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Interpretations of values of the FST measure of genetic differentiation rely on
an understanding of its mathematical constraints. Previously, it has been
shown that FST values computed from a biallelic locus in a set of multiple
populations and FST values computed from a multiallelic locus in a pair of
populations are mathematically constrained as a function of the frequency
of the allele that is most frequent across populations. We generalize from
these cases to report here the mathematical constraint on FST given the fre-
quency M of the most frequent allele at a multiallelic locus in a set of
multiple populations. Using coalescent simulations of an island model of
migration with an infinitely-many-alleles mutation model, we argue that
the joint distribution of FST and M helps in disentangling the separate influ-
ences of mutation and migration on FST. Finally, we show that our results
explain a puzzling pattern of microsatellite differentiation: the lower FST in
an interspecific comparison between humans and chimpanzees than in the
comparison of chimpanzee populations. We discuss the implications of
our results for the use of FST.

This article is part of the theme issue ‘Celebrating 50 years since
Lewontin’s apportionment of human diversity’.
1. Introduction
Multiallelic loci such as microsatellites and haplotype assignments are used to
study genetic differentiation in a variety of fields, ranging from ecology and
conservation genetics to anthropology and human genomics. Genetic differen-
tiation is often measured for multiallelic loci using the multiallelic extension of
Wright’s fixation index FST [1]

FST ¼ HT �HS

HT
: ð1:1Þ

For a polymorphic multiallelic locus with I distinct alleles in a set of K subpopu-
lations, denoting by pk,i the frequency of allele i in subpopulation k,
HS ¼ 1� ð1=KÞPK

k¼1
PI

i¼1 p
2
k,i and HT ¼ 1�PI

i¼1ðð1=KÞ
PK

k¼1 pk,iÞ2.
FST values are known to be smaller for multiallelic than for biallelic loci [2].

One reason invoked to explain this difference is that within-subpopulation het-
erozygosity HS mathematically constrains the maximal value of FST to be below
1, and the constraint is stronger when HS is high. This phenomenon was noticed
concurrently in simulation-based, empirical and theoretical studies [3–7], and
the mathematical constraints describing the dependence were subsequently
clarified [8,9].

Studies have found that the maximal value of FST can be viewed as con-
strained not only by functions of the within-subpopulation allele frequency
distribution such as HS, but alternatively by aspects of the global allele
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Table 1. Studies describing the mathematical constraints on FST. HS and HT denote the within-subpopulation and total heterozygosities, respectively. δ denotes
the absolute difference in the frequency of a specific allele between two subpopulations, and M denotes the frequency of the most frequent allele in the total
population. Instead of heterozygosities HS or HT, some studies consider homozygosities 1− HS or 1− HT.

reference number of alleles number of subpopulations
variable in terms of which
constraints are reported

Long & Kittles [8] unspecified value ≥2 fixed finite value ≥2 HS
Rosenberg et al. [11] 2 2 δ

Hedrick [9] unspecified value ≥2 fixed finite value ≥2 HS
Maruki et al. [10] 2 2 HS, M

Jakobsson et al. [12] unspecified value ≥2 2 HT, M

Edge & Rosenberg [13] fixed finite value ≥2 2 HT, M

Alcala & Rosenberg [14] 2 fixed finite value ≥2 M

this paper unspecified value ≥2 fixed finite value ≥2 M
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frequency distribution across subpopulations. For a biallelic
locus in K = 2 subpopulations, Maruki et al. [10] showed
that the maximal FST as a function of the frequency M of
the most frequent allele decreases as M increases from 1=2
to 1 (see also [11]). Generalizing the biallelic case to arbitrarily
many alleles, Jakobsson et al. [12] showed that for multiallelic
loci with an unspecified number of distinct alleles, the maxi-
mal FST increases from 0 to 1 as a function of M if
0 , M , 1=2, and decreases from 1 to 0 for 1=2 � M , 1 in
the manner reported by Maruki et al. [10] for biallelic loci.
Edge & Rosenberg [13] generalized these results to the case
of a fixed finite number of alleles, showing that the maximal
FST differs slightly from the unspecified case when the fixed
number of distinct alleles is an odd number.

Generalizing the simplest case of K= I= 2 in a different direc-
tion, Alcala & Rosenberg [14] considered biallelic loci in the case
of a fixed number of subpopulations K≥ 2. We showed that the
maximal value of FST displays a peculiar behaviour as a function
ofM: the upper bound has a maximum of 1 if and only ifM= k/
K, for integers kwith dK=2e � k � K � 1. The constraints on the
maximal value of FST dissipate as K tends to infinity, even
though for any fixed K, there always exists a value of M for
which FST , 2

ffiffiffi
2

p � 2 � 0:8284.
Relating FST to its maximum as a function of M helps

explain surprising phenomena that arise during population-
genetic data analysis. For example, Jakobsson et al. [12]
showed that stronger constraints on FST could explain the low
FST values seen in pairs of African human populations. They
also found that such constraints could explain the lower FST
values seen in high-diversity multiallelic loci compared to
lower-diversity loci—microsatellites compared to single-nucleo-
tide polymorphisms. Alcala & Rosenberg [14] showed that
constraints on the maximal FST could explain the lower FST
values between human populations seen when computing FST
pairwise rather than from all populations simultaneously.

In this study, we characterize the relationship between FST
and the frequency M of the most frequent allele, for a multi-
allelic locus and an arbitrary specified value of the number
of subpopulations K. We derive the mathematical upper
bound on FST in terms of M, extending the biallelic result
of Alcala & Rosenberg [14] to the multiallelic case, and
providing the most comprehensive description of the math-
ematical constraints on FST in terms of M to date (table 1).
To assist in interpreting the new bound, we simulate the
joint distribution of FST and M in the island migration
model, describing its properties as a function of the number
of subpopulations, the migration rate and a mutation rate.
The K-subpopulation upper bound on FST in terms of M
facilitates an explanation of counterintuitive aspects of
inter-species genetic differentiation. We discuss the impor-
tance of the results for applications of FST more generally.
2. Model
Our goal is to derive the range of values that FST can take—the
lower and upper bounds on FST—as a function of the fre-
quency M of the most frequent allele for a multiallelic locus,
when the number of subpopulations K is a fixed finite value
greater than or equal to 2. We follow previous studies
[12–15] in describing notation and constructing the scenario.

