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Abstract

In a cross-sectional stepped wedge cluster randomized trial (SWT), clusters are randomized to 

crossover from control to intervention at different time periods and outcomes are assessed for a 

different set of individuals in each cluster-period. Randomization-based inference is an attractive 

analysis strategy for SWTs because it does not require full parametric specification of the outcome 

distribution or correlation structure and its validity does not rely on having a large number of 

clusters. Existing randomization-based approaches for SWTs, however, either focus on hypothesis 

testing and omit technical details on confidence interval (CI) calculation with noncontinuous 

outcomes, or employ weighted cluster-period summary statistics for p-value and CI calculation, 

which can result in suboptimal efficiency if weights do not incorporate information on varying 

cluster-period sizes. In this article, we propose a framework for calculating randomization-based 

p-values and CIs for a marginal treatment effect in SWTs by using test statistics derived from 

individual-level generalized linear models. We also investigate how study design features, such 

as stratified randomization, subsequently impact various SWT analysis methods including the 

proposed approach. Data from the XpertMTB/RIF tuberculosis trial are reanalyzed to illustrate our 

method and compare it to alternatives.
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1 | INTRODUCTION

In a stepped wedge cluster randomized trial (SWT), clusters are randomized to crossover 

from control to intervention at different time periods.1 At the start of a SWT, all clusters 

begin under the control condition; at each subsequent period, one or more clusters initiate 

the intervention until, eventually, all clusters are receiving it. SWTs have become popular 

recently due to their ethical and practical advantages, especially for evaluating large-scale 

public health interventions.2,3 In this article, we focus on cross-sectional SWTs in which 

different sets of participants within a cluster contribute data to each period, rather than a 

cohort SWT involving repeated measures over time on the same set of individuals (though 

our method can be used for either, see Section 5).

Individual-level outcomes from a SWT can be analyzed using generalized linear mixed 

models (GLMMs) fit via maximum likelihood or using marginal models fit via solving 

a generalized estimating equation (GEE).4,5 The standard GLMM introduced by Hussey 

and Hughes includes a fixed treatment effect, fixed categorical period effects, and random 

cluster effects.6 Correspondingly, the standard marginal model fit via a GEE includes fixed 

effects for treatment and period and often employs an exchangeable working correlation 

structure. Various modifications and extensions of these standard models have been made 

by specifying more complex correlation structures, allowing the treatment effect to vary 

over time, by cluster, or by time since treatment was introduced, or by specifying varying 

period effects across clusters.7–13 In general, GEEs require a large number of clusters and 

GLMMs additionally require distributional assumptions to be met (eg, normally distributed 

random effects, correct specification of the correlation structure) to maintain nominal type 

I error and confidence interval (CI) coverage. Several small-sample adjustments have been 

proposed and evaluated for SWTs, all of which significantly improve upon the validity 

of GLMMs and GEEs in settings with a small number of clusters, though their relative 

performance can vary depending on the particular trial scenario (eg, whether or not and by 

how much cluster sizes vary).14–17 Furthermore, including additional covariates in a GLMM 

or GEE to account for design features, such as stratified randomization, alters the target 

estimand from a nonstratified treatment effect to one that is conditional on the stratification 

covariate(s) and, as demonstrated in our simulations and others,18 can result in even worse 

type I error and CI coverage of GEEs in finite samples.

Randomization-based inference is an attractive alternative method for analyzing SWTs 

because it does not require full parametric specification of the outcome distribution 

or correlation structure and its validity does not rely on having a large number of 

clusters.19–22 In addition, randomization-based methods can account for design features in a 

straightforward and intuitive fashion that does not require changing the target of inference. 

Aside from using a similar inferential framework, existing randomization-based approaches 

for SWTs differ in their choice of test statistic—a choice that can have a substantial 

impact on the power of the randomization test and the precision of the corresponding CI. 

Ji et al23 described randomization tests for SWTs using regression parameter estimates 

from individual-level mixed models, but did not detail how corresponding CIs would 

be calculated for noncontinuous outcomes. Wang and De Gruttola24 proposed a similar 

approach using mixed effects models and discussed how permutation tests can be inverted 
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to obtain CI estimates for continuous outcomes and survival outcomes when the parameter 

of interest is one in an accelerated failure time model. Thompson et al25 developed a 

nonparametric within-period (NPWP) approach to calculate randomization-based p-values 

and CIs using inverse-variance weighted cluster-period summaries. The NPWP method 

focuses solely on vertical differences (ie, within-period contrasts between clusters on and off 

treatment) and combines these period-specific estimates into an overall effect estimate for 

the trial. The weights proposed by Thompson et al25 were calculated based on the number of 

clusters on treatment and control, and the corresponding empirical variances of the cluster-

period summaries under each treatment condition; as mentioned in their discussion, these 

weights may not be optimal if cluster-period sizes vary. Kennedy-Shaffer et al26 proposed 

a crossover approach also based on cluster-period summaries, but one that incorporated 

horizontal comparisons (ie, within-cluster contrasts between subsequent periods) into their 

estimator; their weights did not incorporate information on variable cluster-period sizes. 

