
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Atmospheric Pollution Research 13 (2022) 101419

Available online 18 April 2022
1309-1042/© 2022 Turkish National Committee for Air Pollution Research and Control. Production and hosting by Elsevier B.V. All rights reserved.

Association of population migration with air quality: Role of city attributes 
in China during COVID-19 pandemic (2019–2021) 

Keyu Luo a,1, Zhenyu Wang a,*,1, Jiansheng Wu a,b,** 

a Key Laboratory for Urban Habitat Environmental Science and Technology, School of Urban Planning and Design, Peking University, Shenzhen, 518055, PR China 
b Key Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, PR China   

A R T I C L E  I N F O   

Keywords: 
Air quality 
COVID-19 
China 
Migration 
City attributes 
Modification effects 

A B S T R A C T   

Atmospheric pollution studies have linked diminished human activity during the COVID-19 pandemic to improve 
air quality. This study was conducted during January to March (2019–2021) in 332 cities in China to examine the 
association between population migration and air quality, and examined the role of three city attributes 
(pollution level, city scale, and lockdown status) in this effect. This study assessed six air pollutants, namely CO, 
NO2, O3, PM10, PM2.5, and SO2, and measured meteorological data, with-in city migration (WCM) index, and 
inter-city migration (ICM) index. A linear mixed-effects model with an autoregressive distributed lag model was 
fitted to estimate the effect of the percent change in migration on air pollution, adjusting for potential con-
founding factors. In summary, lower migration was associated with decreased air pollution (other than O3). 
Pollution change in susceptibility is more likely to occur in NO2 decrease and O3 increase, but unsusceptibility is 
more likely to occur in CO and SO2, to city attributes from low migration. Cities that are less air polluted and 
population-dense may benefit more from decreasing PM10 and PM2.5. The associations between population 
migration and air pollution were stronger in cities with stringent traffic restrictions than in cities with no 
lockdowns. Based on city attributes, an insignificant difference was observed between the effects of ICM and 
WCM on air pollution. Findings from this study may gain knowledge about the potential interaction between 
migration and city attributes, which may help decision-makers adopt air-quality policies with city-specific targets 
and paths to pursue similar air quality improvements for public health but at a much lower economic cost than 
lockdowns.   

1. Introduction 

In China, a country with a high level of air pollution (Aunan et al., 
2018; Han et al., 2017), measures to control human activities have 
effectively improved air quality in recent decades. Although air pollu-
tion may be influenced by natural factors (Chen et al., 2020b; Zhang 
et al., 2020), the impact of human activities on air quality remains a 
topic of atmospheric pollution research. In the short term, special pe-
riods of control can bring about temporary improvements in air quality, 

such as the 2008 Olympics and the 2014 Asia-Pacific Economic Coop-
eration (APEC) meeting (Chen et al., 2013; Wang et al., 2016). In the 
medium-to long-term, relevant environmental policies may be powerful 
tools to reduce emissions and improve air quality (Xu and Zhang, 2020). 
The impact of these policies has been proved by a study that identified 
that pollutant reduction in China from 2013 to 2017 mainly came from a 
decline in anthropogenic emissions (Zhang et al., 2019). 

COVID-19 has deeply impacted environmental quality in certain 
areas in the short term (He et al., 2021a; Zhao et al., 2021), because of 

Abbreviations: AQI, air quality index; PRE, accumulated precipitation; PRS, atmospheric pressure; PRSR, range of atmospheric pressure; RHU, relative humidity; 
SSD, sunshine duration; TEM, temperature; TEMR, range of temperature; WIN, Wind speed; WCM, within-city migration; ICM, inter-city migration; SD, standard 
deviation; Skew, skewness; Kurt, kurtosis; F-test, variance ratio test; VIF, variance inflation factor; LSDV-ADL, a linear mixed-effects model with an autoregressive 
distributed lag. 
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restrictions to limit exposure to the highly contagious virus (Bashir et al., 
2020; Gautam, 2020; Rugani and Caro, 2020; Sharma et al., 2020). 
However, past air quality control studies have primarily focused on 
specific areas (Wang et al., 2021a). Methods based on large sample cities 
(including many small- and medium-sized cities) have rarely been 
examined. The impact of a decrease in comprehensive anthropogenic 
emission on air quality was more profound than that of previous local 
controls, providing a natural experiment between normal days and 
pandemic periods. Therefore, it would be helpful for us to explore the 
mechanism underlying different air pollutants’ responses in various 
cities. However, city lockdown bans were highly inefficient to reduce 
pollution compared with other environmental regulations implemented 
in China. Similar levels of environmental welfare can be achieved at a 
much lower economic cost than lockdowns (Bherwani et al., 2020; Hu 
et al., 2021). 

Traffic, industrial and residential sections were the major human 
emission sources in China (Aunan et al., 2018; Wang et al., 2021b). 
During the period of strict restrictions in response to COVID-19, China’s 
air quality compliance rate increased by 36%, with NO2 concentration 
decreased the most, indicating that control measures considerably 
reduced pollution emissions caused by the movement of people (Wang 
et al., 2020). The population migrations index may be considered as a 
proxy of human mobility affecting the emission sources during lock-
down bans (Fang et al., 2020; Faridi et al., 2021). Indeed, the inter-city 
and intra-city traffic recorded a 37.8% and 14.0% drop, respectively, 
during the lockdown in Wuhan (Xiong et al., 2020). Consequently, the 
emission from traffic sources was reduced. Although the shutdown of 
certain industries (e.g. manufacturing and catering industries) contrib-
uted to the improved air quality (e.g., PM2.5), almost no change in SO2 
concentration was observed in multiple cities because the production of 
certain steel, coking, gas, water, and power factories was not interrupted 
due to production needs (He et al., 2021b). In addition, pollution 
discharge from residential emissions (e.g., due to coal heating activities) 
and essential industry remained steady or not significantly declined 
(Faridi et al., 2021). Therefore, the pollution levels in cities with emis-
sions dominated by coal power generation and residential sources were 
not significantly reduced (Kerimray et al., 2020). 

Because there are obvious differences in climate, population distri-
bution, economic structure, and urbanization process in Chinese regions 
with a vast territory (Wang et al., 2021a), air pollution variation during 
the lockdown also has regional characteristics. As shown in Table S1, 
only a few studies have identified larger lockdown effects in colder, 
richer, larger, more industrialized, and more air-polluted cities with 
previous heterogeneity analysis, suggesting interactions with city attri-
butes (He et al., 2020; Hu et al., 2021; Shen et al., 2021; H. Wang et al., 
2021a; Zeng and Bao, 2021). However, this cannot be deduced in all 
cases. Researches are insufficient for two reasons. First, previous studies 
have suggested the different modification effects based on zonal statis-
tics but without causal inference (Naqvi et al., 2021). Approximately all 
studies have not quantified the city-specific marginal effect on air 
pollution decline due to migration during lockdown bans (Faridi et al., 
2021). Zonal statistics may generate bias for mixing effect by lockdown 
measures with other confounding factors. It also faced the challenge to 
infer plausibly the average effect in each subclass of city attributes. 
Second, the directions of interactions are inconsistent with different 
pollution types and different modifiers. A study reported stronger PM or 
CO effects in cities with low green coverage rates, whereas it also re-
ported weaker PM and SO2 effects in cities with high vehicle density (Jia 
et al., 2021). The statistical significance of interaction also matters for 
detecting associations (Chen et al., 2018). To further empirically 
examine the intermediary modifier role of city attributes on air pollution 
decrease due to migration, to our knowledge, is a novel contribution. 

Our study aimed to elucidate the modification effects of city attri-
butes (i.e., pollution level, city scale, and response status) on the link 
between migration level and air quality. For example, the association 
between population migration and air pollution was expected to be 

stronger in cities that were polluted (versus clean), were large (versus 
small), or cities that adopted traffic restrictions (cities with versus no 
restrictions). This study utilized the daily observation data of migration 
(inter-city migration [ICM] and within-city migration [WCM]) and air 
pollution concentration (PM2.5, PM10, SO2, CO, NO2, and O3) combined 
with meteorology factors and weekend dummy variables in 332 Chinese 
cities during January to March (2019–2020) using a linear mixed-effects 
model with an autoregressive distributed lag (LSDV-ADL). Our statistical 
methods have the advantage of reducing bias (due to confounding fac-
tors) compared with cross-sectional designs (Regencia et al., 2020). The 
large-sample analysis further helps address challenges from city-specific 
time-invariant characteristics and plausibly estimate the average effect 
in each subclass of city attributes (He et al., 2020). Our study has 
important policy-relevant implications. Our findings may gain knowl-
edge about the potential interaction between migration and city attri-
butes, which may support city-specific targets and paths for air pollution 
control. The modification effect of city attributes matters for employing 
initiatives by city managers and residents to reduce emissions, even at a 
relatively low level for public health. Future environmental policies 
should pursue similar air quality improvements likewise traffic re-
strictions but at a much lower economic cost. 