We consider a polymorphic locus with an unspecified
number of distinct alleles, in a setting with K subpopulations
contributing equally to the total population. We denote the
frequency of allele i in subpopulation k by pk,i, with sum
si ¼

PK
k¼1 pk,i across subpopulations. Each allele frequency

pk,i lies in [0, 1]. Within subpopulations, allele frequencies
sum to 1: for each k,

P1
i¼1 pk,i ¼ 1. Hence, σi lies in [0, K ],

and
P1

i¼1 si ¼ K. We number alleles from most to least
frequent, so σi≥ σj for i≤ j.

Because by assumption the locus is polymorphic, σi <K
for each i. Alleles 1 and 2 have non-zero frequency in at
least one subpopulation, not necessarily the same one; we
have σ1 > 0 and σ2 > 0. We denote the mean frequency of
the most frequent allele across subpopulations by M = σ1/K.
We then have 0 <M < 1. We treat the allele frequencies pk,i
and associated quantities M and σi as parametric values,
and not as estimates computed from data.

Equation (1.1) expresses FST as a ratio involving within-
subpopulation heterozygosity, HS, and total heterozygosity,
HT, with 0≤HS < 1 and 0≤HT < 1. Because we assume the
locus is polymorphic, HT > 0. We write equation (1.1) in
terms of allele frequencies, permitting the number of distinct
alleles to be arbitrarily large

FST ¼
ð1=KÞPK

k¼1
P1

i¼1 p
2
k,i �

P1
i¼1

PK
k¼1ð pk,i=KÞ

� �2

1�P1
i¼1

PK
k¼1ð pk,i=KÞ

� �2 : ð2:1Þ
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Hence, our goal is, for fixed σ1 = KM, 0 < σ1 < K, to identify
the matrices ( pk,i)K×∞, with pk,i in [0, 1],

P1
i¼1 pk,i ¼ 1 and

ð1=KÞPK
k¼1 pk,1 ¼ s1=K ¼ M, that minimize and maximize

FST in equation (2.1).
Note that we adopt the interpretation of FST as a ‘statistic’

that describes a mathematical function of allele frequencies
rather than as a ‘parameter’ that describes coancestry of indi-
viduals in a population [e.g. 16]. See Alcala & Rosenberg [14]
for a discussion of interpretations of FST when studying its
mathematical properties.
rnal/rstb
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3. Mathematical constraints
(a) Lower bound of FST
Bounds on FST in terms of the frequency of the most frequent
allele can be written with respect to M or σ1, noting that M
ranges in (0, 1) and σ1 ranges in (0, K). For the lower bound,
fromequation (2.1), for any choice of σ1, FST= 0 can be achieved.
Consider (σ1, σ2,…) with σi in [0, K) for each k, σi≥ σj for i≤ j,P1

i¼1 si ¼ K, and σ1 > 0 and σ2 > 0. We set pk,i = σi/K for all
subpopulations k and alleles i; this choice yields FST= 0.

FST = 0 implies that the numerator of equation (2.1),
HT−HS, is zero. This numerator can be written
ð1=K2ÞP1

i¼1ðK
PK

k¼1 p
2
k,i � s2

i Þ. The Cauchy–Schwarz inequal-
ity guarantees that K

PK
k¼1 p

2
k,i � s2

i , with equality if and only
if p1,i = p2,i =… = pK,i = σi/K. Applying the Cauchy–Schwarz
inequality to all alleles i, the numerator of equation (2.1) is
zero only if for all i, ( p1,i, p2,i,…, pK,i) = (σi/K, σi/K,…, σi/K).

Thus, we can conclude that the allele frequency matrices
in which all K subpopulations have identical allele frequency
vectors are the only matrices for which FST = 0. The lower
bound on FST is equal to 0 irrespective of M or σ1, for any
value of the number of subpopulations K.

(b) Upper bound of FST
To derive the upper bound on FST in terms of M = σ1/K, we
must maximize FST in equation (2.1), assuming that σ1 and K
are constant. The computations are performed in
appendix A; we write the main result as a function of σ1,
noting that it can be converted into a function of M by
replacing σ1 with KM.

In theoremA.1, we treat the case in which σ1 has an integer
value. For non-integer σ1, theoremA.2 shows that themaximal
FST requires that (i) the sum of squared allele frequencies
across alleles and subpopulations, S ¼ P1

i¼1
PK

k¼1 p
2
k,i, is maxi-

mal, and (ii) alleles i = 2, 3,… are each present in at most one
subpopulation, but allele 1 might be present in more than
one subpopulation. We then separately maximize FST as a
function of σ1 for σ1 in (0, 1) and non-integer σ1 in (1, K ).
These two cases differ in that allele 1 appears in a single sub-
population in the former case, and it must appear in at least
two subpopulations in the latter.

The maximal FST as a function of σ1 for σ1 in (0, K ) is
FST�

1, s1 ¼ 1, 2, . . . , K � 1,
ðK � 1Þ½1� s1ðJ � 1Þð2� Js1Þ�
K � ½1� s1ðJ � 1Þð2� Js1Þ� , 0 , s1 , 1,

KðK � 1Þ � s2
1 þ bs1c � 2ðK � 1Þfs1g þ ð2K � 1Þfs1g2

KðK � 1Þ � s2
1 � bs1c þ 2s1 � fs1g2

, non-integer s1, 1 , s1 , K,

8>>>>><
>>>>>:

ð3:1Þ
where J ¼ ds�1
1 e. Here, dxe denotes the smallest integer

greater than or equal to x, bxc denotes the greatest integer
less than or equal to x, and fxg ¼ x�bxc denotes the fractional
part of x. Note that for an integer choice of σ1, the maximum
from equation (3.1) and the limits as σ1 tends to the integer
from above and below all equal 1, so that the maximum as
a function of σ1 is continuous.

