divisive (top-down) or an agglomerative (bottom-
up) approach. In the former, the whole dataset is con-
sidered a single cluster in the first step. According to 
predefined split criteria, a succession of splits produces 
subsets down to the final clustering scheme. On the other 
hand, the agglomerative approach starts by considering 
each data point as its own unique pre-cluster. In contrast, 
according to some similarity measures, successive joints 
of pre-clusters produce hyper-sets of points that finally 
lead up to the clustering structure. Despite the promis-
ing performance of hierarchical clustering algorithms 
in uncovering the data structure [58, 59], the computa-
tional overhead opposed impedes their usage in Big Data 
scenarios. However, more recent advancements in both 
agglomerative [60, 61] and divisive strategies [62, 63] 
have exposed their broad applicability and robustness. In 
particular, it has been shown that, when divisive cluster-
ing is combined with integrated dimensionality reduction 
[59, 64, 65], we can still get methods capable of indexing 
extensive data collections. In contrast to agglomerative 
methodologies, such indexes allow fast new sample allo-
cation to clusters.

In more detail, several projection-based hierarchical 
divisive algorithms try to identify hyper-planes that best 
separate the clusters. This can be achieved with various 
strategies, more notably by calculating the probability 
distribution of the projected space and avoid separating 
regions with high-density [66–68]. The latter presents 
computational challenges in the calculation of the den-
sity of each neighborhood. Motivated by the work of 
[69], instead of finding the regions with high density, the 
authors in [59, 64] try to identify regions with low density 
to create the separating hyper-planes.

The dePDDP [64] algorithm builds upon the Principal 
Direction Divisive Partitioning (PDDP) [70], a divisive 
hierarchical clustering algorithm defined by the compila-
tion of three criteria, for cluster splitting, cluster selection, 
and algorithm termination, respectively. These algorithms 
incorporate information from the projections pi : 
pi = u1(di − b), i = 1, 2, . . . , n onto the first principal 

component u1 to produce the two subsequent partitions 
at each step. In more detail, dePDDP splits the selected 
partition P� by calculating the kernel density estimation 
f̂ ′
(

x; h′
)

 of the projections pli and the corresponding 
global minimizer x∗ defined as the best local minimum of 
the kernel density estimation function. Then constructs 
Pl
1 =

{

di ∈ D : pli ≤ x∗
}

 and P2 =
{

di ∈ D : pli > x∗
}

 . 
Now, let P a partition of the dataset D into k sets. Let F be 
the set of the density estimates fi = f̂

(

x∗i ; h
)

 of the mini-
mizers X∗

i  for each Ci ∈ P . The next set to split is Cj , with 
j = arg maxi

{

fi : fi ∈ F
}

 . Finally, the algorithm allows 
the automatic determination of clusters by terminating 
the splitting procedure as long as there are no minimizer 
for any of the clusters Ci ∈ P.

By using techniques like the fast Gauss transform, lin-
ear running time for the kernel density estimation is 
achieved, especially for the one-dimensional case. To find 
the minimizer, only the density at n positions (between 
the projected data points) needed to be evaluated, since 
those are the only places with valid splitting points. 
Thus, the total complexity of the algorithm remains 
O(kmax(2+ kSVD)(snzna)).

The Minimum Density Hyper-planes (MDH) algorithm 
[59] follows a similar clustering procedure. However, 
instead of using the First Principal Component for the 
calculation of the splitting hyper-plane that minimizes 
the density, MDH follows a projection pursuit formula-
tion of the associated optimization problem to find mini-
mum density hyper-planes. Projection pursuit methods 
optimize a measure of interest of a linear projection of a 
data sample, known as the projection index, in this case 
the minimum value of the projected density. Although 
this is a theoretically justified approach, it is more com-
putationally intensive, mainly due to the optimization 
procedure. Thus, when the clustering efficiency is not 
of crucial importance (data indexing) or the computa-
tional resources are limited or real-time performance is 
required, the dePDDP approach can be considered as a 
satisfactory approximation of MDH.

The proposed ensemble methodology
The concept proposed in [34] showed that an ensem-
ble learning predictor based on different clustering 
outcomes can improve the prediction accuracy of 
regression techniques. The performance gains are asso-
ciated with the change in locality features when train-
ing prediction models for individual clusters, rather 
than the whole dataset. Different clustering outputs 
P are retrieved by providing various k values to the 
k-means clustering algorithm, increasing the diver-
sity of the outcomes. For k = 1, 2, . . . , L , we retrieve 
L Pk individual partitionings. Then, for each cluster 
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Ci
k ∈ Pk , with i = 1, 2, . . . , k and k = 1, 2, . . . , L , a model 

is trained. The final predictions for each data point are 
calculated by averaging among the predicted values 
retrieved by the models that correspond to the clusters 
Ci
k that falls within. Selecting a cutoff L for k (how many 

individual partitionings Pk should be calculated) is not 
straightforward, but data dependent heuristics can be 
estimated.

There is a crucial trade-off, however, for this method-
ological framework with respect to the computational 
complexity, imposed by the number of predictors that 
need to be trained. Even though each model is trained 
upon a subset of the original dataset, we still need to 
train L×(L+1)

2  predictors. As a result, the computational 
complexity increases exponentially. Large scale predic-
tion tasks similar to the one studied here can prohibit 
the extensive utilization of this concept, in particular 
when combined with computationally demanding pre-
dictors, such as Neural Networks and Support Vector 
Machines.

In this work, motivated by recent advantages in pro-
jection-based divisive hierarchical algorithms, we pro-
posed an ensemble algorithmic scheme able to surpass 
the aforementioned computational burden, while retain-
ing prediction benefits. The key idea is to generate the 
L partitionings by iteratively expanding a binary tree 

structure. Divisive clustering algorithms allow us to stop 
the clustering procedure, when the predefined number of 
clusters k has been retrieved. Then, to retrieve the par-
titioning for k = k + 1 , we only need to split one of the 
leaf nodes. In practice, L partitionings can be retrieved 
by a single execution of the algorithm, where k is set to 
the threshold value L. By monitoring the order of binary 
splits, we retrieve P constituted by the individual parti-
tionings that correspond to the k = 1 . . .L values.