Different weights could be used for the NPWP or crossover approaches, but as described 

in Kennedy-Shaffer et al, changing the weights generally changes the treatment effect 

parameter targeted.26 Hughes et al27 derived closed-form randomization-based point and 

variance estimators for a vertical treatment effect similar to that targeted by the NPWP 

method. To derive their variance estimators, Hughes et al assumed all cluster-period sizes 

were the same but found their method to be only slightly sensitive to this assumption in their 

simulation studies.

In this article, we extend previous work on randomization-based CIs in parallel cluster 

randomized trials to the SWT setting.28 This entails modifying the way in which treatment 

assignments are permuted for the test and CI procedure, changing the specification of the 

offset-adjusted regression model used for CIs, and carefully determining the underlying 

population model under which randomization-based inference is guaranteed to be valid. 

Our approach naturally incorporates efficient weights into the inferential procedure and 

targets a marginal treatment effect by using test statistics derived from individual-level 

generalized linear models. In Section 2, we provide a detailed overview of the method and 

demonstrate how to account for design features in a randomization-based analysis and why 

it is important to do so. Extensive simulations in Section 3 illustrate how our randomization-

based method compares in terms of validity and efficiency to various commonly used 

alternatives including GLMMs, GEEs, and existing randomization-based approaches for 

SWTs based on cluster-period summary statistics. In Section 4, we apply our method 

to the XpertMTB/RIF trial, a SWT that compared the impact of two diagnostic tests of 

tuberculosis (TB) on reducing unfavorable outcomes;29 this trial was previously reanalyzed 

in Thompson et al and Kennedy-Shaffer et al.25,26 We close with a discussion in Section 5 

and provide a link to our R package in Section 6.

2 | METHODS

2.1 | Setting and notation

Suppose we have i = 1, … , N clusters, j = 1, … , J periods, k = 1, … , mij individual-level 

outcomes sampled from cluster i at time period j (referred to together as cluster-period ij), 

and M = ∑i = 1
N ∑j = 1

J mij total individual-level outcomes in the study. Let Xij = 1 indicate 
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cluster i receiving intervention (treatment) at period j, Xij = 0 for no intervention (control), 

Xi = (Xi1, … , XiJ)T denote the entire random treatment vector for cluster i, and X denote 

the entire N × J matrix whose ijth element is Xij. According to the SWT design, clusters 

are randomized to crossover from control to treatment at a particular time period. Let xij, xi, 

and x denote the resulting observed treatment value, vector, and matrix, respectively, after 

randomization has occurred. For example, a SWT with N = 3 clusters and J = 4 periods 

would correspond to

x =

x1
T

x2
T

x3
T

=
x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34

=
0 1 1 1
0 0 1 1
0 0 0 1

,

if the first cluster were randomized to crossover at period 2, the second at period 3, and 

the third at period 4. Let Yijk denote the outcome random variable for individual k in 

cluster-period ij. In this article, we focus on exponential family outcome types (eg, binary, 

count, continuous). Collect all cluster-period outcomes in the vector Yij = Y ij1, …, Y ijmij
T

, 

all cluster-specific outcomes in the vector Yi = Yi1
T , …, YiJ

T T
, and all study outcomes in the 

vector Y = Y1
T , …, YN

T T
.

2.2 | Randomization test and CI

Consider the population model

Yi ∣ Xi = X* F ηx*, ϕ , ηx* = η1x1, …, ηJxJ
T , ηjx = g E Y ijk ∣ Xij = x

= μ + βj + θx,
(1)

for i = 1, … , N, j = 1, … , J, k = 1, … , mij, and where x* = (x1, … , xJ)T denotes an 

arbitrary cluster-level observed treatment vector and g denotes the link function. Here, F is 

a common (but unspecified) distribution parameterized by ηx*, a vector whose jth element 

corresponds to the g-transformed mean individual-level outcome for a particular randomized 

treatment value xj = x ∈ {0, 1} at period j, and ϕ, a vector of nuisance parameters explicitly 

assumed not to be affected by treatment assignment. Model specification (1) imposes a 

constant marginal treatment effect θ across time and clusters and permits the underlying 

g-transformed mean outcome to vary in a piecewise fashion over time via categorical βj 

(with β1 = 0 for identifiability). By leaving both the distribution F and correlation structure 

unspecified, (1) is quite general and encompasses many SWT models commonly used in 

practice. For example, if continuous outcomes were generated from the linear mixed model 

Y ijk = μ ∗ + βj* + ai + θ ∗ Xij + ϵijk with random cluster effects ai N 0, σa2  and independent 

errors ϵijk N 0, σϵ2 ,6 these data would coincide with model (1) where F is the multivariate 

normal distribution with mean vector elements ηjx = μ ∗ + βj* + θ ∗ x and an exchangeable 

covariance matrix parameterized by ϕ = σa2, σϵ2 . More complex correlation structures, such 

as nested exchangeable,7,8 which incorporates additional random cluster-period effects to 
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allow the correlation of two outcomes within the same cluster and period (ie, the within-

period correlation, or WPC) to be larger than the correlation of two outcomes within 

the same cluster but from different periods (ie, the interperiod correlation, or IPC), or 

exponential decay,10 which allows the IPC to decrease between periods that are further 

apart, also correspond to this model because (1) imposes no structure on the correlation apart 

from it not being impacted by treatment assignment. An example that does not comply with 

(1) is the treatment heterogeneous correlation structure,9 since it presumes the within-cluster 

correlation changes with intervention, violating the condition that no components of ϕ are 

impacted by treatment. Similarly, any model allowing for treatment effect heterogeneity 

across clusters or time, such as model extensions C-E described in Hemming et al,7 would 

also not comply with (1).