2. Materials and methods 

2.1. Sample and data 

The research data covered 332 Chinese cities in January, February, 
and March (from 2019 to 2021). These three years were defined as the 
years before, during, and after the peak of COVID-19. This is also the 
annual period that spans the Chinese lunar new year, when there is 
large-scale migration with tens of millions of workers returning home 
and to their jobs. Thus, the date order was rearranged according to the 
lunar calendar, rather than the Gregorian calendar. Seventy-two days 
were selected for each year, from January 12 to March 24, 2019, from 
January 1 to March 12, 2020, and from January 19 to March 31, 2021, 
respectively. Time reorder benefited effective contemporaneous 
comparisons. 

Population migration data were obtained from the Baidu migration 
service (http://qianxi.baidu.com/) using Python web crawler. Baidu is 
the most widely used Chinese search engine, equivalent to Google. The 
Baidu migration index was calculated based on the Baidu map user 
location, government database, and other cooperative third parties such 
as China mobile, which recorded multiple population migration types 
(Gibbs et al., 2020; Liu et al., 2020). The Baidu migration indices are 
unitless relative values that represent the spatial trajectory and char-
acteristics of the population migration, and it does not distinguish be-
tween transport types. The dataset has been widely used in 
geo-economics, demography, and epidemiology, which has also served 
as an important data source for COVID-19-related research (Chen et al., 
2020a; Gibbs et al., 2020). 

Other data were also used in this study. Ground-observation air 
pollution data were collected from the online air quality monitoring and 
analysis platform of China (https://www.aqistudy.cn/). Daily meteo-
rological data were obtained from the National Meteorological Science 
and Technology Data Center (http://data.cma.cn/). Population data 
were obtained from LandScan (satpalda.com/product/landscan/). 

2.2. Measures of variables 

The daily mean values of 699 ground reference stations were 
calculated using four automated observations. The air quality data 
included 332 cities with daily values throughout the study period. In the 
data-cleaning phase, outlier data were defined as empty values and 
extreme values. When the data were missing or there was no observation 
task, it was recorded as − 9999 or 32,766. An extreme value is defined as 
the value of the measured values at each location that deviates from the 
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historical mean by more than 3 standard deviations). In general, the 
extreme values indicate that the actual measured value exceeds the 
upper and lower limits of the instrument, and a large value, such as 
20,000 or 100,000, will be added to the original value when recording. 
These records were replaced with the average of nearby cities at a 
certain time. In addition, this study analyzed the descriptive statistics 
and correlation coefficients of the variables.  

(1) Air-quality data 

Air pollution data included the concentrations of PM10 (μg/m3), 
PM2.5 (μg/m3), CO (mg/m3), NO2 (μg/m3), 8-h average O3 (μg/m3), and 
SO2 (μg/m3) concentrations. All data were automatically updated 
hourly from the air monitoring stations. The daily concentrations in 
each city were averaged according to the hourly data of the day.  

(2) Meteorological data 

Air quality and pollution are largely related to the local meteoro-
logical conditions. Therefore, various meteorological factors were 
introduced as control variables to eliminate geographical and time dif-
ferences. Eight meteorological factors were investigated, including at-
mospheric pressure of the station (PRS, hPa), range of atmospheric 
pressure (PRSR, hPa), precipitation (PRE, mm), average temperature 
(TEM, ◦C), range of temperature (TEMR, ◦C), average relative humidity 
(RHU, %), average wind speed (WIN, m/s), and sunshine duration (SSD, 
h). The arithmetic means at the city scale were obtained using geo-
statistics kriging interpolation and zonal statistics tools in ArcGIS 10.6. 
All data were projected onto the Krasovsky 1940 Albers coordinate 
system. The correlation within the data required further testing owing to 
the extensive meteorological indicators. A Pearson correlation coeffi-
cient >0.7 indicated a high correlation. In addition, the variance infla-
tion factor (VIF) was used to test the severity of multiple collinearities in 
the multiple linear regression models. Data with a VIF >10 were 
excluded.  

(3) Migration data 

Traffic emission from migration is a key source of pollutants. The 
population migration data used in this study focused on the intensity of 
moving out of cities (MOC), the intensity of moving into cities (MIC), 
and the index of travel within cities (TIC). MOC and MIC, reflecting 
migration at the population scale, can be compared horizontally among 
different cities and years. TIC is the index of the ratio of the number of 
people traveling compared to the number of people living in the city. 
The urban migration boundary adopted an administrative division of the 
city, including districts, counties, townships, and villages. Population 
migration was estimated using previously described equations (Fang 
et al., 2020; Zeng and Bao, 2021) based on the proportional relationship 
between the Baidu migration index and population: 

WCM = 2182.264 × TIC (1)  

ICM = 90.848 × (MOC +MIC) (2)  

where the WCM represents the within-city migration (1000 people), and 
ICM represents the inter-city migration (1000 people). 

2.3. Models and data analysis procedure  

(1) Spatio-temporal variation 

Variations occurred in the air pollution and migration from 2019 to 
2021. The city closure policy (lockdown) in Wuhan was initiated on 
January 23, 2020 (the 23rd day), and traffic control was gradually 
implemented in other cities. To compare the difference between the 

pollution concentrations before and after city closure with the same 
conditions over the same period in three consecutive years, the per-
centage change in the same period was calculated for each year. The 
change ratio between 2020 and 2019 reflected the impact of severe 
traffic control on population migration. The change ratio between 2021 
and 2020 indicates the impact of the degree of migration recovery. The 
pollutant concentration curve plotted the average daily trend, whereas 
the confidence intervals represented the data dispersion. 

Air pollution and migration factors were mapped at the national 
scale to show the spatial heterogeneity in the changes in both migrant 
and pollutant concentrations. The spatial autocorrelation and hot/cold 
spots of the variables were analyzed using the Local Moran’s I index, 
which ranges from − 1 to 1. A positive Moran’s I value indicates that the 
PM2.5 concentration presents a positive spatial autocorrelation, while a 
negative Moran’s I indicates a negative spatial relationship. Based on the 
Euclidean distance, a spatial weight matrix with a normal distribution 
was established. The maximum K-nearest neighbor distance was used as 
the bandwidth. After 999 Mentcaro random permutations, a Moran’s I p- 
value of Moran’s I < 0.01 means the application of Moran’s I is 
considered to be reliable. Otherwise, it would be considered unreliable. 
The ArcGIS 10.2 was used in this step.  

(2) Statistical analysis 

This study examined the modification effect by city attributes using a 
two-step stratified analysis. This research assumes that the association 
between pollutant concentrations and migration in cities with different 
attribute characteristics is different; that is, a modification effect of 
urban attributes exists. To estimate the stratified dataset, the regression 
model included air pollutants, time dummy variables, population 
migration, and meteorological data. If the coefficient p of the interaction 
term is significant, then the hypothesis holds. 

First, an LSDV-ADL model was developed to estimate the association 
between each migration index and the percent change in air pollution. 
The least squares dummy variable method is a linear mixed-effects 
model with random subclass-specific intercepts. Mixed-effects models 
were fitted to account for the heterogeneity in each city’s stratification. 
The autoregressive distributed lag model was employed to consider 
lagged items of air pollution because air pollutants can remain in the 
atmosphere for long durations. The study variables were endogenous 
and used as a function of the lagged values of the endogenous variables 
in the system, and the analysis was conducted using R software (version 
3.6.2). The details of the LSDV-ADL model are as follows: 

Airi,t =
∑m

1
αrClassr + β1lnICMt + β2lnWCMt + β3Weekendt

+
∑n

1
γpWeatherp,t +

∑q

1
δqAiri,t− q + ut (3)  

where i, t, p, and q represent the pollution type, day, meteorological 
factor, and lagged days, respectively; Airi,t represents the i-th air pollu-
tion on day t; αr of Classr denotes the fixed effect of each subclass; and 
ICMt and WCMt represent the inter-city migrants and within-city mi-
grants on day t, respectively. To avoid the influence of non-stationary 
and heteroscedasticity, ICM and WCM were processed using a natural 
logarithm transformation. Weatherp,t represents the p-th meteorological 
factor on day t; β, γ, and δ are the regression coefficients; α is the 
intercept; and ut is the random error term. Airi,t− q represents the i-th air 
pollution lagged for q days before day t. Air pollutants’ lifetimes in the 
atmosphere generally range from several days to one week; thus the 
moving average lag was used to estimate the lag effects (from lag 1 d to 
lag 7 d) of air pollutants. Weekend effects was also controlled, with 1 for 
the weekends and 0 for the weekdays. The concentrations of the six 
pollutants were used as the dependent variables. WCM and ICM are the 
independent variables, while the weekend dummy variable and 