Arguably, we sacrifice some of the diversity between 
the individual partitionings Pk , since each two consecu-
tive partitionings only differ with respect to the portion 
of the dataset that constitutes the selected for splitting 
leaf node, but simultaneously benefit greatly by only hav-
ing to train 2L+ 1 models. Again, to provide the final 
prediction for each data point, we need to average the 
predicted values retrieved by the models that correspond 
to the clusters Ci

k . This means that we need to combine 
information retrieved by the nodes (clusters) appearing 
along the path each sample followed from the root node 
(containing the full dataset) the the leaf node that lies 
within. Note that this divisive structure not only allow us 
to interpret the ensemble procedure, but is also straight-
forward to efficiently assign new observations to the tree 
structure providing the corresponding predictions for 
new arriving samples.
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In Algorithm  1, we present the complete proposed 
algorithmic procedure entitled Hierarchical Clustering 
for Ensemble Prediction (HCEP). In summary, the first 
step is to execute the projection based divisive clustering 
algorithm of choice and retrieve the complete resulting 
binary clustering tree. Keep in mind that the response 
variable is not taken into account for this step, as such, 
this is an unsupervised procedure. Then for each node of 
the tree, we train the selected prediction algorithm based 
only on samples belonging to the particular training set. 
For every sample belonging to the test set, we can now 
provide final predictions by averaging across the indi-
vidual predictions of this particular sample retrieved by 
the corresponding nodes of the tree that lies within. For 
each new arriving sample, we initially pass it through the 
tree structure until reaching the appropriate leaf node. 
This is done by projecting the new sample onto the one 
dimensional vector retrieved for each node of the tree 
and deciding whether it should be assigned at the right or 
the left child. Then the prediction mechanism is applied 
as before.

Naive clustering for prediction
We are also interested in investigating the effectiveness 
of clustering in prediction, when used as a single pre-
processing step [33]. We expect that the characteristics 

of the ATHLOS dataset employed in this work, such as 
its large scale and the imposed complexity by the appear-
ance of both continuous and categorical variables, pre-
sent a unique opportunity to expose the benefits, if any, 
in training individual models for sub-populations of sam-
ples belonging to the same cluster.

In practice, this procedure can be achieved utiliz-
ing any clustering algorithm. Here, we employ both the 
k-means and projection based divisive clustering as rep-
resentatives of partitioning and hierarchical clustering, 
respectively. The algorithmic procedure is presented 
in Algorithm  2. The clustering takes place initially for 
a given number of clusters, which is subject to further 
investigation. Then, a prediction model is trained for 
each cluster utilizing the respective train samples, while 
for each sample in the train set, the final prediction is 
provided by the model that corresponds to the cluster it 
lies within. The new arriving sample is initially allocated 
to a cluster and then a similar procedure is followed to 
provide predictions. Notice that this procedure should 
be significantly more computationally efficient than the 
ensemble methodology, since we only need to train L 
models. In addition, for particular prediction algorithms 
with close to exponential complexity with respect to the 
number of samples, we also expect a significant compu-
tational boost against their application on the full dataset 
D.
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Data preprocessing
The aforementioned studies’ dataset described in 
Sect.  3.1 consist of 990,000 samples from more than 
355,000 individuals, who participated in 17 general pop-
ulation longitudinal studies in 38 countries. The dataset 
contains 184 variables; two response and 182 independ-
ent variables. Response variables are the raw and the 
scaled Healthy Aging index of each patient. Regarding 
the independent variables (see supplementary material 
sheet S1), nine variables were removed including various 
indexes (sheet S2), 13 variables were removed includ-
ing obviously depended variables that cannot be taken 
into account (sheet S3), and six variables were removed 
including information that cannot be considered within 
the prediction scheme (sheet S4). Furthermore, the 47 
variables (sheet S5), which used to originally calculate 
the Healthy Aging index [12] are also excluded. Not 
only these features create a statistical bias regarding the 
Healthy Aging index, which is the response variable in 
our analysis, but in this work we aim to uncover new 
insights for external variables that have previously been 
considered not significantly relevant. Removing any sam-
ples for which the Healthy Aging index is not available, 
the resulting data matrix is constituted by 770,764 sam-
ples and 107 variables.

To this end, we have to deal with the critical step of 
missing value imputation. For this purpose, we utilized 
the Vtreat [71] methodology, a cutting-edge imputation 
tool with reliable results. Vtreat is characterized by a 
unique strategy for the creation of the dummy variables, 
which resulted in the construction of 458 dummy varia-
bles. Next, a significance pruning process step took place, 
where each variable was evaluated based on its correla-
tion with the Healthy Aging index (response variable).

Experimental analysis
In the first part of our experimental analysis, we com-
pare the proposed ensemble scheme based on Projection 
Based Hierarchical Clustering (HCEP) against the origi-
nal one (based on the k-means partitioning clustering). 
We also examine if there are any benefits when compared 
against the naive clustering for prediction scheme pre-
sented in Sect. 4.1, utilizing both aforementioned cluster-
ing approaches. For this set of experiments, the divisive 
algorithm of choice is dePDDP, while the maximum 
number of clusters L is set to 40, which is a value greater 
than the average optimal number of clusters retrieved by 
dePDDP to effectively examine the behavior of the pro-
posed methodology. For every run of k-means and deP-
DDP, the number of clusters k is given as input. k-means 
is allowed to choose the most appropriate convergence 
among 10 random initializations [72, 73], while for the 
dePDDP algorithm, the bandwidth multiplier parameter 

is set to 0.05, a relative small value to guarantee enough 
binary splits that will lead to the required number of leafs 
(clusters). Finally, to avoid highly unbalanced tree struc-
tures, we set a threshold so that clusters with less than 
N/k points are not allowed to be split [74], where N is 
the total number of points in the dataset. All method-
ologies are implemented using the R-project open source 
environment for statistical computing, while specifically 
for dePDDP we utilize a native efficient implementation 
and for k-means we employed the implementation pro-
vided by the “biganalytics” package, called BigKmeans 
[75], which benefit from the lack of memory overhead 
by not duplicating the data. The choice for the employed 
clustering algorithms is based not only on their satisfy-
ing performance, but also on their simplicity and the 
structural ability to create an index that can be used to 
allocate future observations. For dePDDP algorithm, new 
instances are pushed into the tree until it reaches the 
respective leaf node. For the k-means algorithm, we allo-
cate every instance of the testing set to the closest clus-
ter by calculating the minimum distance to the cluster 
centroids.