Invariance can be used to justify the validity of a randomization test.21 Under population 

model (1) and the null hypothesis of no treatment effect (ie, H0 ∶ θ = 0), it follows that ηj0 

= ηj1 = μ + βj for j = 1, … , J. This implies that the distribution of (Y|X = x) is invariant 

under row permutations of x and therefore, by theorem 15.2.1 of Lehmann and Romano,21 a 

randomization test based on these data will achieve level α, the prespecified type I error rate. 

Note that by permuting rows of x, we are mimicking the actual randomization performed 

in the SWT; that is, randomly permuting rows of x (each row corresponding to a particular 

cluster-specific treatment pattern) is equivalent to randomly assigning clusters to initiate 

treatment at different time periods (fixing the number of clusters assigned to each unique 

treatment pattern across randomizations), the latter having been operationalized in Wang and 

De Gruttola.24 Also note the distinction between this procedure for SWTs (permuting rows 

of a matrix x) and its analog for parallel cluster randomized trials (permuting elements of a 

vector x).28

For the randomization test, we first fit the generalized linear model

g{E(Y ijk ∣ Xij
(p))} = μ + βj + θXij

(p), (2)

via maximum likelihood (eg, with the glm function in R or Stata or PROC GENMOD in 

SAS) using values from the observed treatment matrix X(1) = x to obtain the observed 

marginal treatment effect estimate θ (1) = θ . Then for p = 2, … , P, we randomly permute 

rows of x in accordance with the SWT randomization scheme and refit the generalized 

linear model (2), but now using values from the permuted treatment matrix X(p) to obtain 

a new estimate θ (p). The p-value is calculated as the proportion of {θ (p)}p = 1
P

 as or more 

extreme than θ  and we reject H0 if this p-value is less than α.30 An appropriate number 

of permutations P for this test can be based on the standard error of this Monte Carlo 

approximation to the exact p-value, that is, by ensuring q(1 − q)/P  is adequately small for a 

particular p-value = q, or most conservatively for q = 0.5.

A randomization-based confidence set for θ is obtained by inverting this test, that is, testing 

null hypotheses of the form H0 ∶ θ = θ0 ∈ Θ and collecting the set of values not rejected by 

these tests. As described in prior work, this can be done by introducing a fixed offset term 
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into the regression model.28 In particular, we can test an equivalent null hypothesis H0 ∶ τ = 

(θ − θ0) = 0 by fitting the generalized linear model

g{E(Y ijk ∣ Xij
(p))} = μ + βj + θ0xij + τXij

(p), (3)

with values from the observed treatment matrix x for the fixed offset term θ0xij and values 

from the permuted treatment matrix X(p) for the offset-adjusted treatment effect term τXij
(p). 

Under population model (1) and H0 ∶ τ = 0, the only functional relationship preventing 

(Y|X = x) from being invariant is a g-transformed mean shift of θ0 between cluster-periods 

under treatment and control. By including the fixed offset term θ0xij in model (3) across 

all P permutations, we eliminate this shift, resulting in invariance and, thus, a level α 
randomization test for any θ0 ∈ Θ. Collecting the set of values not rejected by this offset-

adjusted randomization test provides a (1 − α) randomization-based confidence set for θ, the 

bounds of which form a (1 − α) × 100% CI.

In practice, one could employ a standard grid or binary search by performing many 

randomization tests at different θ0 ∈ Θ to identify bounds of the confidence set; however, 

such procedures can be computationally intensive (or even infeasible) for large datasets, 

such as those assembled in SWTs with individual-level outcomes. As an alternative, we 

recommend using a computationally efficient CI search procedure that adapts well to our 

offset-adjusted method.31 At each step of the search, the upper or lower bound estimate is 

updated based on only a single permutation of the treatment matrix (thus, a single model fit). 

For example, suppose we carry out a P-step search for U, the correct upper confidence limit 

of θ (note, this P could be different from that we used for the randomization test). At the pth 

step of the search, we fit model (3) with the current value of the upper limit θ0 = U(p) and 

permuted treatment matrix X(p) to obtain the permuted offset-adjusted estimate τ (p) X(p) . 