K. Luo et al.                                                                                                                                                                                                                                      



Atmospheric Pollution Research 13 (2022) 101419

4

meteorological factors are control variables (confounding factors). 
In the second step, city attributes (pollution level, city scale, and 

lockdown status) were assessed as effect modifiers using interaction 
terms. The quadruple division employed in this study investigates the 
modification effect of urban attributes in a robust manner, rather than 
the two- or three-category divisions used in most previous studies (Chen 
et al., 2018; Guo et al., 2021; Regencia et al., 2020). Stratifications of 
city attributes are shown in Fig. 1 and Table S2. First, the air pollution 
level was categorized according to the multi-year average AQI from 
2015 to 2019 as good (<60), moderate (60–80), moderately polluted 
(80–100), and poor air quality (>100). Second, the city size was defined 
by population density (the ratio of population to area) ranked as 
small-sized (<100 people/km2), medium-sized (100–500 people/km2), 
large-sized (500–1000 people/km2), and mega-sized (>1000 peo-
ple/km2) cities. Third, the subclass of lockdown response status included 
complete lockdown, partial lockdown (with-in city and inter-city), and 

no lockdown. Specifically, the complete lockdown cities experienced a 
mutation in both ICM and WCM, while the other lockdowns experienced 
only one. Mutations in the difference time series ΔICM and the ΔWCM 
between 2019 and 2020 were determined using the Mann–Kendall test. 
Combined with the stratified data, the interactions between air pollut-
ants and city attribute dummy variables were added to the regression 
model. This was done to determine whether urban attribute factors 
significantly altered the relationship between air pollution and popu-
lation migration. 

3. Results 

3.1. Air quality and population migration variables 

Table 1 presents a summary of the variables, definitions, and 
descriptive statistics are presented in. The statistical results for the six 

Fig. 1. City attributes stratifications and criteria: (a) air pollution subclass by average AQI; (b) city size subclass by population density; (c) subclass of lockdown 
response status. 
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pollutant concentrations showed high pollutant variation. For example, 
PM2.5 and PM10 far exceed the WHO thresholds of 25 μg/m3 and 50 μg/ 
m3, with the largest standard deviation (SD) of 42.51 and 105.49 
respectively. In addition, the Pearson correlation coefficients between 
ICM and WCM and other confounding variables were also <0.2. Pollu-
tion concentrations were strongly correlated, with the largest correla-
tion coefficient between PM2.5 and PM10 (0.73; Fig. S1 and Fig. S2). RHU 
(0.66), SSD (0.71), and TEMR (0.77) cannot coexist in the regression 

equation, because the information overlaps. Combined with the multi-
collinearity test in Table S3, PRS, RHU, TEMR, and WIN, with a VIF >10 
were excluded from the candidate variables. By gradually removing 
these variables, the multicollinearity among the remaining variables 
was weakened (<7.5). 

Furthermore, this study investigated whether the models were robust 
to different lag structures (Fig. S3). In general, the R2 of the ADL model 
for different pollutants showed a similar trend, with a jump between 

Table 1 
Summary of variables, definitions, and descriptive statistics (N = 71,712).  

Variables Variable definitions Mean SD Min Max Skew Kurt 

Dependent variables: air pollution 
CO CO concentration (mg/m3) 0.90 0.45 0.10 7.40 2.54 9.33 
NO2 NO2 concentration (μg/m3) 27.32 16.06 1.00 145.00 1.09 1.37 
O3 8 h average O3 concentration (μg/m3) 75.63 26.96 2.00 300.00 0.13 0.42 
PM10 PM10 concentration (μg/m3) 83.49 105.49 3.00 5058.00 15.91 469.49 
PM2.5 PM2.5 concentration (μg/m3) 50.05 42.51 1.00 1350.00 4.11 48.14 
SO2 SO2 concentration (μg/m3) 12.25 10.83 1.00 554.00 6.15 141.47 
Independent variables: migration 
WCM the number of within-city migrants (1000) 9823.42 2801.47 655.33 20955.41 − 0.48 0.14 
ICM the number of inter-city migrants (1000) 170.63 228.50 0.26 3061.98 4.15 24.59 
Control variables: meteorological data 
PRE Accumulated precipitation 1.35 4.02 0.00 65.64 5.43 39.95 
PRS Atmospheric pressure 948.53 85.24 621.52 1034.59 − 1.65 2.38 
PRSR Range of atmospheric pressure 5.74 2.32 1.07 65.31 2.15 15.21 
RHU Relative humidity 66.36 18.14 12.81 99.62 − 0.40 − 0.69 
SSD Sunshine duration 4.96 3.40 − 3.24 14.30 − 0.09 − 1.39 
TEM Temperature 5.19 9.06 − 39.48 29.59 − 0.48 0.15 
TEMR Range of temperature 10.13 4.56 0.40 30.97 0.19 − 0.73 
WIN Wind speed 2.25 0.81 − 0.29 9.36 1.32 3.17 
Weekend Dummy variable, 1 for weekends, 0 for weekdays    

Fig. 2. LISA cluster mapper of population migration and AQI during the study period. Significant Local Moran’s I (p < 0.01) is classified into four types: high-high, 
high-low, low-high, and low-low clusters. 
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lag0 and lag1. The optimal lag days for each pollutant were determined 
using the largest R2 of ADL to improve the goodness of fit. Regression 
equations without the lag factor maintained the lowest goodness of fit, 
ranging from 0.0367 to 0.2712. The regression equation with the lag 
factors showed an initial increasing trend, followed by a decreasing 
trend after lag0. The optimal lag days in the ADL model for pollutants 
were inconsistent: PM2.5 at lag1, PM10 at 1ag2, CO at lag6, SO2 at lag5, 
NO2 at lag4, and O3 at lag4. 

Air pollution data were obtained from the online air quality moni-
toring and analysis platform of China (https://www.aqistudy.cn/). 
Migration data were obtained from the Baidu migration website (http: 
//qianxi.baidu.com/). Meteorological data were obtained from the 
National Meteorological Science and Technology Data Center (htt 
p://data.cma.cn/). The study duration was72 d in 2019, 2020, and 
2021 (January 12, 2019–March 24, 2019; January 1, 2020–March 12, 
2020; January 19, 2021–March 31, 2021). The data were then trans-
ferred and aggregated for the 332 cities. SD: standard deviation; Skew: 
skewness; Kurt: kurtosis. 

3.2. Spatio-temporal change of migration and air pollution  

(1) Changes in air pollution 

The spatial distribution characteristics of AQI across China did not 
change significantly, with a high-high cluster in North China (Fig. 2). In 

2019, the mean AQI of 18.67% of cities was >100, primarily in North 
China and southern Xinjiang. In 2020, the AQI of 48.4% of these cities 
decreased to <100, followed by a rebound in 2021. Figures S4 and S5 
show the spatial distribution patterns of the six air pollutants (CO, NO2, 
O3, PM10, PM2.5, and SO2). Moreover, the reason for the poor air quality 
in the northwest in 2021 lies in the PM10 sources (Fig. S7). A low PM2.5/ 
PM10 ratio (40–60%) shows that high pollution in North China in 2021 
was mainly related to the northern transmission, with low humidity, 
sparse vegetation, and large desert areas in winter in the northwest. 

The total air pollution concentrations changed dramatically in per-
centage during the three-year study period (Fig. 3d). The AQI in 2020 
decreased by 7.1% from that in 2019 and increased by 8.8% in 2021. 
The CO, NO2, SO2, PM2.5, and PM10 were reduced by 7.6%, 22.4%, 
9.4%, 9.9%, and 19.13% in 2020 compared to 2019, respectively. In 
2021, pollutants showed a year-on-year growth of 15.0% (CO), 1.7% 
(NO2), 2.0% (SO2), and 29.4% (PM2.5) and 29.3% (PM10). The lockdown 
start day as the inflection point of pollution trends is noticeable in Fig. 4 
a–f. CO, NO2, SO2, PM2.5, and PM10 generally showed a downward trend 
in 2020, while O3 showed a reverse trend.  