For the prediction task, we employ the traditional Lin-
ear Regression (LR) and Random Forests (RF) algorithms. 
Again, the default parameter values are those provided 
by the corresponding implementations found in [76]. 
For the RF, we used 50 trees to guarantee its low com-
putational complexity, due to hardware imposed restric-
tions, and the Mtry variable was defined as p/3, where p 
are the number of variables. The regression performance 
is evaluated with respect to the Root Mean Square Error 
and the R-squared (RSQ). The mean squared error (MSE) 
is a measure of an estimator’s quality, with values closer 
to zero indicating better performance. The MSE is the 
second moment of the error. Thus, it incorporates both 
the variance of the estimator (how widely spread the 
estimates are from one data sample to another) and its 
bias (how far off the average estimated value is from the 
truth). MSE has the same units of measurement as the 
square of the quantity being estimated. In an analogy to 
standard deviation, taking the square root of MSE yields 
the root-mean-square error RMSE [77]. R-squared  (R2) is 
a statistical measure that represents the proportion of the 
variance for a dependent variable that’s explained by an 
independent variable or variables in a regression model.

R-squared indicates to what extent the variance of one 
variable explains the variance of the second variable. So, 
if the  R2 of a model is 0.50, then approximately half of 
the observed variation can be explained by the model’s 
inputs.

(1)R2 = 1−
UnexplainedVariation

TotalVariation
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The results with respect to the RMSE metric regard-
ing the prediction of Healthy Aging index are reported in 
Fig.  1. To achieve robust validation of the results, while 
maintaining reasonable execution times, we utilize a 
bootstrapping technique by randomly sampling (with 
replacement) 50,000 samples for training and 1000 sam-
ples for testing [78]. The procedure is repeated 10 times, 
with different subsets for training and testing, respec-
tively. Then, we estimate the performance of each model 
by computing the average score and the corresponding 
standard deviation. These are reported using line plots 
for mean values and shaded ares for standard deviation 
respectively. The top row of figures corresponds to the 
naive methodology, while the bottom row corresponds to 
the ensemble approaches, respectively. For both cases we 
report the performance of the catholic models indicated 
by the straight purple shaded area, parallel to axes X. 
Orange and green shaded areas indicate the performance 
of the k-means and the dePDDP algorithms, when com-
bined with either Random Forests (left column) or Lin-
ear regression (right column), respectively. Notice that 

performance is reported with respect to the number of 
clusters (X axes). For the naive methodology, each num-
ber of clusters L corresponds to the RMSE value retrieved 
for this particular value of L, while for the ensemble mod-
els for each L value we observe the RMSE resulting by 
aggregating predictions for k = 1, 2, . . . , L,.

In Fig. 1, we observe a performance boost compared to 
the catholic regression models that is more evident and 
robust for the ensemble methodologies (Algorithm  1). 
For up to 20 clusters, the naive models also appear to 
improve prediction performance, at least when utilizing 
RF, but when k-means is selected there is no consistency. 
For the ensemble models best performance is achieved 
by k-means combined to RF.

Finally, for the Ensemble Linear Regression we observe 
that the utilization of dePDDP leads to a more robust 
behavior where the prediction performance is not sig-
nificantly affected for minor variations in the number of 
clusters.

This is most likely due to over-fitting, since for a high 
enough number of retrieved clusters, we expect to end up 
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with clusters characterized by low sample size compared 
to the number of variables.

Having concluded that the HCEP framework is able to 
enhance prediction performance compared to the catholic 
models and the naive approach, its computational overhead 
is studied, as well. Figure 2 is devoted to the computational 
time comparisons. As expected, the naive approach can 
reduce computational time, at least for complex method 
such as the RF that are greatly affected by samples size. 
More importantly, the computational complexity compari-
son between the ensemble approaches indicates that the 
utilization of the proposed method is justified. It is evident 
that consistent prediction power benefits can be achieved 
with minimal computational overhead. Notice here that 
the aforementioned computational times for RF have been 
achieved by implementing a parallel execution strategy 
accommodated by the “foreach” R package [79]. Experi-
ments took place on a PC with Intel i9  7920x processor 
and 32 GB of RAM running the Ubuntu Linux operating 
system.
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with blue dashed lines represent the results for the dePDDP, respectively. Each row of the plots depicts the clustering for different prediction strate‑
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Table 1 Mean RMSE and R2 for different regression models

The models presented are: Linear Regression (LR), Random Forrests (RF), 
XGboost, Deep Neural Network with 1 (DNN1) and 2 (DNN2) hidden layers, 
Hierarchical Ensemble method (HCEP) using Linear Regression or RF based 
on dePDDP (ENS-LR-dePDDP and ENS-RF-dPDDP, respectively) and ensemble 
method using LR or RF based on k-means (ENS-LR-Kmeans and ENS-RF-Kmeans, 
respectively). In parentheses are the Standard Deviation of the metrics across 
their 10 individual executions and the best performing method for every metric 
is denoted in bold font

RMSE (std) R2(std)

LR 0.6851586(0.01815245) 0.5420653(0.02738484)

RF 0.6753074(0.01462793) 0.5551348(0.02472105)

XGboost 0.6937884(0.0138055) 0.5494156(0.02426911)

KNN 0.7858604(0.01970342) 0.4205703(0.02504982)

DNN1 0.6891531(0.01597495) 0.5364436(0.03170498)

DNN2 0.6923526(0.016212242) 0.5105284(0.03162947)

ENS‑LR‑dePDDP 0.6774225(0.04522381) 0.5505334(0.06650373)

ENS‑LR‑Kmeans 0.6783292(0.02592916) 0.5516001(0.02380914)

ENS‑RF‑dePDDP 0.6671423(0.01575666) 0.5659424(0.02244701)

ENS‑RF‑Kmeans 0.6583103(0.01672183) 0.577264(0.02440015)
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Extended comparisons
The performance of the proposed HCEP methodology is 
further evaluated by comparing it against state-of-the-art 
regression models in predicting the Healthy Aging index 
using the same bootstrapping technique. In detail, six 
regression models have been applied, namely the Linear 
Regression (LR) model, the Random Forests (RF), the k 
nearest neighbors (kNN), the XGboost [80], and two 
Deep Neural Network architectures ( DNN1 and DNN2).