We also directly calculate the observed offset-adjusted estimate τ (p)(x) = θ − U(p) based on 

the initial fit of model (2). We update the upper limit based on whether the permuted 

estimate is larger than the observed estimate via U(p+1) in

U(p + 1) =
U(p) − s(α/2)

p , if τ (p)(X(p)) > τ (p)(x)

U(p) + s(1 − α/2)
p , if τ (p)(X(p)) ≤ τ (p)(x),

L(p + 1) =
L(p) + s(α/2)

p , if τ (p)(X(p)) < τ (p)(x)

L(p) − s(1 − α/2)
p , if τ (p)(X(p)) ≥ τ (p)(x),

(4)

where s > 0 is a chosen step length constant. An independent search is carried out for the 

correct lower limit L in the same fashion using L(p+1) in (4). To avoid early steps changing 

dramatically in size, the P-step search should begin with p = m with m = min{⌈0.3(4 − 

α)/α⌉, 50}.31 Thus, [L(m), U(m)] represent the chosen starting values and the final updated 

values [L(m+P ), U(m+P )] are adopted as the CI. As the number of steps increase, estimates 

converge in probability to the correct randomization-based CI bounds.31 Longer searches 

(eg, P ≥ 200 000) are improved by modifying the step size during later phases of the search 
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and averaging rather than using only the final values for CI estimation,32 the details of 

which are included in Section B of the Supporting Information. Additional guidance about 

fine-tuning this algorithm, such as choosing an appropriate number of steps, starting values, 

or step length, can be found in prior work.28,31,32 This fast CI search procedure has been 

implemented in our R package (see Section 6).

2.3 | Accounting for study design features

Stratification or other forms of restricted randomization can be employed in the design 

of a SWT to ensure balance of important characteristics between control and intervention 

conditions.33,34 This is especially pertinent in SWTs with a small number of clusters, which 

occur often in practice. To ensure nominal type I error and CI coverage, such design features 

should be accounted for in the analysis;35,36 if ignored, the result is often conservative 

inference and a loss of statistical efficiency, that is, p-values that are too large and CIs that 

are too wide.37–39 In a typical regression analysis, stratified randomization is accounted 

for by including additional terms for the stratifying variables in the model. Although 

this technique properly accounts for the design, it can change the numerical value and 

interpretation of the targeted treatment effect parameter when a nonlinear link function (eg, 

g = logit) is used. Moreover, numerical issues can also arise when adding covariates into the 

regression model. For example, as we will discover in our simulations in Section 3.2, even 

the inclusion of a single additional binary covariate can worsen GEE performance in settings 

with a small number of clusters. If there are more than a few stratification groups, requiring 

too many additional terms to be introduced into the model relative to the size of the dataset, 

model fitting algorithms could be unstable or even fail to converge altogether.

Stratification can be addressed differently in a randomization-based analysis. Rather than 

adding terms into the model, we can retain the parsimonious nonstratified model and simply 

restrict the set of permutations considered in the test and CI procedure. For example, if the 

randomization of 10 clusters across six periods was stratified on a single binary cluster-level 

covariate Z with five clusters within each level, we would still target θ from the nonstratified 

marginal model (2) (ie, the model that does not include an additional term for Z), but would 

now sample X(p) from among the (5!)2 = 14, 400 possible permuted treatment matrices 

under a stratified design rather than all ∏i = 1
5 2i

2 = 113, 400 possible under a nonstratified 

design. The same approach would apply for other restricted SWT randomization schemes. 

For example, if we followed the restricted procedure employed by Moulton et al,40 which 

boils down to choosing one randomization from a list of 1000 potential randomization 

sequences (all of which attain a certain level of covariate balance), we would sample X(p) 

from among those 1000 in the analysis.

Of course, the further we restrict randomization in the design, the further we do so in the 

analysis. In some cases, this might allow us to fully enumerate all possible randomizations 

rather than sampling from them (though with a large enough number of randomly 

sampled permutations, the results would be similar). Highly restricted randomization 

could also result in more noticeably conservative inference due to the discreteness of 

the randomization distribution of θ . For example, with only 50 potential randomization 
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sequences, a randomization test could achieve p-values of 2/50 = 0.04 or 3/50 = 0.06, but 

not 0.05. In this case, an exact α = .05 test would theoretically require a randomized testing 

procedure, that is, flipping a biased coin for values on the boundary of the rejection region. 

Li et al34 also considered such implications of a restricted design on a randomization-based 

analysis in the parallel cluster randomized trial setting.

Finally, let us gain some intuition about why ignoring such design features in a 

randomization-based analysis generally leads to conservative inference and a reduction in 

power and precision. Suppose randomization were stratified, and we properly carried out 

the randomization test and CI procedure in a stratified fashion. In this case, the empirical 

randomization distribution of θ  would be an accurate representation of the sampling 

variability of θ  given the underlying data generation procedure and stratified design. If 

instead we improperly carried out a nonstratified test and CI procedure, many values 

sampled from the nonstratified randomization distribution would be far too extreme given 

that the study design controlled some of this variability via stratified randomization. In other 

words, with the nonstratified procedure, we would be comparing the single observed value 

of the test statistic—which was generated under a stratified design—to its randomization 

distribution under a nonstratified design, the latter of which inherently has more variability 

associated with it. Given that the nonstratified randomization distribution would have more 

extreme values than its stratified counterpart, it would be more difficult to reject the null 

hypothesis than it should be (ie, power of the randomization test—and precision of the 

corresponding CI—would be reduced). We include a simple illustration of this point via 

simulation in Figure S1 in the Supporting Information. More extensive simulations in 

Section 3.2 demonstrate that conservative inference is generally the result of ignoring design 

features in a randomization-based analysis, and that power and precision are improved by 

restricting the permutation procedure in accordance with the design, as described above.