(2) Change of migration 

Fig. 2 highlights the spatial autocorrelation of the ICM and WCM. High- 
high cluster areas of ICM were geographically located in large-scale 
urban agglomerations, while low-high cluster areas were located in 

Fig. 3. Spatial-temporal variation in the degree of air pollution. Figures a–c map the air quality grade corresponding to the AQI mean values in 2019, 2020, and 
2021. Figure d shows boxplots of the year-on-year growth rate of AQI and six air pollutants. The green boxes represent the change rates in 2019 with 2020, yellow 
boxes represent the change rates in 2020 with 2021, and purple boxes represent the change rates in 2021 with 2019. The orange line is y = 0. 
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the large cities or capital cities of various provinces. The high-high 
cluster areas of the WCM in 2020 transferred from north-central China 
to the southwest region. However, the pandemic situation across the 
country has not changed the spatial distribution characteristics of ICM 
across China. 

High rates of change in migration also occurred in major urban ag-
glomerations and provincial capitals (Fig. 5). When setting 23 d as the 
demarcation point of daily average ICM and WCM (Fig. 4 g–h), the 
average ICM and WCM in 2020 dropped significantly by 59.1% and 
31.7%, respectively. When comparing 2021 with 2019, ICM dropped by 
an average of 24.25%, however, WCM increased by 19.9% on average; 
this is different from the overall migration decline in 2020 (Fig. 4 g–h 
and Fig. 5). 

3.3. Effect modification by city attributes  

(1) Effect modification by pollution level 

Table 2 and Table 5 present the result of the effect modification by 
the pollution level. Pollution concentration was positively related to 
migration indices, other than O3. In general, the air pollution modifi-
cation effect strengthened the association of ICM with NO2, but weak-
ened the associations of ICM with O3, PM10, PM2.5, and SO2; while the 
air pollution modification effect strengthened the associations of WCM 
with NO2, O3, and PM10. 

Changes in NO2 concentrations in cities with different pollution 
levels (good, 0.054 μg/m3; moderate, 0.1093 μg/m3; moderately 
polluted, 0.1081 μg/m3; polluted, 0.1104 μg/m3) were found an incre-
mental associated with a 10% change in ICM. Similarly, the association 
between NO2 and WCM was stronger in more-polluted (moderately 
polluted, 0.3491 μg/m3; polluted, 0.3547 μg/m3) versus less-polluted 

(good, 0.2103 μg/m3; moderate, 0.3418 μg/m3) cities. 
The association between PM10 and WCM (a 10% change) was 

stronger in more-polluted (moderately, 1.9077 μg/m3; poor, 2.8887 μg/ 
m3) versus less-polluted cities (good, 0.5517 μg/m3; moderate, 1.1030 
μg/m3), however, no significate association was apparent with ICM (p >
0.05). Positive correlations were found between PM2.5 and a 10% 
change in ICM (0.1693 μg/m3), and WCM (0.3534 μg/m3). Only a 
− 0.0873 μg/m3 modification effect of a 10% ICM change was found 
between cities with good and moderate air quality. The difference in the 
estimates of WCM among the cities was not statistically significant. 

O3 concentration was negatively correlated with migration. The ef-
fect of WCM on the 10% change in O3 was also stronger for more- 
polluted cities (moderate, 0.3867 μg/m3; moderately polluted, 0.4222 
μg/m3; poor, 0.5495 μg/m3). However, the effect of ICM on O3 was 
weaker in polluted (− 0.0383 μg/m3) versus less-polluted cities 
(− 0.1533 μg/m3). A generally positive association was estimated be-
tween SO2 and an ICM change by 10% (0.021 μg/m3), with a − 0.0172 
μg/m3 modification effect in cities with moderate air quality compared 
with those with good air quality. A null association was found for the 
WCM-SO2 relationship. This study also estimated a generally positive 
association between CO and an ICM change by 10% (1.1 μg/m3), a null 
association for WCM and CO (1.4 μg/m3, p > 0.05), and a null modifi-
cation of different pollution levels to the migration-CO relationship.  

(2) Effect modification by city scale 

Table 3 and Table 5 present the results of effect modification by city 
scale. The city-scale modification effect strengthened the associations of 
WCM with NO2 but weakened the associations of WCM with PM10 and 
PM2.5, while the air pollution modification effect weakened the associ-
ations of ICM with PM2.5. 

Fig. 4. Air pollution and migration curves of all cities in 2019, 2020, and 2021. The unit of CO is mg/m3, and the unit of O3 and PM10, PM2.5, NO2, and SO2 is μg/m3. 
ICM and WCM represent population migration between cities and within cities (1000 people). Red, black and blue lines distinguish 2019, 2020, and 2021, 
respectively. The red dotted line marks day 23 when Wuhan, China went into lockdown. 
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Fig. 5. Maps of the migration change rates. The unit of the change rate is 100%. There was a widespread decrease in migration across the country after January 23, 
2020, while the number of migrants in 2021 climbed significantly over the same period when compared with 2019. 

Table 2 
Regression of city stratifications at different air pollution levels.  

Coefficients CO NO2 O3 PM10 PM2.5 SO2 

Constant 
good 0.137 * − 15.093 *** 4.141 − 39.701 *** − 13.911 − 0.525 
moderate − 0.085 − 27.729 *** 39.618*** − 72.148 *** − 13.043 * − 3.331 ** 
moderately polluted 0.156 ** − 26.893 *** 42.133 *** − 120.442 *** − 6.766 − 3.539 ** 
poor 0.157 ** − 26.773 *** 51.482 *** − 164.801 *** 7.236 − 3.304 * 
Main effects 
ln(ICM) 0.011 *** 0.540 *** − 1.553 *** 0.793 1.693 *** 0.210 *** 
ln(WCM) 0.014 2.103 *** 3.004 *** 5.517 * 3.534 *** 0.143 
Weekends − 0.003 − 0.144 1.133 *** 2.314 ** − 0.327 0.000 
Interaction effects 
ln(ICM)*good reference reference reference reference reference reference 
ln(ICM)*moderate 0.005 0.553 *** − 0.050 − 1.819 * − 0.873 ** − 0.172 ** 
ln(ICM)*moderately polluted − 0.012 *** 0.541 *** 0.364 − 4.812 *** 0.058 − 0.404 *** 
ln(ICM)*poor − 0.008 * 0.564 *** 1.170 *** − 10.670 *** 0.527 − 0.097 
ln(WCM)*good reference reference reference reference reference reference 
ln(WCM)*moderate 0.024 * 1.315 *** − 3.867 *** 5.513 0.867 0.420 
ln(WCM)*moderately polluted 0.008 1.388 *** − 4.222 *** 13.560 *** 0.375 0.574 * 
ln(WCM)*poor 0.008 1.444 *** − 5.495 *** 23.370 *** − 0.281 0.402 
R2 0.921 0.908 0.943 0.624 0.785 0.823 
F-statistic 32,685 *** 28,870 *** 48,738 *** 5427 *** 12,593 *** 12,431 *** 

Note: Adjusted effect estimates of per 1% unit change in air pollution percentage change of ICM and WCM: single-pollution model with random subclass-specific 
intercept. Models for daily pollutant data (CO, NO2, O3, PM2.5, PM10, and SO2) were adjusted for migration (WCM and ICM), meteorological factors (temperature, 
accumulated precipitation, wind speed, range of atmospheric pressure, and sunshine duration), and weekend effect (weekend and weekday), incorporating city 
subclass as the random effect. Significant codes: ***: p-value < 0.001; **: p-value < 0.01; *: p-value < 0.05. 
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A 10% change in ICM was found an incremental associated with NO2 
concentration changes in cities of different scales (small, 0.2043 μg/m3; 
medium, 0.3192 μg/m3; large, 0.4953 μg/m3; mega, 0.5687 μg/m3). The 
modification effect of city scale on the 10% change in ICM to NO2 could 
not be inferred (small, 0.0895 μg/m3; medium, 0.0527 μg/m3; large, 
0.0581 μg/m3; mega, 0.0885 μg/m3). 

A weakened modification effect of WCM to PM10 was found at the 
city scale, as the change in PM10 with a 10% change in WCM was greater 
in smaller (2.4138 μg/m3) versus larger cities (medium, 1.2087 μg/m3; 
large, 1.3991 μg/m3; 1.0607 μg/m3). In contrast, the differences be-
tween the estimates of ICM and PM10 among cities of various sizes were 
not statistically significant. The effect of the 10% change in ICM on 
PM2.5 was weakened in larger (mega, − 0.0483 μg/m3; large: 0.1612 μg/ 
m3) versus smaller cities (small, 0.1854 μg/m3; medium, 0.1146 μg/m3). 
Similarly, the association of the 10% change in WCM on PM2.5 was 

slightly weaker in larger (mega, 4681 μg/m3; large, 0.4754 μg/m3) 
versus smaller (small, 0.6146 μg/m3; medium, 0.3361 μg/m3) cities. 
City-scale modifications of the effect of migration (WCM and ICM) was 
not found on O3, SO2, and CO.  