Briefly, in kNN regression, the average of the Healthy 
Aging index values of the five Nearest Neighbors of a 
given test point is calculated. The RF regression per-
forms the RF process by calculating the average output 
of all trees in the final prediction for each test sample. 
We applied 100 trees and the Mtry variable was defined 
as √p , where p are the number of variables. Extreme 
Gradient Boosting (XGBoost) is a cutting-edge classi-
fier, based on an ensemble of classification and regres-
sion trees [80]. Given the output of a tree f (x) = wq(xi) , 

where x is the input vector and wq is the score of the cor-
responding leaf q, the output of an ensemble of K trees 
will be: yi =

∑K
k=1 fk(xi) . The first DNN ( DNN1 ) is con-

structed with two hidden layers of 100 neurons and one 
output layer of one neuron, while the second ( DNN2 ) 
with one hidden layer with 100 neurons. The ReLU acti-
vation function is utilized in hidden layers to control the 
gradient vanishing problem. The Backpropagation (BP) 
training algorithm is applied with the learning rate set to 
0.001. We selected these two DNN architectures to deal 
with both the over- and under-fitting challenges of ATH-
LOS dataset after an extensive parameter optimization 
search was conducted utilizing the Adam algorithm [81].

The results are summarized in Table  1. For both 
ensemble methods we chose to present the values when 
the maximum number of clusters is set to L = 30 , which 
is the average estimated value provided by dePDDP algo-
rithm, when utilized for cluster number determination 
with its default parameters. Notice that, computational 
limitations do not allow the extensive use of tradi-
tional approaches for this purpose [82, 83], while minor 

1

2

6 7

3

4 5
Fig. 3 Tree structure example of the hierarchical MDH experiment. In this instance, each step of the algorithm is presented in a top‑down order, 
with every level indicating the corresponding cut for a total of 4 clusters. The data points are colored according to the final clustering and each 
subset is indicated with numbering from 1 (original dataset) to 6 and 7 (last split producing two of the final clusters)
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variations to this number do not significantly alter the 
comparison outcome. As shown, the ensemble method-
ologies outperform any other confirming the prediction 
enhancement assumption. More precisely, the k-means 
based method combined with RF achieve the best score 
with respect to both metrics. However, the proposed 
HCEP performs better when LR is utilized for prediction. 
In general, HCEP comes second to the original k-means 
based scheme, something to be expected due to the loss 
of clustering diversity, as previously discussed in Sect. 4. 
However, the added value of HCEP arises when consider-
ing the minimal computational overhead.

Tree visualization and variable importance
In Fig. 3, we visually investigate the clusterability of the 
dataset at hand through projection based hierarchical 
clustering. to this end, we used the MDH implementa-
tion [84] provided for the R package. For this experiment, 
we utilized HCEP, where the maximum number of clus-
ter is conveniently set to L = 4 . Through the iterative 2D 
visualization for each node of the tree, we visually iden-
tify clear patters indicating visually separable clusters. 
Apparently, the algorithms performs well in identifying 
clusters, confirming the prediction performance boost 

we observed previously, even for the naive cluster-
ing approach. Note that, sample coloring across the 
tree structure is following the categorization of the 
four clusters retrieved at the leaf nodes. For example, 
for train samples that fall in cluster 5, the predicted 
Healthy Aging index is retrieved by averaging the cor-
responding predictions of the models fitted for clusters 
1, 3 and 5.

The straightforward interpretability of the HCEP 
approach motivated us to further investigate the poten-
tial of utilizing it in describing an innovating variable 
importance analysis. Notice here, that this is an uncom-
mon task for most ensemble prediction approaches or 
even impossible in many cases. For this purpose we uti-
lized the Percentage Increase in MSE (PiMSE) metric 
[76] through the Random Forests model for very node 
of the tree. Then for every path from the root node to 
each one of the leaf nodes, we investigate the PiMSE 
metric of the nodes within the path, since every point 
in the test set will be eventually predicted based on 
one of these paths. For the example at hand (Fig. 3), we 
consider the 10 most important variables, calculated 
by averaging PiMSE across all aforementioned paths. 
Figure 4 illustrates how these variables differentiate for 
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each one of the four paths (1-3-4, 1-3-4, 1-2-7 and 1-2-
6), according to the changes in PiMSE from the root 
to the leaf nodes. In more detail, each subplot depicts 
one of the four different paths. The PiMSE score is pre-
sented in the vertical axes, with the horizontal axes 
indicating the corresponding node in each path. Larger 
values in a variable indicate greater PiMSE score, thus 
expressing a more significant influence of that vari-
able in that particular node. More specifically, the 
most important variables depicted here were the “srh” 
(Respondent’s self-rated/self-reported health, with 
“catP′′ , “catN ′′ , etc. being their transformation after 
the statistical prepossessing), the “h-joint-disorders” 
(History of arthritis, rheumatism or osteoarthritis), 
“depression” (Current depressive status) and “age” (Age 
at time of measure). Another observation we can make 
through this visualization is that for 2 paths, “age” sig-
nificance drops as tree depth is increasing, in contrast 
to the other two paths for which it grows. This finding 
may lead to the conclusion that there exist sub-popula-
tions for which a particular variable is relevant in pre-
dicting the response variable.

Concluding remarks
Population studies for aging and health analysis offer 
a plurality of large scale data with high diversity and 
complexity. Aging and health indicators are an impor-
tant part of such research, while predicting the Healthy 
Aging index can be considered one of the greatest chal-
lenges. Motivated by the volume and diversity of the 
ATHLOS dataset, we focus our attention upon the 
clustering for prediction scheme, where unsupervised 
learning is utilized to enhance the prediction power. 
We show that imposed computation bottlenecks can 
be surpassed, when using appropriate hierarchical clus-
tering within a clustering for ensemble classification 
scheme, while retaining prediction benefits. In addi-
tion, we investigated in depth the interpretability of the 
proposed architecture exposing additional advantages, 
such as a novel variable importance analysis. The pro-
posed methodology is evaluated against several regres-
sion methods and the original concept exhibits very 
encouraging results, suggesting further developments 
in this direction are possible. Additionally, a straight-
forward open source implementation for the R pro-
ject is provided. The direct expansion of the proposed 
methodology in classification could suggest a promis-
ing future direction, while the utilization of random 
space transformations to increase diversity of ensemble 
schemes [85, 86] seems also feasible.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s13755‑ 022‑ 00171‑1.