3 | SIMULATIONS

We carried out simulations to evaluate the performance of our randomization-based 

approach and how it compared with existing analysis methods for SWTs. Alternative 

methods (detailed below) included three different GLMMs, a standard and small-sample 

adjusted GEE, and three randomization-based approaches that use cluster-period summary 

statistics. To evaluate the validity of each method, we calculated empirical type I error and 

CI coverage; to evaluate efficiency, we calculated empirical power and average CI width. 

In Section 3.1, we consider a nonstratified SWT with a binary outcome and in Section 3.2 

we consider a SWT in which randomization is stratified on a single binary cluster-level 

covariate, again with a binary outcome. Simulations were run in R 3.4.1 or higher. Results 

for each scenario were based on 2000 independently generated datasets.

3.1 | Nonstratified randomization

3.1.1 | Data generation and analysis methods—First, we considered a nonstratified 

SWT with a binary outcome. Data were generated from the logistic GLMM

logit E Y ijk ∣ Xij, ai, bij = μ* + βj* + ai + bij + θ*Xij, (5)
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where μ∗ denotes the cluster-period-conditional baseline log odds of the outcome under the 

control condition, βj* denotes a fixed categorical period effect, ai is a random cluster effect, 

bij is a random cluster-period effect, and θ∗ denotes the cluster-period-conditional log odds 

ratio (OR) associated with intervention. Note, the cluster-period-conditional interpretations 

of μ∗ and θ∗ are due to inclusion of random cluster-period effects bij in (5). We set 

the population-level prevalence of the outcome under the control condition during the 

first period at 25%, that is, μ∗ = logit(0.25), and set βj* = (j − 1)/{5(J − 1)} so that the 

underlying prevalence increased to about 29% by the end of the trial. We considered θ∗ ∈ 
{0, 0.25, 0.5}, which correspond with ORs ∈{1, 1.28, 1.65}. We drew the random effects 

independently from normal distributions centered at zero, that is, ai ~ N(0, σ2) and bij ~ N(0, 

υ2) with (σ, υ) = (0.1, 0.01); for settings with θ∗ = 0, we ran additional simulations with (σ, 

υ) ∈ {(0.1, 0.1), (0.5, 0.01), (0.5, 0.1)}. With σ > 0 and υ > 0, the WPC is larger than the 

IPC. For example, with (σ, υ) = (0.1, 0.1), the induced WPC and IPC values on the log-odds 

scale were 0.006 and 0.003, respectively. Since binary outcomes were generated from a 

logistic GLMM, induced WPC and IPC values can be calculated on either the log-odds or 

proportion scale.41,42 All WPCs and IPCs induced by the various simulation settings are 

presented in Tables S17 and S18 in the Supporting Information. We examined different 

numbers of clusters and periods (N : J ∈ {6: 4,8: 5, 10: 6, 12: 7, 14: 8}) with two clusters 

crossing over at a time, and different cluster-period sizes (mij drawn from discrete uniform 

distributions U{20, 30} and U{20, 80}).

We analyzed each dataset with our proposed randomization-based method. We targeted 

θ, the marginal log OR associated with intervention, by using θ  from model (2) for the 

randomization test of no treatment effect and τ  from offset-adjusted model (3) for the 

randomization-based CI, both with g = logit. Note the distinction between the marginal log 

OR θ we target for inference here and the cluster-conditional log OR θ∗ in model (5) used 

to generate the data (we discuss this distinction in more detail in the final paragraph of this 

Section 3.1.1). The p-value and each bound of the 95% CI were based on P = 5, 000, which 

provided sufficiently accurate p-value estimates (eg, standard error of 0.003 for p-value = 

.05) and acceptable coverage precision of the CI search.28,31

Each dataset was also analyzed using various alternative approaches. First, we considered 

two GLMMs commonly used in analyzing SWTs: GLMM-CP corresponded exactly with 

data generation model (5); GLMM-C corresponded with model (5) without the bij terms, 

that is, random cluster effects only. Next, we fit a marginal model via GEE but used two 

different variance estimators: the first was the standard GEE sandwich variance estimator;5 

the second employed the δ5 adjustment proposed by Fay and Graubard,43 which has been 

shown to perform well in SWTs with a small number of clusters.14,17 For both GEEs, 

we specified an exchangeable working correlation structure, which—although misspecified 

given the random cluster-period effects in model (5)—is straightforward to implement in 

most statistical software packages, is often chosen in the analysis of SWTs, and has been 

shown to perform adequately in SWTs even when the true underlying correlation structure 

is more complex, especially when the WPC and IPC values are relatively small.12,44 For 

all GLMMs and GEEs, we used Wald tests and corresponding 95% CIs. Next, we applied 

three randomization-based approaches that use cluster-period summary statistics: the NPWP 
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method,25 the crossover method,26 and the closed-form permutation-based estimator (CF-

Perm).27 The NPWP and crossover methods directly employ randomization-based inference 

via weighted summaries; the former compares cluster-period means between treatment 

conditions within each period, and the latter compares cluster-period mean differences 
between clusters that crossover to those that do not at each crossover point. To conduct 

the nonzero null hypothesis tests necessary to calculate a CI with the NPWP and crossover 

methods, we applied the usual transformation approach by subtracting off a fixed value 

from summary statistics of cluster-periods under the intervention condition (eg, the approach 

described in Section 4.1 of Ernst);20 the fast CI search procedure described at the end of 