(3) Effect modification by response status 

Table 4 and Table 5 present the results of effect modification by response 
status. The response status modification effect strengthened the associ-
ations between WCM-NO2 and ICM-NO2, but weakened the associations 
between ICM-PM2.5. 

A 10% change in ICM was associated with NO2 concentration 
changes in cities with different response statusrd to COVID-19 (no, 
0.0602 μg/m3; inter, 0.1889 μg/m3; intra, 0.0923 μg/m3; complete, 
0.1102 μg/m3). Similarly, the association of 10% change in WCM with 

Table 3 
Regression of city stratifications at different scales.  

Coefficients CO NO2 O3 PM10 PM2.5 SO2 

Constant 
small 0.198 ** − 15.427 *** 25.599 *** − 182.419 *** − 36.653 *** − 4.316 *** 
medium − 0.009 − 23.113 *** 31.681 *** − 80.910 *** − 5.801 − 4.411 *** 
large 0.076 − 39.223 *** 41.542 *** − 98.096 *** − 10.374 − 1.245 
mega 0.076 − 45.771 *** 27.788 *** − 66.328 ** − 4.826 0.571 
Main effects 
ln(ICM) 0.012 *** 0.895 *** − 0.879 *** − 1.683 1.854 *** 0.087 
ln(WCM) 0.006 2.043 *** 0.639 24.138 *** 6.146 *** 0.598 ** 
Weekends − 0.003 − 0.058 1.178 *** 2.384 ** − 0.136 0.012 
Interaction effects 
ln(ICM)*small reference reference reference reference reference reference 
ln(ICM)*medium 0.001 − 0.368 ** − 0.876 *** 1.187 − 0.242 − 0.152 
ln(ICM)*large − 0.007 − 0.314 *** 0.015 2.863 * − 0.708 − 0.145 
ln(ICM)*mega − 0.010 − 0.010 *** − 0.814 1.181 − 2.337 *** − 0.229 
ln(WCM)*small reference reference reference reference reference reference 
ln(WCM)*medium 0.025 * 1.149 *** − 0.508 − 12.051 *** − 2.785 * 0.160 
ln(WCM)*large 0.020 * 2.910 *** − 1.750 * − 10.147 ** − 1.392 − 0.193 
ln(WCM)*mega 0.020 3.644 *** 0.316 − 13.531 *** − 1.465 − 0.360 
R2 0.921 0.907 0.943 0.616 0.777 0.823 
F-statistic 32,543*** 28,575*** 48,760*** 5254*** 12,038*** 12,441*** 

Note: Adjusted effect estimates of per 1% unit change in air pollution percentage change of ICM and WCM: single-pollution model with random subclass-specific 
intercept. Models for daily pollutant data (CO, NO2, O3, PM2.5, PM10, and SO2) were adjusted for migration (WCM and ICM), meteorological factors (temperature, 
accumulated precipitation, wind speed, range of atmospheric pressure, and sunshine duration), and weekend effect (weekend and weekday), incorporating city 
subclass as the random effect. Significant codes: ***: p-value < 0.001; **: p-value < 0.01; *: p-value < 0.05. 

Table 4 
Regression analysis of city stratifications with different response status.  

Coefficients CO NO2 O3 PM10 PM2.5 SO2 

Constant 
no 0.103 − 23.257 *** 35.307 *** − 89.449 *** 11.824 − 1.779 
inter 0.315 − 25.538 *** 49.205 *** − 28.974 55.986 ** − 2.440 
intra − 0.014 − 30.912 *** 29.498 *** − 120.180 *** − 8.625 − 4.132 ** 
complete 0.041 − 30.484 *** 31.981 *** − 110.970 *** − 19.351 *** − 3.250 *** 
Main effects 
ln(ICM) 0.024 *** 0.602 *** − 1.256 *** 0.432 4.104 *** 0.074 
ln(WCM) 0.011 3.096 *** − 0.527 12.554 *** 0.091 0.375 * 
Weekends − 0.004 − 0.104 1.153 *** 2.382 ** − 0.361 − 0.003 
Interaction effects 
ln(ICM)*no reference reference reference reference reference reference 
ln(ICM)*inter 0.008 1.287*** 0.067 7.720 *** 4.671 *** 0.150 
ln(ICM)*intra − 0.017 *** 0.321 ** − 0.144 − 0.568 − 2.128 *** − 0.113 
ln(ICM)*complete − 0.016 *** 0.500 *** 0.356 − 0.636 − 1.356 *** 0.038 
ln(WCM)*no reference reference reference reference reference reference 
ln(WCM)*inter − 0.025 − 0.294 − 1.277 − 9.390 − 6.696 ** 0.000 
ln(WCM)*intra 0.021* 0.756 * 0.800 3.734 3.266 ** 0.320 
ln(WCM)*complete 0.016 0.705 * 0.402 3.248 4.026 *** 0.135 
R2 0.921 0.906 0.943 0.616 0.775 0.823 
F-statistic 32,541*** 28,489 *** 48,636 *** 5246 *** 11,919 *** 12,417 *** 

Note: Adjusted effect estimates of per 1% unit change in air pollution percentage change of ICM and WCM: single-pollution model with random subclass-specific 
intercept. Models for daily pollutant data (CO, NO2, O3, PM2.5, PM10, and SO2) were adjusted for migration (WCM and ICM), meteorological factors (temperature, 
accumulated precipitation, wind speed, range of atmospheric pressure, and sunshine duration), and weekend effect (weekend and weekday), incorporating city 
subclass as the random effect. Significant codes: ***: p-value < 0.001; **: p-value < 0.01; *: p-value < 0.05. 
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NO2 was slightly stronger in cities with stricter restrictions (intra, 
0.3852 μg/m3; complete, 0.3801 μg/m3) versus no lockdown (0.3096 
μg/m3). 

The effect of the 10% change in ICM on PM2.5 was weaker in cities 
that enforced stricter lockdowns (intra, 0.1976 μg/m3; complete, 
0.2748 μg/m3) versus no lockdowns (no, 0.4104 μg/m3; medium, 
0.8775 μg/m3). A null modification of different response statuses was 
found in the WCM-PM2.5 relationship. The response status was not found 
to modify the effect of migration (WCM and ICM) on PM10, O3, SO2, and 
CO. 

The lockdown was associated with air quality improvement. How-
ever, stricter lockdowns had a greater impact on air pollution reduction 
than district lockdowns. Taking NO2 and PM2.5 as an example, ln(ICM) 
exerted the largest impact on inter-city lockdown cities, followed by 
complete lockdown, and within-city lockdown cities. Similarly, ln 
(WCM) had the largest impact on within-city lockdown cities, followed 
by the complete lockdown and inter-city lockdown cities. 

4. Discussion 

Air quality improvement is an indirect environmental benefit of 
lockdown policies in response to the pandemic (Braga et al., 2020; 
Depellegrin et al., 2020; Wang and Su, 2020; Zeng and Bao, 2021). An 
annual peak period of returning home and returning to workplaces 
normally emerges after the Spring Festival holiday. The observed 
decrease in population migration has been attributed to the pandemic 
outbreaks and traffic restriction policies (Lau et al., 2021). Nonetheless, 
cities are inherently heterogeneous entities (Zeng and Bao, 2021). Our 
study found that the classification of city scale, pollution level, and 
population mobility is consistent with the characteristics of the cluster 
mappers of the local Moran’s I. This distribution characteristic of the 
population, economy, urban processes, topography, and climate are 
consistent in China (H. Wang et al., 2021a). Large urban agglomerations 
(e.g., the Yangtze River Delta, the Sichuan Basin, the Great Bay area, and 
Jing-Jin-Ji Region) are densely populated, resulting in serious anthro-
pogenic pollution. Different development levels and pollution condi-
tions, and different lockdown measures in various cities in China during 
COVID-19 have resulted in complex characteristics of pollution changes. 
Besides, air pollution has caused a considerable social health burden, 

and improvements in environmental quality during the COVID-19 could 
have huge potential health benefits (He et al., 2020). Thus, for public 
health and city-specific measures to the precise control of complex air 
pollution, the attributes-specific modification effect (based on natural 
experimental scenarios during the COVID-19 pandemic) should be 
studied. 