Below is the link to the electronic supplementary material.Supplementary 
file1 (XLS 76 kb)

Acknowledgements
This work is supported by the ATHLOS (Aging Trajectories of Health: Longitu‑
dinal Opportunities and Synergies) project, funded by the European Union’s 
Horizon 2020 Research and Innovation Program under Grant Agreement 
Number 635316.

Author details
1 Department of Computer Science and Biomedical Informatics, University 
of Thessaly, Lamia, Greece. 2 Social Epidemiology Research Group. Health Ser‑
vice and Population Research Department, Institute of Psychiatry, Psychology 
& Neuroscience, King’s College London, London, UK. 3 Global Health Institute, 
King’s College London, London, UK. 4 Centro de Investigación Biomédica en 
Red de Salud Mental, CIBERSAM, Madrid, Spain. 5 Department of Psychiatry, 
Universidad Autónoma de Madrid, Madrid, Spain. 6 Hospital Universitario de 
La Princesa, Instituto de Investigación Sanitaria Princesa (IIS Princesa), Madrid, 
Spain. 7 Swiss Paraplegic Research, Guido A. Zäch Institute (GZI), Nottwil, 
Switzerland. 8 Department of Health Sciences & Health Policy, University 
of Lucerne, Lucerne, Switzerland. 9 Department of Epidemiology and Public 
Health, University College London, London, UK. 10 Department Preventive 
Medicine and Public Health, Universidad Autónoma de Madrid, Idipaz, Madrid, 
Spain. 11 Centro de Investigación Biomédica en Red de Epidemiología y Salud 
Pública, CIBERESP, Madrid, Spain. 12 Information, Evidence and Research, World 
Health Organization, Geneva, Switzerland. 13 Research, Innovation and Teach‑
ing Unit. Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain. 14 Fon‑
dazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy. 15 National Institute 
for Health and Welfare (THL), Helsinki, Finland. 16 Centre for Health Equity 
Studies, Department of Public Health Sciences, Stockholm University, Stock‑
holm, Sweden. 17 Department of Public Health Sciences, Karolinska Institutet, 
Stockholm, Sweden. 18 Department of Epidemiology and Population Studies, 
Jagienllonian University, Krakow, Poland. 19 Centre for Global Mental Health. 
Health Service and Population Research Department, Institute of Psychiatry, 
Psychology & Neuroscience, King’s College London, London, UK. 20 Inter‑
national Institute for Applied Systems Analysis, World Population Program, 
Wittgenstein Centre for Demography and Global Human Capital, Laxenburg, 
Austria. 21 Department of Economics, Stony Brook University, Stony Brook, NY, 
USA. 22 Austrian Academy of Science, Vienna Institute of Demography, Vienna, 
Austria. 23 Russian Presidential Academy of National Economy and Public 
Administration (RANEPA), Moscow, Russian Federation. 24 Lithuanian University 
of Health Sciences, Kaunas, Lithuania. 25 Department of Epidemiology and Pre‑
ventive Medicine, Jagiellonian University, Krakow, Poland. 26 Department 
of Nutrition and Dietetics, School of Health Science and Education, Harokopio 
University, Athens, Greece. 27 Department of Mathematics, University of Thes‑
saly, Lamia, Greece. 

Received: 13 September 2021   Accepted: 30 March 2022
Published online: 18 April 2022

References
 1. Lee K‑S, Lee B‑S, Semnani S, Avanesian A, Um C‑Y, Jeon H‑J, Seong K‑M, 

Yu K, Min K‑J, Jafari M. Curcumin extends life span, improves health 
span, and modulates the expression of age‑associated aging genes in 
drosophila melanogaster. Rejuvenation Res. 2010;13(5):561–70.

 2. Mathias JS, Agrawal A, Feinglass J, Cooper AJ, Baker DW, Choudhary A. 
Development of a 5 year life expectancy index in older adults using pre‑
dictive mining of electronic health record data. J Am Med Inform Assoc. 
2013;20(e1):e118–24.

 3. Herland M, Khoshgoftaar TM, Wald R. A review of data mining using big 
data in health informatics. J Big data. 2014;1(1):1–35.

 4. Eurostat, Population structure and ageing. statistics explained.
 5. Mather M, Jacobsen LA, Pollard KM. Aging in the united states, Population 

Reference Bureau; 2015.

https://doi.org/10.1007/s13755-022-00171-1
https://doi.org/10.1007/s13755-022-00171-1


Page 13 of 14Barmpas et al. Health Information Science and Systems  (2022) 10:6

 6. Organization WH, et al. Men, ageing and health: achieving health across 
the life span. Tech. rep. Geneva: World Health Organization; 2001.

 7. DESA U. World population ageing 2015, in: United Nations DoEaSA, 
population division editor; 2015.

 8. Alwan A, et al. Global status report on noncommunicable diseases 2010. 
Geneva: World Health Organization; 2011.

 9. Seeman TE, Crimmins E, Huang M‑H, Singer B, Bucur A, Gruenewald T, 
Berkman LF, Reuben DB. Cumulative biological risk and socio‑economic 
differences in mortality: Macarthur studies of successful aging. Soc Sci 
Med. 2004;58(10):1985–97.

 10. Wu M‑S, Lan T‑H, Chen C‑M, Chiu H‑C, Lan T‑Y. Socio‑demographic and 
health‑related factors associated with cognitive impairment in the elderly 
in Taiwan. BMC Public Health. 2011;11(1):22.

 11. Wagner K‑H, Cameron‑Smith D, Wessner B, Franzke B. Biomarkers of 
aging: from function to molecular biology. Nutrients. 2016;8:338. https:// 
doi. org/ 10. 3390/ nu806 0338.

 12. Caballero FF, Soulis G, Engchuan W, Sánchez‑Niubó A, Arndt H, Ayuso‑
Mateos JL, Haro JM, Chatterji S, Panagiotakos DB. Advanced analytical 
methodologies for measuring healthy ageing and its determinants, using 
factor analysis and machine learning techniques: the athlos project. Sci 
Rep. 2017;7:43955.