Section 2.2 was adapted here as well. Weights for the NPWP and crossover estimators 

were chosen according to those provided by Thompson et al and Kennedy-Shaffer et 

al.25,26 The CF-Perm approach proposed by Hughes et al is also based on cluster-period 

summary statistics, but circumvents the actual permutation procedure by employing a 

closed-form (though still randomization-based) variance expression.27 For these three 

alternative randomization-based approaches, we used the empirical log odds of the outcome 

within each cluster-period as the summary statistic; if a cluster-period sample proportion 

was zero or one, we added 0.5 to both the number of individuals with and without the 

outcome of interest, as suggested by Thompson et al.25 Further details about these cluster-

period summary approaches can be found in Section A in the Supporting Information.

To assess how deviations from population model (1) impacted the performance of these 

methods, we ran additional simulations generating data from

logit E Y ijk ∣ Xij, ai, bij, ci = μ* + βj* + ai + bij + θ*Xij + ciXij, (6)

where the only modification from (5) is the addition of random cluster-intervention effects 

ciXij with ci ~ N(0, λ2) and λ ∈ {0.1, 0.5, 1}. Under (6) with λ > 0, WPC and IPC 

both increase once the intervention is introduced (see Tables S17–S18 in the Supporting 

Information), thus, violating the condition in population model (1) that the correlation 

structure is unaffected by treatment. For this setting, we considered one additional analysis 

model, GLMM-CPI, in which we specified the additional random cluster-intervention effects 

to coincide with (6).

Given the nonlinear function (ie, logit) used to generate data, fit the regression models, 

and calculate cluster-period summaries, each analysis method generally targets a different 

parameter when θ∗ ≠ 0. Therefore, for a given analysis method, we calculated empirical 

CI coverage with respect to the induced true parameter value targeted by that particular 

method. For the underspecified GLMMs and for the marginal model fit via GEE and via 

our offset-adjusted method, we approximated these values using Gauss-Hermite quadrature; 

given the relatively small values (σ, υ) = (0.1, 0.01) used to generate data in settings with 

θ∗ > 0, these values were numerically close to θ∗, though slightly attenuated (eg, for θ∗ = 

0.5, the true marginal parameter was θ = 0.499). For the cluster-period summary approaches, 

this relationship was more complex and depended on the underlying proportion of the 

outcome expit(μ∗), the cluster sizes mij, and the heuristic adjustment value (here, 0.5) used 

for cluster-period sample proportions of zero or one. Given this complexity, we calculated 

induced values via simulation; these values were further away from θ∗ and slightly larger 
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(eg, for θ∗ = 0.5 and mij ~ U{20, 30}, the value targeted by each cluster-period summary 

approach was about 0.53).

3.1.2 | Results—Let us first focus on results from data generation model (5) with (σ, υ) 

= (0.1, 0.01). Power, coverage, and average CI widths are shown in Figure 1. The unadjusted 

GEE had poor performance across the board, with inflated type I error (9%-25%) and 

undercoverage (75%-91%) (hence its exclusion from Figure 1 for clarity). The small-sample 

adjusted GEE performed much better, but was sometimes overly conservative (eg, 3% type 

I error and 97% coverage with N = 6 clusters). With a smaller number of clusters, the 

CF-Perm estimator had inflated type I error (eg, 9% with N = 6 and mij ~ U{20, 80}) 

and undercoverage (eg, 91%), though both became nominal as N increased. Aside from CF-

Perm, all other approaches using randomization-based inference and both GLMMs led to 

nominal type I error and coverage across these scenarios. In terms of efficiency, GLMM-C 

generally performed the best (highest power and narrowest CIs) followed closely by the 

correctly specified GLMM-CP; however, the latter failed to converge up to 10% of the time 

with larger N, J, and mij. The CF-Perm approach and our proposed randomization-based 

method had the next best efficiency, though in settings where type I error and coverage 

were nominal, our individual-level approach resulted in narrower CIs. Next in line were 

the NPWP method and small-sample GEE, which had similar performance and were worst 

overall with N = 6. Finally, except for N = 6 (and as we will see later, settings with larger 

σ), the crossover approach had the lowest power and widest CIs. Additional simulations 

with fixed cluster-period sizes demonstrated that, in terms of efficiency, the cluster-period 

summary methods were more negatively impacted by varying cluster sizes than were the 

individual-level regression approaches (see Table S4 in the Supporting Information). As 

the number of clusters increased, average width of the randomization-based CIs using our 

offset-adjusted method approached the average CI widths of the best performing fully 

parametric GLMMs.

In settings with larger σ = 0.5 (ie, larger WPC and IPC), the small-sample GEE was not 

as conservative with small N, the CF-Perm method was even more liberal, the crossover 

approach now produced the narrowest CIs among all randomization-based methods, and the 

relative efficiency of our randomization-based method compared with the best performing 

GLMMs got considerably worse—at least when N ≤ 14. With larger υ = 0.1 (ie, larger WPC 

relative to IPC), the only apparent difference in relative performance was that both GLMMs 

had a slight inflation of type I error and undercoverage.