Generally, our research suggests that CO, NO2, PM10, PM2.5, and SO2 
were positively correlated with WCM and ICM, with a negative associ-
ation between O3 and migration. This finding has previously been 
identified in previous studies (Adhikari and Yin, 2020; Bao and Zhang, 
2020; Fang et al., 2020; Fronza et al., 2020). The improvements in air 
quality (despite increases in O3) caused by the temporary migration 
reductions were also verified by the weekend effects (Braga et al., 2020). 
This study determined that the 7-day cycle persisted even during the 
study period, with serrated grooves on the migration curve. Another 
study supported our findings on PM emissions in Nice, Rome, and Turin 
(Sicard et al., 2020). Similarly, a counter-weekend effect on ozone 
showed that the average O3 concentration on non-workdays was higher 
than that on workdays (Wang et al., 2020). 

Our results showed that substantial NO2 reduction appeared in more 
air-polluted and population-dense cities, or those that applied stringent 
COVID-19 measures. Transportation is the primary source of NO2 in 
China. Megacities and large cities serve as transportation hubs and in-
dustry centers more than medium and small cities (Krecl et al., 2020; Lu 
et al., 2021). Daily commuting, which causes more air pollutants, was 
much greater than in smaller cities because of the separation of work 
and residence. Thus, traffic restrictions would directly lead to a reduc-
tion in fuel combustion and nitrogen oxide emissions from trains, cars, 
and airplanes (Kanniah et al., 2020; Kotnala et al., 2020). Another study 
that examined the effect of vehicle density on air pollution among cities 
showed that every doubling in vehicle density was in line with a 1.5 
μg/m3 decrease in NO2 (Jia et al., 2021). This study supports our find-
ings, with a clear linear relationship between vehicle density and a 
reduction in NO2 during the traffic control period. 

The association between migration and PM2.5 and PM10 was distinct 
in small and clean cities. Our result shows that, even at low pollution 
concentration, small and clean cities can gain more environmental 
benefits from a proportionate decrease (e.g. 10%) in migration than 
those in polluted and large cities. Other studies supported our findings, 
wherein the correlations between migration and air pollution were 
approximately four to five times greater in more polluted cities than in 
cleaner cities (He et al., 2020; Mandal and Pal, 2020). Pollution con-
centrations in regions with more emission sources, such as north-central 
China, showed a greater rebound than that of surrounding regions (Bao 
and Zhang, 2020). As polluted and large cities hold more vehicle density 
and population migration, our results are consistent with other studies 
that showed vehicle population and urban greening as effect modifiers, 
wherein the linear association in cities’ vehicle density at high levels 
(exceeded 50/km2) slightly attenuated for PM2.5 and PM10 (Jia et al., 
2021). Another study provided evidence for the hypothesis that con-
trolling population flow could quickly cause a large marginal effect 
quickly in cities with high background pollutant concentrations (Leung 
and Sun, 2020). 

Furthermore, the relationship between migration and CO and SO2 
was not sensitive to city size, pollution level, and response status. 
Existing research findings are inconsistent. Some reported reversed 
relationship between vehicle density and SO2 when vehicle density was 
high (Jia et al., 2021). However, a study found cities with fewer in-
dustrial firms witnessed SO2 increase, while cities with more industrial 
firms recorded a greater reduction (Zeng and Bao, 2021). Although 
findings from an earlier study provided conflicting evidence of a 
strengthened modification effect from vehicle density for CO, this study 
reported no significant association between truck proportion and CO 
(Jia et al., 2021). They also found no modification effect between 
vehicle density and SO2 or O3 with a two-category division (Jia et al., 
2021). Consequently, further studies are warranted to validate our 

Table 5 
Summary of modification effects of city attributes on the migration-pollution 
relationship.  

Modification effect CO NO2 O3 PM10 PM2.5 SO2 

Correlation of ICM + + − ○ + +

Correlation of WCM ○ + − + + ○ 

Modification by air pollution 
on ICM ○ ↑↑ ↓ ↓ ↓ ↓ 
on WCM ○ ↑↑ ↑ ↑↑ ○ ○ 

Combined modification ○ ↑↑ ↑↑ ↓ ↓ ↓ 
Modification by city scale 
on ICM ○ ○ ○ ○ ↓ ○ 

on WCM ○ ↑↑ ○ ↓ ↓ ○ 

Combined modification ○ ↑↑ ○ ↓ ↓ ○ 

Modification by response status 
on ICM ○ ↑ ○ ○ null ○ 

on WCM ○ ↑ ○ ○ null ○ 

Combined modification ○ ↑↑ ○ ↑ ↑ ↑ 

Note: + and − denote the positive and negative coefficients, respectively, in each 
regression of ln(ICM) and ln(WCM). ↑↑/↑ denotes the strengthening effect of city 
attributes (increasing trend of positive coefficients or decreasing trend of 
negative coefficients). ↓/↓↓ denotes the weakening of city attributes (increasing 
trend of negative coefficients or decreasing trend of increasing coefficients). A 
double arrow indicates a more significant modification effect. The single arrow 
indicates slighter but acceptable modification effects, due to the insignificant 
coefficients not (p > 0.05) or the non-monotonic trend. ○ denotes null significant 
coefficients or modification effects.  
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findings of the modification effect on CO and SO2. 
This study observed that response status produced the strongest 

combined effect modifications of WCM and ICM among these three city 
attributes. This may be because the response status to COVID-19 was an 
active action, whereas city scale and air pollution levels were both 
passive actions. This suggests that city managers have the potential to 
proactively control air pollution. In addition, the interactions between 
migration and air pollution may be strengthened by stricter measure-
ments in response to COVID-19, and population migration is known to 
be closely associated with traffic regulation (Srivastava et al., 2020). 
Another study that examined the effect of lockdowns and decreases in 
air pollution concluded that more stringent traffic control measures lead 
to greater reductions in AQI, PM2.5, PM10, NO2, and CO levels (Jia et al., 
2021). Even in a city without a formal lockdown policy, the air quality 
level decreased. Our results are supported by another study that claimed 
that disease preventive measures (e.g. the holiday extension, home 
quarantine, and social distancing policy) may affect no-lockdown cities 
(He et al., 2020). 

The study included 332 Chinese cities, from January to March in 
2019, 2020, and 2021, and the results of this study may be generalizable 
to other regions. Contrasts exist both between and within groups or 
stratifications of cities; therefore, a linear mixed model with a random 
subclass-specific intercept was applied in this study. Therefore, the risk 
of bias due to confounding factors should be dismissed more than those 
observed in a cross-sectional study design, although bias due to un-
measured or residual confounding can never be eliminated (Regencia 
et al., 2020). The large-sample analysis further helps to address chal-
lenges from city-specific time-invariant characteristics and plausibly 
estimate the average effect in each subclass of city attributes (He et al., 
2020). The novelty of this study is that it identifies the modifier role of 
city scale, pollution level, and response status in the relationship be-
tween migration and air pollution. The evidence from this study may 
support city-specific air pollution control. Our findings also suggest that 
initiatives by city managers and residents to reduce emissions can 
effectively reduce air pollution, even at a relatively low level. 

5. Conclusions 

In summary, this study documented the modifier role of pollution 
levels, city size, and response status in the association between air 
pollution and migration, meteorological data, and weekend effects from 
January to March (2019–2021) during the COVID-19 period. This study 
found that in more air-polluted and population-dense, or in those that 
applied stringent COVID-19 measures, low migration resulted in 
decreased NO2 and increased O3 levels. Cities that are less air-polluted 
and low-density may benefit more from decreasing PM10 and PM2.5. 
Stringent traffic restrictions in response to COVID-19 resulted in stron-
ger environmental improvements than the absence of lockdowns. The 
relationships between migration and CO and SO2 were not relatively 
sensitive to city size, pollution level, or response status. Therefore, the 
possible modifiers of the relationship between air pollution and CO and 
SO2 should be assessed in future studies. In addition, a significant dif-
ference was not observed between the modification effect of ICM and 
WCM on air pollution by city attributes. 

Traffic restrictions caused a differential improvement effect in air 
pollution, regardless of the pollution type or city. The environmental 
implication of this study is that city-specific government policies should 
be implemented in the target setting and process path. More polluted 
cities may gain more marginal environmental benefits from restricting 
low-level emissions from within-city trips than from restricting inter-city 
trips. For example, control of emissions from traffic sources is effective 
in reducing NO2 pollution, particularly at high pollution levels. Envi-
ronmentally friendly policies, such as clean-energy vehicles, green 
commuting and cycling days, and stringent vehicle emission standards, 
should be supported in NO2-polluted cities. However, in cities with CO 
and SO2 as the primary pollutants, controlling emissions from traffic 

sources is insufficient to solve this problem. Attention should also be 
paid to the aggravation of O3 pollution and to coordinate emission 
reduction. Generally, periodic initiatives in cities may purposefully 
reduce pollutant concentrations and improve the self-regulation ability 
of the social ecosystem. Future environmental policies should pursue 
similar air quality improvements at a considerably lower economic cost. 