 13. Higueras‑Fresnillo S, Guallar‑Castillón P, Cabanas‑Sanchez V, Banegas JR, 
Rodríguez‑Artalejo F, Martinez‑Gomez D. Changes in physical activ‑
ity and cardiovascular mortality in older adults. J Geriatr Cardiol: JGC. 
2017;14(4):280.

 14. Martinez‑Gomez D, Guallar‑Castillon P, Higueras‑Fresnillo S, Garcia‑
Esquinas E, Lopez‑Garcia E, Bandinelli S, Rodríguez‑Artalejo F. Physical 
activity attenuates total and cardiovascular mortality associated with 
physical disability: a national cohort of older adults. J Gerontol: Ser A. 
2018;73(2):240–7.

 15. Graciani A, García‑Esquinas E, López‑García E, Banegas J. Ideal car‑
diovascular health and risk of frailty in older adults. Circulation. 
2016;9(3):239–45.

 16. Tyrovolas S, Panagiotakos D, Georgousopoulou E, Chrysohoou C, Tou‑
soulis D, Haro JM, Pitsavos C. Skeletal muscle mass in relation to 10 year 
cardiovascular disease incidence among middle aged and older adults: 
the attica study. J Epidemiol Community Health. 2020;74(1):26–31.

 17. Kollia N, Panagiotakos DB, Chrysohoou C, Georgousopoulou E, Tousoulis 
D, Stefanadis C, Papageorgiou C, Pitsavos C. Determinants of healthy age‑
ing and its relation to 10‑year cardiovascular disease incidence: the Attica 
study. Cent Eur J Public Health. 2018;26(1):3–9.

 18. Kollia N, Caballero FF, Sánchez‑Niubó A, Tyrovolas S, Ayuso‑Mateos JL, 
Haro JM, Chatterji S, Panagiotakos DB. Social determinants, health status 
and 10‑year mortality among 10,906 older adults from the English 
longitudinal study of aging: the athlos project. BMC Public Health. 
2018;18(1):1357.

 19. Soler‑Vila H, García‑Esquinas E, León‑Muñoz LM, López‑García E, Banegas 
JR, Rodríguez‑Artalejo F. Contribution of health behaviours and clinical 
factors to socioeconomic differences in frailty among older adults. J 
Epidemiol Community Health. 2016;70(4):354–60.

 20. Doménech‑Abella J, Mundó J, Moneta MV, Perales J, Ayuso‑Mateos 
JL, Miret M, Haro JM, Olaya B. The impact of socioeconomic status on 
the association between biomedical and psychosocial well‑being and 
all‑cause mortality in older spanish adults. Soc Psychiatry Psychiatr Epide‑
miol. 2018;53(3):259–68.

 21. Hossin M, Koupil I. Early life social and health determinants of adult 
socioeconomic position across two generations. Eur J Public Health. 
2018;28(4):cky213.

 22. Machado‑Fragua MD, Struijk EA, Graciani A, Guallar‑Castillon P, Rodríguez‑
Artalejo F, Lopez‑Garcia E. Coffee consumption and risk of physical 
function impairment, frailty and disability in older adults. Eur J Nutr. 
2019;58(4):1415–27.

 23. Tyrovolas S, Haro JM, Foscolou A, Tyrovola D, Mariolis A, Bountziouka 
V, Piscopo S, Valacchi G, Anastasiou F, Gotsis E, et al. Anti‑inflammatory 
nutrition and successful ageing in elderly individuals: the multinational 
medis study. Gerontology. 2018;64(1):3–10.

 24. Stefler D, Malyutina S, Nikitin Y, Nikitenko T, Rodriguez‑Artalejo F, Peasey 
A, Pikhart H, Sabia S, Bobak M. Fruit, vegetable intake and blood pressure 
trajectories in older age. J Hum Hypertens. 2019;33(9):671–8.

 25. León‑Muñoz LM, Guallar‑Castillón P, García‑Esquinas E, Galán I, Rodríguez‑
Artalejo F. Alcohol drinking patterns and risk of functional limitations in 
two cohorts of older adults. Clin Nutr. 2017;36(3):831–8.

 26. Ortolá R, García‑Esquinas E, Galán I, Guallar‑Castillón P, López‑García E, 
Banegas J, Rodríguez‑Artalejo F. Patterns of alcohol consumption and 
risk of falls in older adults: a prospective cohort study. Osteoporos Int. 
2017;28(11):3143–52.

 27. de la Torre‑Luque A, Ayuso‑Mateos JL, Sanchez‑Carro Y, de la Fuente J, 
Lopez‑Garcia P. Inflammatory and metabolic disturbances are associated 
with more severe trajectories of late‑life depression. Psychoneuroendo‑
crinology. 2019;110:104443.

 28. de la Torre‑Luque A, de la Fuente J, Sanchez‑Niubo A, Caballero FF, Prina 
M, Muniz‑Terrera G, Haro JM, Ayuso‑Mateos JL. Stability of clinically 
relevant depression symptoms in old‑age across 11 cohorts: a multi‑state 
study. Acta Psychiatr Scand. 2019;140(6):541–51.

 29. de la Torre‑Luque A, de la Fuente J, Prina M, Sanchez‑Niubo A, Haro JM, 
Ayuso‑Mateos JL. Long‑term trajectories of depressive symptoms in old 
age: relationships with sociodemographic and health‑related factors. J 
Affect Disord. 2019;246:329–37.

 30. Panaretos D, Koloverou E, Dimopoulos AC, Kouli G‑M, Vamvakari M, 
Tzavelas G, Pitsavos C, Panagiotakos DB. A comparison of statistical and 
machine‑learning techniques in evaluating the association between 
dietary patterns and 10‑year cardiometabolic risk (2002–2012): the attica 
study. Br J Nutr. 2018;120(3):326–34.

 31. Engchuan W, Dimopoulos AC, Tyrovolas S, Caballero FF, Sanchez‑Niubo 
A, Arndt H, Ayuso‑Mateos JL, Haro JM, Chatterji S, Panagiotakos DB. 
Sociodemographic indicators of health status using a machine learning 
approach and data from the English longitudinal study of aging (elsa). 
Med Sci Monit. 2019;25:1994.

 32. Alapati YK, Sindhu K. Combining clustering with classification: a tech‑
nique to improve classification accuracy. Lung Cancer. 2016;32(57):3.