From appendix A, FST reaches its upper bound for integer
σ1 when allele 1 has frequency 1 in each of σ1 subpopulations,
and when in each of the remaining K− σ1 subpopulations, an
allele other than allele 1 has frequency 1. These alleles of fre-
quency 1 need not be private, although they can be; any
identity relationships among them are permissible, provided
that when summing frequencies across subpopulations, none
of these alleles has a sum that exceeds σ1. The locus can have
as few as dKs�1

1 e alleles of non-zero frequency and as many
as K− σ1 + 1.

For σ1 in interval (0, 1), FST is maximal when each allele is
present in only a single subpopulation, and when each subpopu-
lation has exactly J alleles with a non-zero frequency: J− 1 alleles
at frequency σ1 and one allele at frequency 1− (J− 1)σ1≤ σ1.
Because each subpopulation has J distinct alleles and no alleles
are shared across subpopulations, this upper bound requires
that the locus has KJ alleles of non-zero frequency.

For non-integer σ1 in (1, K), FST reaches its maximum
when there are bs1c subpopulations in which the most
frequent allele has frequency 1, a single subpopulation in
which it has frequency {σ1} and a private allele has frequency
1− {σ1}, and K � bs1c � 1 subpopulations each with a differ-
ent private allele at frequency 1. Only the most frequent allele
is shared across subpopulations, and a single subpopulation
displays polymorphism. At the maximum, K � bs1c þ 1
alleles have non-zero frequency.

(c) Properties of the upper bound
Figure 1 shows the maximal value of FST in terms of M =
σ1/K for various values of the number of subpopulations,
K. We describe a number of properties of this upper bound.

(i) Piecewise structure of the upper bound
First, we observe that the upper bound has a piecewise
structure.

For M < 1/K , the upper bound depends on
J ¼ ds�1

1 e ¼ d1=ðKMÞe. As KM increases in (0, 1), each decre-
ment in the integer value of d1=ðKMÞe produces a distinct
‘piece’ with domain [1/(Kj), 1/(K( j− 1))), for integers j≥ 2.
Within each interval [1/(Kj), 1/(K( j− 1))), J has the constant
value j.

At M = 1/K , the upper bound has its first transition
between cases. For M > 1/K, the upper bound depends on
bs1c ¼ bKMc. As KM increases in [1, K ), each increment in
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Figure 1. Bounds on FST as a function of the frequency of the most frequent allele, M, for a multiallelic locus, for each of several different numbers of subpopu-
lations K. (a) K = 2, (b) K=3, (c) K=6, (d ) K = 40 and (e) K = 100. The grey regions represent the space between the upper and lower bounds on FST. The dashed
lines represent the curves that the jagged maximal FST touches when M < 1/K , computed from equation (3.2). The upper bound is computed from equation (3.1);
for each K, the lower bound is 0 for all values of M.
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bKMc also produces a distinct piece of the domain. For each k
from 1 to K− 1, bKMc ¼ k for M in [k/K, (k + 1)/K ).

Counting the intervals of the domain, we see that an infi-
nite number of distinct intervals occur for M in (0, 1/K ), and
K− 1 intervals occur for M in (1/K , 1). Within intervals, the
function describing the upper bound is smooth.

(ii) Behaviour of the upper bound for M = 1/K, 2/K,…(K− 1)/K
The upper bound is equal to 1 at M = 1/K, 2/K,…(K − 1)/K.
For M in (0, 1/K ), setting the numerator and denominator
equal in equation (3.1), we find that the upper bound is
never equal to 1. For M in (1/K, 1), the upper bound
is equal to 1 if and only if {σ1} = 0, that is, if and only if
σ1 is an integer and M = k/K for k = 2, 3,…, K− 1.

Hence, noting that the upper bound is equal to 1 at M =
1/K, we conclude that the upper bound can equal 1 if and
only if M = k/K for integers k = 1, 2,…, K− 1. For fixed K,
the upper bound on FST has exactly K− 1 maxima at which
FST can equal 1, at M = 1/K, 2/K,…, (K − 1)/K. We can con-
clude that FST is unconstrained within the unit interval only
for a finite set of values of the frequency M of the most fre-
quent allele. The size of this set increases with the number
of subpopulations K.

(iii) Behaviour of the upper bound for M in (0, 1/K )
For M in (0, 1/K), we can compute the value of the upper
bound at the transition points between distinct pieces of the
domain, namely values of 1/(Kj) for integers j≥ 2. Applying
equation (3.1), we observe that at M = 1/(Kj), the upper
bound has value (K − 1)/(Kj− 1). In other words, the upper
bound touches the curve

q�ðMÞ ¼ ðK � 1ÞM
1�M

: ð3:2Þ

This curve is represented in figure 1 as a dashed line.
Note that for K = 2, the special case considered by Jakobs-

son et al. [12], equation (3.2) reduces to q*(M ) =M/(1−M) =
σ1/(2− σ1), which matches equation 21 from Jakobsson et al.
[12]. In fact, setting K = 2, equation (3.1) for M in (0, 1/K )
reduces to the K = 2 upper bound on FST in eqn 9 of [12].

(iv) Behaviour of the upper bound for M in (1/K, 1)
Because the upper bound is a smooth function on each inter-
val of its domain, and because it possesses maxima at interval
boundaries M = 1/K, 2/K,…, (K− 1)/K, it must possess local
minima in intervals [k/K, (k + 1)/K) for k = 1, 2,…, K− 2.
Indeed, such minima are visible in figure 1 in cases with
K = 3, K = 6, K = 40 and K = 100; for K = 2, only one maximum
occurs, so that there is no interval between a pair of maxima
in which a minimum can occur. Note that because we restrict
attention to M in (0, 1), we do not count the point at M = 1
and FST = 0 as a local minimum.
4. Joint distribution of M and FST under an
evolutionary model

So far, we have described the mathematical constraint
imposed on FST by M without respect to the frequency
with which particular values of M arise in evolutionary scen-
arios. As an assessment of the bounds in evolutionary models
can illuminate the settings in which they are most salient in
population-genetic data analysis [9,14,17–20], we simulated
the joint distribution of FST and M under an island migration
model, relating the distribution to the mathematical bounds
on FST. This analysis considers allele frequency distributions,
and hence values of M and FST, generated by evolutionary
models. The simulation approach is modified from [14,15].