This study had certain limitations. The migrations involved in the 
Baidu migration data were dependent on the availability of smart-
phones. This may have influenced certain of the findings, for example, 
the differences between rural areas and mega-cities. In addition, other 
multiple air pollution sources, such as natural, industrial, and residential 
sources, may have biased the result, although emissions from other 
sources may have contributed to air pollution, they remained at a stable 
level during the implementation of traffic control. 
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Prem, K., Hué, S., Villabona-Arenas, C.J., Nightingale, E.S., Houben, R.M.G.J., 
Foss, A.M., Tully, D.C., Emery, J.C., van Zandvoort, K., Atkins, K.E., Rosello, A., 
Funk, S., Jit, M., Clifford, S., Russell, T.W., Eggo, R.M., 2020. Changing travel 
patterns in China during the early stages of the COVID-19 pandemic. Nat. Commun. 
11 https://doi.org/10.1038/s41467-020-18783-0. 

Guo, H., Wei, J., Li, X., Ho, H.C., Song, Y., Wu, J., Li, W., 2021. Do socioeconomic factors 
modify the effects of PM1 and SO2 on lung cancer incidence in China? Sci. Total 
Environ 756, 143998. https://doi.org/10.1016/j.scitotenv.2020.143998. 

Han, L., Zhou, W., Li, W., Qian, Y., 2017. Global population exposed to fine particulate 
pollution by population increase and pollution expansion. Air Qual. Atmos. Heal. 10, 
1221–1226. https://doi.org/10.1007/s11869-017-0506-8. 

He, C., Hong, S., Zhang, L., Mu, H., Xin, A., Zhou, Y., Liu, J., Liu, N., Su, Y., Tian, Y., 
Ke, B., Wang, Y., Yang, L., 2021a. Global, continental, and national variation in 
PM2.5, O3, and NO2 concentrations during the early 2020 COVID-19 lockdown. 
Atmos. Pollut. Res. 12, 136–145. https://doi.org/10.1016/j.apr.2021.02.002. 

He, C., Yang, L., Cai, B., Ruan, Q., Hong, S., Wang, Z., 2021b. Impacts of the COVID-19 
event on the NOx emissions of key polluting enterprises in China. Appl. Energy 281, 
116042. https://doi.org/10.1016/j.apenergy.2020.116042. 

He, G., Pan, Y., Tanaka, T., 2020. The short-term impacts of COVID-19 lockdown on 
urban air pollution in China. Nat. Sustain. 3, 1005–1011. https://doi.org/10.1038/ 
s41893-020-0581-y. 

Hu, M., Chen, Z., Cui, H., Wang, T., Zhang, C., Yun, K., 2021. Air pollution and critical air 
pollutant assessment during and after COVID-19 lockdowns: evidence from 
pandemic hotspots in China, the Republic of Korea, Japan, and India. Atmos. Pollut. 
Res. 12, 316–329. https://doi.org/10.1016/j.apr.2020.11.013. 

Jia, C., Li, W., Wu, T., He, M., 2021. Road traffic and air pollution: evidence from a 
nationwide traffic control during coronavirus disease 2019 outbreak. Sci. Total 
Environ. 781, 146618. https://doi.org/10.1016/j.scitotenv.2021.146618. 

Kanniah, K.D., Kamarul Zaman, N.A.F., Kaskaoutis, D.G., Latif, M.T., 2020. COVID-19’s 
impact on the atmospheric environment in the Southeast Asia region. Sci. Total 
Environ. 736, 139658. https://doi.org/10.1016/j.scitotenv.2020.139658. 

Kerimray, A., Baimatova, N., Ibragimova, O.P., Bukenov, B., Kenessov, B., Plotitsyn, P., 
Karaca, F., 2020. Assessing air quality changes in large cities during COVID-19 
lockdowns: the impacts of traffic-free urban conditions in Almaty. Kazakhstan. Sci. 
Total Environ. 730 https://doi.org/10.1016/j.scitotenv.2020.139179. 

Kotnala, G., Mandal, T.K., Sharma, S.K., Kotnala, R.K., 2020. Emergence of blue Sky over 
Delhi due to coronavirus disease (COVID-19) lockdown implications. Aerosol Sci. 
Eng. 4, 228–238. https://doi.org/10.1007/s41810-020-00062-6. 

Krecl, P., Targino, A.C., Oukawa, G.Y., Cassino Junior, R.P., 2020. Drop in urban air 
pollution from COVID-19 pandemic: policy implications for the megacity of São 
Paulo. Environ. Pollut. 265, 19–21. https://doi.org/10.1016/j.envpol.2020.114883. 

Lau, H., Khosrawipour, V., Kocbach, P., Mikolajczyk, A., Schubert, J., Bania, J., 
Khosrawipour, T., 2021. The positive impact of lockdown in Wuhan on containing 
the COVID-19 outbreak in China. J. Trav. Med. 27, 1–7. https://doi.org/10.1093/ 
JTM/TAAA037. 

Leung, W.W.F., Sun, Q., 2020. Electrostatic charged nanofiber filter for filtering airborne 
novel coronavirus (COVID-19) and nano-aerosols. Separ. Purif. Technol. 250, 
116886. https://doi.org/10.1016/j.seppur.2020.116886. 

Liu, J., Zhou, J., Yao, J., Zhang, X., Li, L., Xu, X., He, X., Wang, B., Fu, S., Niu, T., Yan, J., 
Shi, Y., Ren, X., Niu, J., Zhu, W., Li, S., Luo, B., Zhang, K., 2020. Impact of 
meteorological factors on the COVID-19 transmission: a multi-city study in China. 
Sci. Total Environ. 726, 138513. https://doi.org/10.1016/j.scitotenv.2020.138513. 

Lu, D., Zhang, J., Xue, C., Zuo, P., Chen, Z., Zhang, L., Ling, W., Liu, Q., Jiang, G., 2021. 
COVID-19-Induced lockdowns indicate the short-term control effect of air pollutant 
emission in 174 cities in China. Environ. Sci. Technol. 55, 4094–4102. https://doi. 
org/10.1021/acs.est.0c07170. 

Mandal, I., Pal, S., 2020. COVID-19 pandemic persuaded lockdown effects on 
environment over stone quarrying and crushing areas. Sci. Total Environ. 732, 
139281. https://doi.org/10.1016/j.scitotenv.2020.139281. 

Naqvi, H.R., Mutreja, G., Hashim, M., Singh, A., Nawazuzzoha, M., Naqvi, D.F., 
Siddiqui, M.A., Shakeel, A., Chaudhary, A.A., Naqvi, A.R., 2021. Global assessment 
of tropospheric and ground air pollutants and its correlation with COVID-19. Atmos. 
Pollut. Res. 12, 101172. https://doi.org/10.1016/j.apr.2021.101172. 

Regencia, Z.J.G., Dalmacion, G.V., Quizon, D.B., Quizon, K.B., Duarte, N.E.P., Baja, E.S., 
2020. Airborne heavy metals and blood pressure: modification by sex and obesity in 
the MMDA traffic enforcers’ health study. Atmos. Pollut. Res. 11, 2244–2250. 
https://doi.org/10.1016/j.apr.2020.06.015. 

Rugani, B., Caro, D., 2020. Impact of COVID-19 outbreak measures of lockdown on the 
Italian Carbon Footprint. Sci. Total Environ. 737, 139806. https://doi.org/10.1016/ 
j.scitotenv.2020.139806. 

Sharma, S., Zhang, M., Anshika Gao, J., Zhang, H., Kota, S.H., 2020. Effect of restricted 
emissions during COVID-19 on air quality in India. Sci. Total Environ. 728 https:// 
doi.org/10.1016/j.scitotenv.2020.138878. 

Shen, L., Wang, H., Zhu, B., Zhao, T., Liu, A., Lu, W., Kang, H., Wang, Y., 2021. Impact of 
urbanization on air quality in the Yangtze River Delta during the COVID-19 
lockdown in China. J. Clean. Prod. 296, 126561. https://doi.org/10.1016/j. 
jclepro.2021.126561. 