 33. Rouzbahman M, Jovicic A, Chignell M. Can cluster‑boosted regression 
improve prediction of death and length of stay in the ICU? IEEE J Biomed 
Health Inform. 2017;21(3):851–8. https:// doi. org/ 10. 1109/ JBHI. 2016. 25257 
31.

 34. Trivedi S, Pardos ZA, Heffernan NT. The utility of clustering in prediction 
tasks, arXiv: 1509. 06163.

 35. Gan H, Sang N, Huang R, Tong X, Dan Z. Using clustering analy‑
sis to improve semi‑supervised classification. Neurocomputing. 
2013;101:290–8.

 36. Belkin M, Niyogi P, Sindhwani V. Manifold regularization: a geometric 
framework for learning from labeled and unlabeled examples. J Mach 
Learn Res. 2006;7:2399–434.

 37. Agrawal U, Soria D, Wagner C, Garibaldi J, Ellis IO, Bartlett JM, Cameron D, 
Rakha EA, Green AR. Combining clustering and classification ensem‑
bles: a novel pipeline to identify breast cancer profiles. Artif Intell Med. 
2019;97:27–37.

 38. Tran CT, Zhang M, Andreae P, Xue B, Bui LT. Improving performance of 
classification on incomplete data using feature selection and clustering. 
Appl Soft Comput. 2018;73:848–61.

 39. Sanchez‑Niubo A, Egea‑Cortés L, Olaya B, Caballero FF, Ayuso‑Mateos 
JL, Prina M, Bobak M, Arndt H, Tobiasz‑Adamczyk B, Pająk A, et al. Cohort 
profile: the ageing trajectories of health‑longitudinal opportunities and 
synergies (athlos) project. Int J Epidemiol. 2019;48(4):1052–1053i.

 40. Prina AM, Acosta D, Acosta I, Guerra M, Huang Y, Jotheeswaran A, 
Jimenez‑Velazquez IZ, Liu Z, Llibre RJ, Salas JA. Cohort profile: the 10/66 
study. Int J Epidemiol. 2017;46(2):406.

 41. Luszcz MA, Giles LC, Anstey KJ, Browne‑Yung KC, Walker RA, Windsor TD. 
Cohort profile: the Australian longitudinal study of ageing (alsa). Int J 
Epidemiol. 2016;45(4):1054–63.

 42. Leonardi M, Chatterji S, Koskinen S, Ayuso‑Mateos JL, Haro JM, Frisoni G, 
Frattura L, Martinuzzi A, Tobiasz‑Adamczyk B, Gmurek M, et al. Deter‑
minants of health and disability in ageing population: the courage in 
Europe project (collaborative research on ageing in europe). Clin Psychol 
Psychother. 2014;21(3):193–8.

 43. Steptoe A, Breeze E, Banks J, Nazroo J. Cohort profile: the English longitu‑
dinal study of ageing. Int J Epidemiol. 2013;42(6):1640–8.

 44. Rodríguez‑Artalejo F, Graciani A, Guallar‑Castillón P, León‑Muñoz LM, 
Zuluaga MC, López‑García E, Gutiérrez‑Fisac JL, Taboada JM, Aguilera 
MT, Regidor E, et al. Rationale and methods of the study on nutrition 

https://doi.org/10.3390/nu8060338
https://doi.org/10.3390/nu8060338
https://doi.org/10.1109/JBHI.2016.2525731
https://doi.org/10.1109/JBHI.2016.2525731
http://arxiv.org/abs/1509.06163


Page 14 of 14Barmpas et al. Health Information Science and Systems  (2022) 10:6

and cardiovascular risk in Spain (enrica). Revista Española de Cardiología 
(English Edition). 2011;64(10):876–82.

 45. Peasey A, Bobak M, Kubinova R, Malyutina S, Pajak A, Tamosiunas A, 
Pikhart H, Nicholson A, Marmot M. Determinants of cardiovascular 
disease and other non‑communicable diseases in central and eastern 
Europe: rationale and design of the hapiee study. BMC Public Health. 
2006;6(1):255.

 46. KS, Health 2000 and 2011 surveys‑thl biobank. National Institute for 
Health and Welfare (2018). Accessed 18 July 2008.

 47. Sonnega A, Faul JD, Ofstedal MB, Langa KM, Phillips JW, Weir DR. 
Cohort profile: the health and retirement study (hrs). Int J Epidemiol. 
2014;43(2):576–85.

 48. Ichimura H, Shimizutani S, Hashimoto H. Jstar first results 2009 report. 
Research Institute of Economy, Trade and Industry (RIETI): Tech. rep; 2009.

 49. Park JH, Lim S, Lim J, Kim K, Han M, Yoon IY, Kim J, Chang Y, Chang CB, 
Chin HJ, et al. An overview of the Korean longitudinal study on health 
and aging. Psychiatry Investig. 2007;4(2):84.

 50. Wong R, Michaels‑Obregon A, Palloni A. Cohort profile: the Mexican 
health and aging study (MHAS). Int J Epidemiol. 2017;46(2):e2–e2.

 51. Kowal P, Chatterji S, Naidoo N, Biritwum R, Fan W, Lopez Ridaura R, Maxi‑
mova T, Arokiasamy P, Phaswana‑Mafuya N, Williams S, et al. Data resource 
profile: the world health organization study on global ageing and adult 
health (Sage). Int J Epidemiol. 2012;41(6):1639–49.

 52. Börsch‑Supan A, Brandt M, Hunkler C, Kneip T, Korbmacher J, Malter 
F, Schaan B, Stuck S, Zuber S. Data resource profile: the survey of 
health, ageing and retirement in Europe (SHARE). Int J Epidemiol. 
2013;42(4):992–1001.

 53. Whelan BJ, Savva GM. Design and methodology of the Irish longitudinal 
study on ageing. J Am Geriatr Soc. 2013;61:S265–8.

 54. Arokiasamy P, Bloom D, Lee J, Feeney K, Ozolins M. Longitudinal aging 
study in India: vision, design, implementation, and preliminary findings. 
In: Smith JP, Majmundar M, editors. Aging in Asia: findings from new and 
emerging data initiatives. Washington: National Academies Press; 2012.