(a) Simulations
We simulated alleles under a coalescent model, using the
software MS [21]. We considered a total population of KN
diploid individuals subdivided into K subpopulations of
size N. At each generation, a proportion m of the individuals
in a subpopulation originated outside the subpopulation.
Thus, the scaled migration rate is 4Nm, and it corresponds
to twice the number of individuals in a subpopulation
that originate elsewhere. We considered the island model
[22–24], in which migrants have the same probability
m/(K− 1) of coming from any other specific subpopulation.
We used an infinitely-many-alleles model; mutations occur
at rate μ, and the scaled mutation rate is 4Nμ.

We examined three values of K (2, 6, 40), three values of
4Nμ (0.1, 1, 10) and three values of 4Nm (0.1, 1, 10). Note
that in MS, time is scaled in units of 4N generations, and
there is no need to specify subpopulation sizes N. MS simu-
lates an infinitely-many-sites model, where each mutation
occurs at a new site; each haplotype is a new allele, so that
each mutation creates a new allele. For our analysis, we are
concerned only with the allelic categories and not with the
simulated sequences; thus, although the simulation follows
the infinitely-many-sites model, the analysis treats simulated
datasets as having been generated under an infinitely-many-
alleles model.

For each parameter triplet (K, 4Nμ, 4Nm), we performed
1000 replicate simulations, sampling 100 sequences per
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Figure 2. Joint density of the frequency M of the most frequent allele and FST in the island migration model with K = 2 subpopulations, for different scaled
migration rates 4Nm and mutation rates 4Nμ. (a) 4Nμ = 0.1, 4Nm = 0.1. (b) 4Nμ = 1, 4Nm = 0.1. (c) 4Nμ = 10, 4Nm = 0.1. (d ) 4Nμ = 0.1, 4Nm = 1.
(e) 4Nμ = 1, 4Nm = 1. ( f ) 4Nμ = 10, 4Nm = 1. (g) 4Nμ = 0.1, 4Nm = 10. (h) 4Nμ = 1, 4Nm = 10. (i) 4Nμ = 10, 4Nm = 10. The black solid line represents
the upper bound on FST in terms of M (equation 3.1); the black point plots the mean values of M and FST. Colours represent the density of loci, estimated
using a Gaussian kernel density estimate with a bandwidth of 0.02, with density set to 0 outside of the bounds. Loci are simulated using coalescent software
MS, assuming an island model of migration and an infinitely-many-alleles mutation model. Each panel considers 1000 replicate simulations, with 100 lineages
sampled per subpopulation. Electronic supplementary material, figures S1 and S2 present similar results for K = 6 and K = 40 subpopulations, respectively.
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subpopulation in each replicate. We computed FST values
from the parametric allele (haplotype) frequencies. MS com-
mands appear in electronic supplementary material, File S1;
note that the simulation approach here uses the standard
method of simulating MS with a specified mutation rate
θ = 4Nμ, whereas in our previous analyses of biallelic cases
[14,15], we had employed the alternative approach of requir-
ing simulated datasets to possess exactly one segregating site.

Figure 2 shows the joint distribution of M and FST for the
nine values of (4Nμ, 4Nm) in the case of K = 2. Electronic sup-
plementary material, figures S1 and S2 provide similar
figures for K = 6 and K = 40, respectively.
(b) Impact of the mutation rate
For fixed migration rate 4Nm and number of subpopulations
K, the main impact of the mutation rate is on the frequency M
of the most frequent allele. For K = 2, under weak mutation
(4Nμ = 0.1), the joint distribution of M and FST is highest in
the high-M region, for all values of 4Nm (figure 2a,d,g).
Although most simulation replicates produce M . 1=2 with
an upper bound on FST less than one, this set of parameter
values does give rise to replicates near the peak at
ðM, FSTÞ ¼ ð1=2, 1Þ.

Under intermediate mutation (4Nμ = 1), the increased
mutation rate tends to decrease M, shifting the joint
distribution to lower values of M for all values of 4Nm
(figure 2b,e,h). Finally, under strong mutation (4Nμ = 10), the
joint distribution of M and FST is highest in the low-M
region, for all values of 4Nm (figure 2c,f,i). In this region,
the upper bound on FST is most strongly constrained, leading
to low FST values.

(c) Impact of the migration rate
For fixed mutation rate 4Nμ and number of subpopulations
K, the impact of the migration rate is seen primarily in the
FST values rather than the values ofM. Under weak migration
(4Nm = 0.1), subpopulations are differentiated, and the joint
distribution of M and FST is highest near the upper bound
on FST in terms of M (figure 2a–c).

Under intermediate migration (4Nm = 1), differentiation
between subpopulations decreases, and the joint density of
M and FST is highest at lower values of FST (figure 2d–f ).
Under strong migration (4Nm = 10), the joint density of M
and FST nears the lower bound (figure 2g–i).

(d) Impact of the number of subpopulations
In figure 1, the number of subpopulations changes the shape
of the region in which FST is permitted to range as a function
of M. Thus, in simulations, the impact of the number of sub-
populations K is observed in cases in which a change in K
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permits FST to expand its range within the unit square for
(M, FST). For each of the nine choices of (4Nμ, 4Nm),
figure 3 summarizes the means observed for (M, FST) in
figures 2 and electronic supplementary material, S1 and S2,
corresponding to K = 2, K = 6 and K = 40, respectively.

The number of subpopulations generally increases FST for
fixed 4Nμ and 4Nm. For example, the mean FST can be sub-
stantially larger for K = 6 than for K = 2. Consider (4Nμ,
4Nm) = (0.1, 0.1). For K = 2, the mean FST is near its upper
bound (figure 3a); for K = 6, FST is not as close to the bound
(figure 3b). However, because the upper bound for K = 6
exceeds that for K = 2, the mean FST is nevertheless larger in
the case of K = 6.
5. Example: humans and chimpanzees
We now use our theoretical results to examine genetic differen-
tiation in humans and chimpanzees. Because humans and
chimpanzees are distinct species, we might expect a genetic
differentiation measure such as FST to produce a greater value
for a computation between them than for a computation
among populations within one or the other. Indeed, studies
of multiallelic loci do find that adding chimpanzees to data
on multiple human populations increases the value of FST
[8,25]. However, we will see that FST has a more subtle pattern
when considering data on multiple chimpanzee populations, and
that our theoretical computations explain a surprising result.