Sicard, P., De Marco, A., Agathokleous, E., Feng, Z., Xu, X., Paoletti, E., Rodriguez, J.J.D., 
Calatayud, V., 2020. Amplified ozone pollution in cities during the COVID-19 
lockdown. Sci. Total Environ. 735, 139542. https://doi.org/10.1016/j. 
scitotenv.2020.139542. 

Srivastava, S., Kumar, A., Bauddh, K., Gautam, A.S., Kumar, S., 2020. 21-Day lockdown 
in India dramatically reduced air pollution indices in Lucknow and New Delhi, India. 
Bull. Environ. Contam. Toxicol. 105, 9–17. https://doi.org/10.1007/s00128-020- 
02895-w. 

Wang, H., Zhao, L., Xie, Y., Hu, Q., 2016. APEC blue”-The effects and implications of 
joint pollution prevention and control program. Sci. Total Environ. 553, 429–438. 
https://doi.org/10.1016/j.scitotenv.2016.02.122. 

Wang, H., Tan, Y., Zhang, L., Shen, L., Zhao, T., Dai, Q., Guan, T., Ke, Y., Li, X., 2021a. 
Characteristics of air quality in different climatic zones of China during the COVID- 
19 lockdown. Atmos. Pollut. Res. 12, 101247. https://doi.org/10.1016/j. 
apr.2021.101247. 

Wang, Z., Li, J., Liang, L., 2020. Spatio-temporal evolution of ozone pollution and its 
influencing factors in the Beijing-Tianjin-Hebei Urban Agglomeration. Environ. 
Pollut. 256, 113419. https://doi.org/10.1016/j.envpol.2019.113419. 

Wang, Q., Su, M., 2020. A preliminary assessment of the impact of COVID-19 on 
environment – a case study of China. Sci. Total Environ. 728, 138915. https://doi. 
org/10.1016/j.scitotenv.2020.138915. 

Wang, J., Xu, X., Wang, S., He, S., Li, X., He, P., 2021b. Heterogeneous effects of COVID- 
19 lockdown measures on air quality in Northern China. Appl. Energy 282, 116179. 
https://doi.org/10.1016/j.apenergy.2020.116179. 

Wang, Y., Yuan, Y., Wang, Q., Liu, C.G., Zhi, Q., Cao, J., 2020. Changes in air quality 
related to the control of coronavirus in China: implications for traffic and industrial 
emissions. Sci. Total Environ. 731, 139133. https://doi.org/10.1016/j. 
scitotenv.2020.139133. 

Xiong, Y., Wang, Y., Chen, F., Zhu, M., 2020. Spatial statistics and influencing factors of 
the COVID-19 epidemic at both prefecture and county levels in Hubei Province, 
China. Int. J. Environ. Res. Publ. Health 17. https://doi.org/10.3390/ 
ijerph17113903. 

Xu, X., Zhang, T., 2020. Spatial-temporal variability of PM2.5 air quality in Beijing, 
China during 2013–2018. J. Environ. Manag. 262 https://doi.org/10.1016/j. 
jenvman.2020.110263. 

Zeng, J., Bao, R., 2021. The impacts of human migration and city lockdowns on specific 
air pollutants during the COVID-19 outbreak: a spatial perspective. J. Environ. 
Manag. 282, 111907. https://doi.org/10.1016/j.jenvman.2020.111907. 

Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He, H., 
Liu, W., Ding, Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang, Y., Cheng, J., Liu, Y., 
Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu, F., Zheng, B., Cao, J., Ding, A., 
Gao, J., Fu, Q., Huo, J., Liu, B., Liu, Z., Yang, F., He, K., Hao, J., 2019. Drivers of 
improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. U. S. 
A 116, 24463–24469. https://doi.org/10.1073/pnas.1907956116. 

Zhang, W., Wang, H., Zhang, X., Peng, Y., Zhong, J., Wang, Y., Zhao, Y., 2020. Evaluating 
the contributions of changed meteorological conditions and emission to substantial 
reductions of PM2.5 concentration from winter 2016 to 2017 in Central and Eastern 
China. Sci. Total Environ. 716, 136892. https://doi.org/10.1016/j. 
scitotenv.2020.136892. 

Zhao, Z., Zhou, Z., Russo, A., Xi, H., Zhang, J., Du, H., Zhou, C., 2021. Comparative 
analysis of the impact of weather conditions and human activities on air quality in 
the Dongting and Poyang Lake Region during the COVID-19 pandemic. Atmos. 
Pollut. Res. 12, 101054. https://doi.org/10.1016/j.apr.2021.101054. 

K. Luo et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.jclepro.2019.119534
https://doi.org/10.1016/j.jclepro.2019.119534
https://doi.org/10.1016/j.scitotenv.2020.140123
https://doi.org/10.1016/j.scitotenv.2020.137010
https://doi.org/10.1016/j.scitotenv.2020.137010
https://doi.org/10.1016/j.uclim.2021.100888
https://doi.org/10.1016/j.uclim.2021.100888
https://doi.org/10.3390/v12060588
https://doi.org/10.3390/v12060588
https://doi.org/10.1007/s11869-020-00842-6
https://doi.org/10.1038/s41467-020-18783-0
https://doi.org/10.1016/j.scitotenv.2020.143998
https://doi.org/10.1007/s11869-017-0506-8
https://doi.org/10.1016/j.apr.2021.02.002
https://doi.org/10.1016/j.apenergy.2020.116042
https://doi.org/10.1038/s41893-020-0581-y
https://doi.org/10.1038/s41893-020-0581-y
https://doi.org/10.1016/j.apr.2020.11.013
https://doi.org/10.1016/j.scitotenv.2021.146618
https://doi.org/10.1016/j.scitotenv.2020.139658
https://doi.org/10.1016/j.scitotenv.2020.139179
https://doi.org/10.1007/s41810-020-00062-6
https://doi.org/10.1016/j.envpol.2020.114883
https://doi.org/10.1093/JTM/TAAA037
https://doi.org/10.1093/JTM/TAAA037
https://doi.org/10.1016/j.seppur.2020.116886
https://doi.org/10.1016/j.scitotenv.2020.138513
https://doi.org/10.1021/acs.est.0c07170
https://doi.org/10.1021/acs.est.0c07170
https://doi.org/10.1016/j.scitotenv.2020.139281
https://doi.org/10.1016/j.apr.2021.101172
https://doi.org/10.1016/j.apr.2020.06.015
https://doi.org/10.1016/j.scitotenv.2020.139806
https://doi.org/10.1016/j.scitotenv.2020.139806
https://doi.org/10.1016/j.scitotenv.2020.138878
https://doi.org/10.1016/j.scitotenv.2020.138878
https://doi.org/10.1016/j.jclepro.2021.126561
https://doi.org/10.1016/j.jclepro.2021.126561
https://doi.org/10.1016/j.scitotenv.2020.139542
https://doi.org/10.1016/j.scitotenv.2020.139542
https://doi.org/10.1007/s00128-020-02895-w
https://doi.org/10.1007/s00128-020-02895-w
https://doi.org/10.1016/j.scitotenv.2016.02.122
https://doi.org/10.1016/j.apr.2021.101247
https://doi.org/10.1016/j.apr.2021.101247
https://doi.org/10.1016/j.envpol.2019.113419
https://doi.org/10.1016/j.scitotenv.2020.138915
https://doi.org/10.1016/j.scitotenv.2020.138915
https://doi.org/10.1016/j.apenergy.2020.116179
https://doi.org/10.1016/j.scitotenv.2020.139133
https://doi.org/10.1016/j.scitotenv.2020.139133
https://doi.org/10.3390/ijerph17113903
https://doi.org/10.3390/ijerph17113903
https://doi.org/10.1016/j.jenvman.2020.110263
https://doi.org/10.1016/j.jenvman.2020.110263
https://doi.org/10.1016/j.jenvman.2020.111907
https://doi.org/10.1073/pnas.1907956116
https://doi.org/10.1016/j.scitotenv.2020.136892
https://doi.org/10.1016/j.scitotenv.2020.136892
https://doi.org/10.1016/j.apr.2021.101054

	Association of population migration with air quality: Role of city attributes in China during COVID-19 pandemic (2019–2021)
	1 Introduction
	2 Materials and methods
	2.1 Sample and data
	2.2 Measures of variables
	2.3 Models and data analysis procedure

	3 Results
	3.1 Air quality and population migration variables
	3.2 Spatio-temporal change of migration and air pollution
	3.3 Effect modification by city attributes

	4 Discussion
	5 Conclusions
	Author contributions
	Funding
	Declaration of competing interest
	Appendix A Supplementary data
	References