In settings with data generated from model (6), which has the addition of random 

cluster-intervention effects, our randomization-based method (and similarly the other 

randomization-based cluster-period summary approaches) did not always result in nominal 

type I error or CI coverage. For example, in the most extreme setting with λ = 1, our 

randomization-based method resulted in type I error up to 14% and CI coverage as low 

as 87%. These findings make sense because conditions in population model (1) are no 

longer met; they are also consistent with results demonstrated and briefly discussed in 

Ren et al.44 Across the settings we examined, though, our method was least sensitive to 

such deviations from population model (1) among all randomization-based approaches and 

performed better than GLMM-C and GLMM-CP. In terms of type I error and coverage, the 
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two best performers under data generation model (6) were the small-sample adjusted GEE 

and the correctly specified GLMM-CPI, though notably the latter failed to converge up to 

40% of the time in settings with larger N and J.

Complete simulation results for all nonstratified settings are reported in Tables S1 to S10 in 

the Supporting Information.

3.2 | Stratified randomization

3.2.1 | Data generation and analysis methods—Next, we considered a SWT in 

which randomization was stratified on a single baseline binary cluster-level covariate Z. 

Similar to our first set of simulations, data were generated from a logistic GLMM, but now 

Z was also related to the outcome via

logit E Y ijk ∣ Xij, Zi, ai, bij = μ* + βj* + ai + bij + γ*Zi + θ*Xij, (7)

where γ∗ represents the cluster-period-conditional log OR associated with Z. We assumed 

that by design N/2 clusters with Z = 0 and N/2 with Z = 1 were enrolled in the study. For 

each dataset, we randomized clusters according to the SWT design, but now within each 

level of Z, resulting in balance of Z between control and intervention conditions. We varied 

γ∗ ∈ {0, 0.2, 0.7, 1.5} to examine how different strengths of association between Z and 

Y impacted the performance of each method; all other data generation parameters (μ∗, βj*, 

σ = 0.1, υ = 0.01) were set to the same values as in Section 3.1.1. For these stratified 

simulations, we considered the same set of cluster and period numbers (N : J ∈ {6 : 4, … , 

14 : 8}) and cluster sizes (mij ~ U{20, 30} and mij ~ U{20, 80}) as before, but considered 

only θ∗ = 0 for convenience.

We analyzed each dataset with our proposed randomization-based method. We again 

targeted θ, the nonstratified marginal log OR associated with the intervention, by using 

θ  from (2) for the randomization test and τ  from (3) for the corresponding CI. We carried 

out randomization-based inference in both a nonstratified and stratified fashion, as described 

in Sections 2.2 and 2.3, respectively. The p-value and each bound of the 95% CI were 

based on P = 5, 000. Each dataset was also analyzed via nonstratified and stratified versions 

of the individual-level regression methods considered previously: GLMM-CP, GLMM-C, 

and both GEEs. Keep in mind, since these alternative methods address stratification by 

including an additional term for Z in the model, the targeted intervention effect corresponds 

to the Z-conditional log OR, which in general is numerically different from the nonstratified 

marginal log OR targeted by our randomization-based method (though they are identical 

with θ∗ = 0).

3.2.2 | Results—Condensed results for the smaller and less variable cluster sizes (ie, mij 

~ U{20, 30}) are presented in Table 1; complete results are presented in Tables S11 to S16 

in the Supporting Information. The unadjusted GEE performed poorly whether or not Z was 

included in the model; interestingly, the unadjusted GEE had more severe inflation of type 

I error and undercoverage when appropriately stratified by Z. The small-sample adjusted 

GEE performed well in most settings, but was conservative for datasets with the fewest 
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(N = 6) clusters. Regardless of whether Z was included, the GLMM-C and GLMM-CP 

models again performed well and similarly to each other. Accounting for stratification in 

the randomization-based analysis resulted in closer to nominal type I error and coverage 

rates. For example, when a strong Y-Z association was not accounted for in the analysis, 

randomization-based CIs were widest and coverage was much higher than 95% (eg, 100% 

coverage when γ∗ = 1.5); however, the stratified permutation procedure completely resolved 

this conservativeness and resulted in close to 95% coverage across all simulation settings. 

Accounting for stratification also more markedly improved precision of the randomization-

based CIs, sometimes even leading to narrower CIs than the fully parametric GLMMs. For 

example, with smaller and less variable cluster sizes (ie, mij ~ U{20, 30}), comparing no 

Y-Z association (γ∗ = 0) to the strongest (γ∗ = 1.5), the reduction in average CI width was 

more pronounced for the randomization-based method (eg, 15% reduction with N = 10) than 

it was for GLMM-C and the small-sample adjusted GEE (eg, 3% and 4%, respectively). By 

contrast, the reduction in average CI width was less pronounced for the randomization-based 

method with larger and more variable cluster sizes (ie, mij ~ U{20, 80}), sometimes even 

resulting in slightly wider CIs with larger γ∗ (see Supplementary Table S16). Finally, we 

point out that the conservative type I error (3%) of the stratified randomization test with N 
= 6 is expected due to the discreteness of only (3!)2 = 36 unique randomization sequences 

from which to sample (ie, the largest achievable p-value smaller than α = .05 is 1/36 ≈ 
0.03); interestingly though, the corresponding CI coverage rates in this setting were closer to 

the nominal level, demonstrating that some of this discreteness is “smoothed over” by using 

the stochastic CI search procedure outlined at the end of Section 2.2.