We examine data on 246 multiallelic microsatellite loci
assembled by Pemberton et al. [26] from several studies of
worldwide human populations and a study of chimpanzees
[27]. We consider FST comparisons both between humans
and chimpanzees and among populations of chimpanzees.
For the human data, we consider all 5795 individuals in
the dataset, and for the chimpanzee data, we consider 84
chimpanzee individuals from six populations: one bonobo
population, and five common chimpanzee populations
(Central, Eastern, Western, hybrid and captive).

In the data analysis, we perform a computation to sum-
marize the relationship of FST to the upper bound. For a set
of Z loci, denote by Fz and Mz the values of FST and M at
locus z. The mean FST for the set, or �FST, is

�FST ¼ 1
Z

XZ
z¼1

Fz: ð5:1Þ

Using equation (3.1), we can compute the corresponding
maximum FST given the observed σz =KMz, z = 1, 2,…, Z.
Denoting this quantity by Fmax,z, we have

FST=Fmax ¼ 1
Z

XZ
z¼1

Fz
Fmax,z

: ð5:2Þ

FST=Fmax measures the proximity of the FST values to their
upper bounds: it ranges from 0, if FST values at all loci
equal 0, to 1, if FST values at all loci equal their upper bounds.

We computed the parametric allele frequencies for each
subpopulation—the human and chimpanzee groups for the
human–chimpanzee comparison, and chimpanzee subpopu-
lations for the comparison of chimpanzees—averaging
across subpopulations to obtain the frequency M of the
most frequent allele. We then computed FST and the associ-
ated upper bound for each locus, averaging across loci to

obtain the overall �FST and FST=Fmax for the full microsatellite
set (equations (5.1) and (5.2)).

Surprisingly, given the longer evolutionary time between
humans and chimpanzees than among chimpanzee
populations, the FST value is significantly greater when com-
paring chimpanzee populations (�FST ¼ 0:16) than when
comparing humans and chimpanzees (�FST ¼ 0:10; p = 4.2 ×
10−14, Wilcoxon rank sum test). The explanation for this
result can be found in the properties of the upper bound on
FST given M.

Values ofM are similar in the two comparisons (figure 4a,b).
However, K differs, equaling 2 for the human–chimpanzee
comparison and 6 for the comparison of chimpanzee sub-
populations. Because the theoretical range of FST is seen to be
smaller for FST values computed among smaller sets of sub-
populations than among larger sets (figure 1), the FST values
among chimpanzees possess a larger range. For example,
themaximalFSTat themeanMof 0.27 observed inpairwise com-
parisons is 0.34 for K = 2 (red segment in figure 4a), whereas
the maximal FST at the mean M of 0.36 observed for six chim-
panzee populations is 0.93 for K = 6 (figure 4b). Given the
stronger constraint in pairwise calculations than in calculations
with more subpopulations, it is not unexpected that pairwise
FST values would be smaller than those in a 6-region compu-
tation. A high FST among chimpanzees compared to between
humans and chimpanzees is a by-product of mathematical
constraints on FST.

Interestingly, the effect of K on FST is largely eliminated
when each FST value is normalized by the associated maxi-
mum given K and M (figure 4c). The normalization leads to
higher values for human–chimpanzee comparisons than
among chimpanzee subpopulations (FST=Fmax ¼ 0:32 and
0.20, respectively; p = 1.1 × 10−9, Wilcoxon rank sum test),
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as expected from the greater evolutionary distance
between humans and chimpanzees compared to that
among chimpanzees.
00414
6. Discussion
We have analysed the range of values that FST can take
as a function of the frequency M of the most frequent
allele at a multiallelic locus, for an arbitrary value of the
number of subpopulations K. We showed that FST can
span the full unit interval only for a finite set of values
of M, at M = k/K for integers k in [1, K − 1]. For all other
M, FST necessarily lies below 1. The number of subpopu-
lations K enlarges the range of values that FST can take as
it increases.

This study provides the most complete relationship
between FST and M obtained to date, generalizing previous
results for the case of K = 2 subpopulations [12] and for a
restriction to I = 2 alleles [14]. Interestingly, the maximal FST
we have obtained merges patterns observed in these previous
studies. Fixing K = 2, we obtain the upper bound on FST in
terms of M that was reported by Jakobsson et al. [12]. As K
increases, the piecewise pattern seen by Jakobsson et al. [12]
for the maximal FST in the K = 2 case for M in ð0, 1=2Þ is
observed in the multiallelic case for M in (0, 1/K ). The
decay from ðM, FSTÞ ¼ ð1=2, 1Þ to (M, FST) = (1, 0) seen by
Jakobsson et al. [12] for K = 2 is observed for M in the decay
from ((K− 1)/K, 1) to (1, 0) for arbitrary K.

The allele frequency values for which the upper bound is
reached for M in (0, 1/K ) generalize those seen for the case of
K = 2 and M in ð0, 1=2Þ [12]. The upper bound is reached
when all alleles are private, each subpopulation has as
many alleles as possible at frequency KM, and at most one
additional allele. The allele frequency values for which the
upper bound is reached forM in ((K− 1)/K, 1) also generalize
those seen for K = 2 and M in ð1=2, 1Þ: the maximum is
reached when the most frequent allele is fixed in all subpopu-
lations except one, and a single private allele is present in this
last subpopulation.