 55. Seetharaman P, Wichern G, Le Roux J, Pardo B. Bootstrapping single‑
channel source separation via unsupervised spatial clustering on stereo 
mixtures. In: ICASSP 2019‑2019 IEEE International Conference on Acous‑
tics, Speech and Signal Processing (ICASSP), IEEE, 2019. pp. 356–360.

 56. Dietterich TG, Ensemble methods in machine learning. In: International 
workshop on multiple classifier systems, Springer, 2000; pp. 1–15.

 57. Boongoen T, Iam‑On N. Cluster ensembles: a survey of approaches with 
recent extensions and applications. Comput Sci Rev. 2018;28:1–25.

 58. Saraçli S, Doğan N, Doğan İ. Comparison of hierarchical cluster analysis 
methods by cophenetic correlation. J Inequal Appl. 2013;2013(1):1–8.

 59. Pavlidis NG, Hofmeyr DP, Tasoulis SK. Minimum density hyperplanes. J 
Mach Learn Res. 2016;17(1):5414–46.

 60. Murtagh F, Legendre P. Ward’s hierarchical agglomerative cluster‑
ing method: which algorithms implement ward’s criterion? J Classif. 
2014;31(3):274–95.

 61. Zhang W, Zhao D, Wang X. Agglomerative clustering via maximum incre‑
mental path integral. Pattern Recogn. 2013;46(11):3056–65.

 62. Sharma A, López Y, Tsunoda T. Divisive hierarchical maximum likelihood 
clustering. BMC Bioinform. 2017;18(16):546.

 63. Tasoulis S, Cheng L, Välimäki N, Croucher NJ, Harris SR, Hanage WP, Roos T, 
Corander J. Random projection based clustering for population genom‑
ics. IEEE Int Conf Big Data (Big Data). 2014;2014:675–82. https:// doi. org/ 
10. 1109/ BigDa ta. 2014. 70042 91.

 64. Tasoulis SK, Tasoulis DK, Plagianakos VP. Enhancing principal direction 
divisive clustering. Pattern Recogn. 2010;43(10):3391–411.

 65. Hofmeyr DP. Clustering by minimum cut hyperplanes. IEEE Trans Pattern 
Anal Mach Intell. 2016;39(8):1547–60.

 66. Azzalini A, Torelli N. Clustering via nonparametric density estimation. Stat 
Comput. 2007;17(1):71–80.

 67. Stuetzle W, Nugent R. A generalized single linkage method for estimating 
the cluster tree of a density. J Comput Graph Stat. 2010;19(2):397–418.

 68. Menardi G, Azzalini A. An advancement in clustering via nonparametric 
density estimation. Stat Comput. 2014;24(5):753–67.

 69. Ben‑David S, Lu T, Pál D, Sotáková M. Learning low density separators. In: 
Artificial Intelligence and Statistics; 2009, pp. 25–32.

 70. Boley D. Principal direction divisive partitioning. Data Min Knowl Disc. 
1998;2(4):325–44.

 71. Zumel N, Mount J vtreat: a data. frame processor for predictive modeling, 
arXiv: 1611. 09477.

 72. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and 
validation of cluster analysis. J Comput Appl Math. 1987;20:53–65.

 73. Baker FB, Hubert LJ. Measuring the power of hierarchical cluster analysis. J 
Am Stat Assoc. 1975;70(349):31–8.

 74. Tasoulis S, Pavlidis NG, Root T. Nonlineardimensionality reduction for 
clustering. Pattern Recogn. 2020;107:107508.

 75. Emerson J, Kane M. biganalytics: Utilities for “big. matrix” objects from 
package “bigmemory”, J Stat Softw.

 76. Liaw A, Wiener M, et al. Classification and regression by randomforest. R 
News. 2002;2(3):18–22.

 77. Chai T, Draxler RR. Root mean square error (RMSE) or mean absolute error 
(MAE)?‑Arguments against avoiding RMSE in the literature. Geosci Model 
Develop. 2014;7(3):1247–50.

 78. Kim J‑H. Estimatingclassification error rate: repeated cross‑valida‑
tion, repeated hold‑out and bootstrap. Comput Stat Data Anal. 
2009;53(11):3735–45. https:// doi. org/ 10. 1016/j. csda. 2009. 04. 009.

 79. Microsoft, S. Weston, foreach: provides Foreach Looping Construct, r 
package version 1.4.7 url = https://CRAN.R‑project.org/package=foreach 
(2019).

 80. Chen T, Guestrin C. Xgboost: a scalable tree boosting system, in: Proceed‑
ings of the 22nd acm sigkdd international conference on knowledge 
discovery and data mining; 2016, pp. 785–794.

 81. Kingma DP, Ba J. Adam: a method for stochastic optimization, arXiv: 1412. 
6980.

 82. Rousseeuw PJ, Kaufman L. Finding groups in data, Hoboken: Wiley Online 
Library 1.

 83. Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a 
data set via the gap statistic. J R Stat Soc Ser B. 2001;63(2):411–23.

 84. Hofmeyr D, Pavlidis N. Ppci: an r package for cluster identification 
using projection pursuit. R J Appear. 2019. https:// doi. org/ 10. 32614/ 
RJ‑ 2019‑ 046.

 85. Tasoulis SK, Vrahatis AG, Georgakopoulos SV, Plagianakos VP. Biomedical 
data ensemble classification using random projections. In: 2018 IEEE 
International Conference on Big Data (Big Data), IEEE; 2018, pp. 166–172.

 86. Cannings TI, Samworth RJ. Random‑projection ensemble classification. J 
R Stat Soc Ser B. 2017;79(4):959–1035.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/BigData.2014.7004291
https://doi.org/10.1109/BigData.2014.7004291
http://arxiv.org/abs/1611.09477
https://doi.org/10.1016/j.csda.2009.04.009
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.32614/RJ-2019-046
https://doi.org/10.32614/RJ-2019-046

	A divisive hierarchical clustering methodology for enhancing the ensemble prediction power in large scale population studies: the ATHLOS project
	Abstract 
	Introduction
	Related work
	Background material
	Data description
	Ensemble learning
	Projection based hierarchical divisive clustering

	The proposed ensemble methodology
	Naive clustering for prediction

	Data preprocessing
	Experimental analysis
	Extended comparisons
	Tree visualization and variable importance

	Concluding remarks
	Acknowledgements
	References