The results from Alcala & Rosenberg [14] for I = 2 produce
a more constrained upper bound on FST than for arbitrary I,
with the domain of M restricted to ð1=2, 1Þ. Nevertheless,
many properties of the maximal FST we observe for
unspecified I and M in (1/K, 1) are similar to those seen for
I = 2 and M in ð1=2, 1Þ: finitely many peaks at points M =
k/K, local minima between the peaks, and an increase in cov-
erage of the unit square for (M, FST) as K increases. The
maximal FST functions for M in ((K− 1)/K, 1) for unspecified
I and for I = 2 agree, as the number of alleles required to maxi-
mize FST in this interval in the case of unspecified I is simply
equal to 2.

In assuming that the number of alleles is unspecified,
we found that the number of distinct alleles needed for
achieving the maximal FST is Kds�1

1 e for M in (0, 1/K ) and
K � bs1c þ 1 for non-integer M in (1/K, 1); the maximum
can be achieved with each number of distinct alleles in
½dKs�1

1 e, K � s1 þ 1� for M equal to 1/K, 2/K,…, (K− 1)/K.
With a fixed maximal number of distinct alleles, such as
in the I = 2 case of Alcala & Rosenberg [14] with K
specified and in the K = 2 case with I specified [13], the
upper bound on FST is less than or equal to that seen in the
corresponding unspecified-I case. For K = 2, specifying I has
a relatively small effect in reducing the maximal value of
FST [13]. As in Edge & Rosenberg [13], specifying I in the
case of larger values of K is expected to have the greatest
impact on the FST upper bound at the lowest end of the
domain for M.

In coalescent simulations, we found that the joint distri-
bution of M and FST within their permissible space can
help separate the impact of mutation and migration.
Although the dependence of FST on mutation and migration
rates has been long documented, the symmetric effects of
mutation and migration under the island model [22] illustrate
the difficulty in separating their effects. Under the island
model, allele frequency M is informative about the scaled
mutation rate 4Nμ, and comparing the value of FST to its
maximum given M is informative about the scaled migration
rate 4Nm. Adding a dimension that is more sensitive to
mutation than to migration—M in our case—enables the
separation of their effects. Other statistics, such as total
heterozygosity HT or within-subpopulation heterozygosity
HS, have the potential to play a similar role [20].

Our results can inform data analyses. In particular, we
caution users to examine upper bounds on FST to assess
how mathematical constraints influence observations. As
the constraints are strongest for K = 2, this step is valuable
in pairwise comparisons; it is also useful when the frequency
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M of the most frequent allele can be small in relation to the
number of populations K, such as for high-diversity forensic
[28] and immunological [29] loci in human populations.
Visual inspection of the values of M and FST within their
bounds can suggest that constraints have an effect. FST=Fmax

can provide a helpful summary by evaluating the proximity
of FST values to their maxima.

Further, joint use of M along with FST could be useful in
various applications of FST, such as in inference of model par-
ameters by approximate Bayesian computation [30] and
machine learning [31]. FST outlier tests to detect local adap-
tation from multiallelic loci [32] could search for FST values
that represent outliers not in the distribution of FST values,
but rather, outliers in relation to associated upper bounds.
Computing null distributions for FST conditional on M
could enhance the approach.

In an example data analysis, we have shown that taking
into account mathematical constraints on FST can help under-
stand puzzling FST behaviour. In our example, FST at a set of
loci was higher when comparing K = 6 chimpanzee popu-
lations than when comparing humans and chimpanzees
(K = 2), even though the same loci were used and the mean
value for M was similar in the two comparisons. A compari-
son of FST values to their respective maxima explained these
counterintuitive results.

We note that analyses of FST in relation to M differ
from analyses of FST in relation to within-subpopulation
statistics HS and JS = 1−HS, such as those performed in deriv-
ing the influential Hedrick’s G0

ST [9] and Jost’s D [33]
statistics. We have previously shown that for biallelic
loci in K subpopulations, for fixed M, the statistics FST,
G0

ST and D are all maximized at the same set of allele fre-
quency values [15]. Although the normalizations of FST
used to produce G0

ST and D lead to statistics that are uncon-
strained in the unit interval as functions of HS, G0

ST and D
continue to be constrained as functions of M. A statistic
that instead normalizes FST by its maximum as a function
of M, a statistic of the total population, captures aspects
of the allele frequency dependence of FST that differ
from those captured by normalizations by functions of
within-subpopulation statistics.

In human populations, efforts to understand FST patterns
trace in large part to Lewontin’s foundational FST-like var-
iance-partitioning computation [34], in which it was seen
that among-population differences (analogous to FST) were
small relative to within-population differences (analogous to
1− FST). Studies using loci with different numbers of alleles,
loci with different frequencies for the most frequent allele,
and samples with different numbers of subpopulations
have varied to some extent in their numerical estimates of
FST [14,35–38]. Mathematical results on FST bounds provide
part of the explanation for these differences: they establish
that each dataset differing in the character of its loci and sub-
population set has its own distinctive interval in which its
associated FST calculation could potentially land. Hence,
each dataset can give rise to a numerically distinct value
not due to features of the underlying human biology, but
rather, due to different constraints on the FST measure itself.
FST bounds contribute to explaining quantitative variation
in variance-partitioning computations—in which, although
numerical values differ, the within-population component
of genetic variation consistently predominates. The math-
ematics serves to support the qualitative claim that
worldwide human genetic differentiation measurements rep-
resented by FST-like statistics have low values—as was
argued by Lewontin 50 years ago.
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Appendix A. Proof of equation (3.1)
This appendix derives the upper bound on FST as a function
of σ1 (equation 3.1). First, we separate the case of integer
values of σ1. Next, for non-integer values of σ1, we reduce
the problem of maximizing FST to the problem of maximizing
the sum of squared allele frequencies across alleles and sub-
populations, S ¼ P1

i¼1
PK

k¼1 p
2
k,i. Next, we maximize S as a

function of σ1, separately for σ1 in (0, 1) and for non-integer
σ1 in (1, K ).

(a) A useful expression for FST
Suppose K≥ 2 is a specified integer. Suppose σ1 is a fixed
value, with 0 < σ1 <K. We leave the number of alleles I unspe-
cified. For each i≥ 1, we write si ¼

PK
k¼1 pk,i, with σi≥ σj

for each i and j with i≤ j. For convenience, σ1 is taken to
mean both the function that computes the sum

PK
k¼1 pk,1 for

a specified set of values of the pk,i and a fixed value for
that sum.

For each (k, i) with 1≤ k≤K and i≥ 1, pk,i lies in [0, 1], andP1
i¼1 pk,i ¼ 1 for all k, 1≤ k≤K. Define FST as in equation (2.1).

We seek to maximize FST over all possible sets of values of the
pk,i with a fixed value σ1 for the sum

PK
k¼1 pk,1. Note that

because σ1 <K and
PK

k¼1
P1

i¼1 pk,i ¼
P1

i¼1 si ¼ K, it follows
that σ2 > 0.

Denote the sum of squared frequencies of allele 1 across
subpopulations,

PK
k¼1 p

2
k,1, by S1. Denote

S ¼ P1
i¼1

PK
k¼1 p

2
k,i ¼

PK
k¼1

P1
i¼1 p

2
k,i for the corresponding

sum of squared frequencies of all alleles. We express equation
(2.1) in terms of σ1, S1 and S:

FST ¼ ðK � 1ÞSþ S1 � s2
1 � 2

P1
i¼2

PK�1
k¼1

PK
‘¼kþ1 pk,ip‘,i

K2 � Sþ S1 � s2
1 � 2

P1
i¼2

PK�1
k¼1

PK
‘¼kþ1 pk,ip‘,i

:

ðA 1Þ
By construction of equation (2.1), the denominator of
equation (A 1) lies in (0, K2), as 0 <HT < 1 from the fact that
σ2 > 0. The numerator lies in [0, K2), as 0≤HS≤HT < 1, so
that 0≤HT−HS < 1. FST lies in [0, 1], as 0≤HS and 0 <HT

imply 0≤ (HT−HS)/HT≤ 1.
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(b) The case of integer values of σ1
In equation (A 1), the numerator is less than or equal to the
denominator, with equality if and only if
K ¼ S ¼ PK

k¼1
P1

i¼1 p
2
k,i. This equality in turn requires that

for each k, there exists some i for which pk,i = 1, a condition
that can be achieved only if σ1 is an integer.

Theorem A.1. Suppose σ1 is an integer value, 1, 2,…, K− 1.
FST = 1 if and only if (i) pk,1 = 1 in each of σ1 subpopulations,
and (ii) for each of the K− σ1 remaining subpopulations, there
exists a value of i≥ 2 with pk,i = 1.

Proof. FST = 1 if and only if S = K, and S = K if and only if for
each k, there exists an associated i with pk,i = 1. For a fixed
integer value of σ1, pk,1 = 1 in exactly σ1 subpopulations. ▪

Note that any set of equivalence relationships can exist
among the values of i associated with the K − σ1 subpopu-
lations in which pk,1 = 0, provided that none of these values
of i is associated with more than σ1 subpopulations. For
example, these values of i can be mutually distinct, or
groups of them with size as large as σ1 can be mutually equal.
14
(c) Non-integer values of σ1
For non-integer σ1, the numerator of equation (A 1) is strictly
less than the denominator. Hence, if the other quantities in
equation (A 1) are fixed, then FST decreases with increasing
2
P1

i¼2
PK�1

k¼1
PK

‘¼kþ1 pk,ip‘,i. We have the following theorem.

Theorem A.2. Suppose σ1 is not an integer. FST satisfies

FST � ðK � 1ÞSþ S1 � s2
1

K2 � Sþ S1 � s2
1

, ðA 2Þ

equality requiring that for each i≥ 2, there exists at most one value
of k for which pk,i > 0.

Proof. Because 2
P1

i¼2
PK�1

k¼1
PK

‘¼kþ1 pk,ip‘,i is subtracted in both
the numerator and the denominator of equation (A 1), and
because the numerator is strictly less than the denominator
for non-integer σ1, FST can be bounded above by minimizing
this term. Because pk,i≥ 0 for all (k, i), each sumPK�1

k¼1
PK

‘¼kþ1 pk,ip‘,i is bounded below by zero. Setting the
sum to 0 for all i≥ 2 gives the upper bound in equation (A 2).

For the equality condition,
P1

i¼2
PK�1

k¼1
PK

‘¼kþ1 pk,ip‘,i ¼ 0 if
and only if all products pk,ip‘,i are zero—that is, if and only if
for each i≥ 2, at most one value of k has pk,i > 0. ▪

By theorem A.2, to maximize FST for fixed non-integer σ1,
we must maximize the quantity in equation (A 2). It suffices
to consider sets of values of pk,i in which for each i≥ 2, at most
one value of k has pk,i > 0.
(d) The case of (non-integer) σ1 in (0, 1)
In this section, we find the set of values of the pk,i that maxi-
mize FST for σ1 in (0, 1). We proceed in two steps. (i) We show
that for σ1 in (0, 1), the maximal FST occurs at a set of pk,i
values for which all alleles are private: that is, for each i≥ 1,
pk,i > 0 for at most one value of k. (ii) We determine the set
of pk,i values that, with all alleles private, maximizes FST.
(i) In equation (A 2), note that s2
1 � S1 ¼ 2

PK�1
k¼1PK

‘¼kþ1 pk,1p‘,1. Because s2
1 � S1 is subtracted from both

numerator and denominator in equation (A 2), the quantity
in equation (A 2) is maximal when s2

1 � S1 is minimal. In
other words, the upper bound on FST is maximal if and
only if 2

PK�1
k¼1

PK
‘¼kþ1 pk,1p‘,1 is minimal.

Because σ1 < 1, a minimum of 0 for 2
PK�1

k¼1
PK

‘¼kþ1 pk,1p‘,1
is achieved if and only if there is a single value k = k0 at which
pk0,1 = σ1, so that pk,1 = 0 for all k≠ k0. We then have s2

1 ¼ S1,
and from equation (A 2),

FST � ðK � 1ÞS
K2 � S

: ðA 3Þ

Each allele is private, and because allele 1 is the most fre-
quent, pk,i lies in [0, σ1] for all (k, i).

(ii) The problem of finding the set of pk,i values that maxi-
mizes FST has now been reduced to the problem of
maximizing the right-hand side of equation (A 3), with the
constraint that all alleles are private. Because the numerator
in equation (A 3) increases with S and the denominator
decreases with S, the maximum is achieved if and only if S
achieves its maximal value. In other words, we seek to maxi-
mize S ¼ PK

k¼1
P1

i¼1 p
2
k,i, with the constraints

P1
i¼1 pk,i ¼ 1

and pk,i≤ σ1 for each (k, i) with 1≤ k≤K and i≥ 1. Because
each allele is private, the maximum is achieved by separately
maximizing each

P1
i¼1 p

2
k,i with constraints

P1
i¼1 pk,i ¼ 1 and

pk,i≤ σ1.
This maximization is precisely that of lemma 3 of Rosen-

berg & Jakobsson [40]. Applying the lemma, the maximum is
achieved with pk,1 = pk,2 =… = pk,J−1 = σ1, pk,J = 1− (J− 1)σ1,
and pk,i = 0 for i > J, where J ¼ ds�1

1 e. It satisfiesP1
i¼1 p

2
k,i � 1� s1ðJ � 1Þð2� Js1Þ. In other words, each sub-

population k possesses J− 1 private alleles with frequency
σ1 and one private allele with frequency 1− (J− 1)σ1.
Hence, S≤K[1− σ1(J− 1)(2− Jσ1)], so that equation (A 3)
leads to equation (3.1) for σ1 in (0, 1).
(e) The case of non-integer σ1 in (1, K )
This section finds the set of values of the pk,i that maximizes
FST for non-integer σ1 in (1, K). For non-integer s1 ¼

PK
k¼1 pk,1

in (1, K ), because 0≤ pk,1≤ 1 for all k, pk,1 > 0 for at least
two values of k. Writing S* = S− S1, equation (A 2) can be
rewritten

FST � KS1 þ ðK � 1ÞS� � s2
1

K2 � S� � s2
1

: ðA 4Þ

Because the numerator increases with S1, and because the
numerator increases with S* and the denominator decreases
with S*, the upper bound on FST is greatest when both S1
and S* are maximized subject to

P1
i¼1 pk,i ¼ 1 for each k andPK

k¼1 pk,i � s1 for each i. If S1 and S* can be simultaneously
maximized at the same set of values of the pk,i, then this set
of values of the pk,i achieves the maximal FST.

We proceed in three steps. (i) First, we find the set of
values of the pk,i that maximizes S1. (ii) Next, we find the
set of values that maximizes S*. (iii) We then conclude that
because the same set maximizes both S1 and S* separately,
this set achieves the upper bound in equation (A 4), and
hence in equation (A 2).

(i) We first maximize S1 for fixed non-integer σ1 in (1, K).
More precisely, we seek to maximize S1 ¼

PK
k¼1 p

2
k,1 with con-

straints
PK

k¼1 pk,1 ¼ s1 and pk,1≤ 1 for each k from 1 to K. This
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maximization is precisely that performed in theorem 1 from
Alcala & Rosenberg [14], a corollary of lemma 3 of Rosenberg
& Jakobsson [40]. Applying the theorem, the maximum
is achieved by setting p1,1 ¼ p2,1 ¼ . . . ¼ pbs1c,1 ¼ 1,
pbs1cþ1,1 ¼ fs1g, and pk,1 = 0 for all k . bs1c þ 1. The maximal
value of S1 is fs1g2 þ bs1c.

(ii) Next, we maximize S� ¼ P1
i¼2

PK
k¼1 p

2
k,i. Because, by

theorem A.2, all alleles with i≥ 2 are private at the set of
values of the pk,i that maximizes FST for fixed non-integer
σ1, each non-zero pk,i for i≥ 2 is equal to the associated σi.
The sum of the frequencies of all alleles across all sub-
populations is

P1
i¼1 si ¼ K, so that

P1
i¼2 si ¼ K � s1. The

problem of maximizing S* is the problem of maximizing
S� ¼ P1

i¼2 s
2
i with the constraints

P1
i¼2 si ¼ K � s1 and

σi≤ 1 for each i from 2 to ∞. This maximization is again
that performed in lemma 3 of Rosenberg & Jakobsson [40].
Applying the lemma, the maximum is achieved by
setting s2 ¼ s3 ¼ . . . ¼ sK�bs1c ¼ 1, sK�bs1cþ1 ¼ 1� fs1g,
and σi = 0 for i . K � bs1c þ 1. The maximum is
ð1� fs1gÞ2 þ ðK � bs1c � 1Þ.

(iii) S1 is maximized at a set of pk,i for which bs1c subpopu-
lations are fixed for allele 1, allele 1 has frequency {σ1} in one
subpopulation and allele 1 has frequency 0 in all other sub-
populations. S* is maximized at a set of pk,i for which
K � bs1c � 1 subpopulations are fixed, each for a distinct
allele i with i≥ 2, one subpopulation possesses a distinct
allele i≥ 2 with frequency 1− {σ1}, and all bs1c other subpopu-
lations possess no alleles i≥ 2 of non-zero frequency.

The upper bound in equation (A 4) depends on both S1
and S*, each of which depends on the pk,i. Were the set of
values of the pk,i that maximizes S1 and the set of values of
the pk,i that maximizes S* to differ, additional work would
be required to find the set of values of the pk,i that maximizes
FST. However, we now observe that S1 and S* can be simul-
taneously maximized at the same set of values of pk,i, so
that the same set of values of the pk,i maximizes S1 and S*
and hence FST. In particular, bs1c subpopulations are fixed
for allele 1, each of K � bs1c � 1 subpopulations is fixed for
its own private allele, and a single subpopulation possesses
allele 1 with frequency {σ1} and a private allele with fre-
quency 1− {σ1}. The number of alleles of non-zero
frequency is K � bs1c þ 1. Only the most frequent allele is
shared by more than one subpopulation, and a single sub-
population possesses more than one allele of non-zero
frequency.

Substituting the maximal values of S1 and S* into
equation (A 4), for non-integer σ1 in (1, K ), we obtain the
maximal FST in terms of σ1 shown in equation (3.1).
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