4 | EXAMPLE

The XpertMTB/RIF trial was a SWT carried out in 2012 to assess the impact of replacing 

smear microscopy with XpertMTB/RIF, a rapid diagnostic test of TB and rifampicin 

resistance.45 The study randomized 14 primary care laboratories in Brazil to crossover 

from control (smear microscopy) to intervention (XpertMTB/RIF) at one of seven different 

time points (thus, eight periods including the first where all clusters were under the 

control condition). Although the primary aims of the trial were to increase the notification 

rate of lab-confirmed TB to the Brazilian national notification system and to reduce the 

time to treatment initiation, Trajman et al carried out a follow-up analysis of individuals 

diagnosed with TB in the trial to determine whether the rapid test had any impact on 

reducing unfavorable outcomes (a composite binary outcome indicating death from any 

cause, loss to follow-up, transfer out due to first-line drug failure, or suspicion of drug 

resistance).29 Among the 3926 individuals included in their final analysis, 31% (556/1777) 

under control and 29% (625/2149) under intervention had unfavorable outcomes. The 

authors used a logistic mixed effects model with random cluster (lab) effects and a fixed 

effect for intervention (note, no adjustment for any possible period effects) to quantify 

the treatment effect, which led to an estimated crude OR of 0.92 (95% CI: 0.79–1.06). 

On average, there were 35 individuals within each cluster-period, though sizes were quite 

variable across cluster-periods (minimum 6, maximum 96, empirical coefficient of variation 

0.52, see Figure 2).
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We reanalyzed data from this trial using our individual-level randomization-based method 

for SWTs and the alternative approaches outlined in Section 3.1.1. We removed two 

individuals from the dataset whose recorded treatment allocation did not match the SWT 

design, resulting in 3924 individual-level binary outcomes. Restricted randomization was 

employed in the design of this trial to ensure a balance of low/intermediate/high monthly 

case load and low/high HIV prevalence between labs that crossed over early (periods 2–

5) and late (periods 5–8).45 We carried out analyses both ignoring and accounting for 

this design feature. The unrestricted analysis was done to align with previous analyses of 

these data.25,26,29 The restricted analysis was carried out with the intention of improving 

power and precision. The restricted randomization-based analyses were carried out by 

restricting the permutations considered in the test and CI procedure, as described in Section 

2.3; we did not carry out a restricted analysis using the CF-Perm method, as it was not 

immediately clear how this could be done. For the restricted GLMMs and GEEs, we simply 

included additional categorical terms in the regression model for monthly case load and HIV 

prevalence. Though we deemed 5000 permutations reasonable for each randomization test 

and CI search procedure, it was computationally feasible to increase to 20 000 for these data 

to further refine the CI estimates. These 20 000 permutations were sampled from among all 

681 080 400 potential unrestricted randomizations (for the unrestricted analysis) or among 

all 100 018 800 potential restricted randomizations (for the restricted analysis).

Results are presented in Table 2. All methods using individual-level regression models 

resulted in similar OR estimates between 0.83 and 0.85. As expected, accounting for 

restricted randomization resulted in slightly smaller randomization-based p-values and 

narrower CIs. In particular, our randomization-based approach accounting for the restricted 

design led to an estimated OR of 0.84 with 95% CI [0.65, 1.05] (p-value = .11). Results 

were generally similar for the alternative individual-level methods, though the GLMMs gave 

somewhat narrower CIs and smaller p-values, while the GEEs gave wider CIs and larger 

p-values. The more complex mixed models GLMM-CP and GLMM-CPI had estimated 

variance components near or at the boundary of the parameter space, which can lead to 

invalid p-values and CIs (though here, results generally align with GLMM-C, which did 

not have this issue). Notably, all three approaches using cluster-period summaries led to 

moderately stronger treatment effect estimates ranging from 0.72 (crossover method) to 0.78 

(NPWP and CF-Perm) and the smallest p-values (.01-.06).

To provide more insight into these differences, we provide a visualization of cluster-period 

sizes and outcomes from the XpertMTB/RIF trial in Figure 2. Consider, for example, the 

contribution to the crossover estimator of Kennedy-Shaffer et al from the first crossover 

point (period 1–2) and from clusters where the intervention was introduced (clusters 1 

and 2). In cluster 1, outcomes got worse after the intervention was introduced (37%-46% 

unfavorable outcomes), whereas in cluster 2, outcomes got better (33%-18%). Even though 

the latter contrast favoring treatment was inherently much less stable than the former 

(based on only 17 individuals compared with 113), each was weighted equally by the 

crossover estimator. A similar observation can be made for clusters 5 and 6 at their 

crossover point in the study. Similar weighing schemes that did not directly account for 

varying cluster-period sizes were embedded in the NPWP and CF-Perm estimators. On 

the other hand, the individual-level approaches—including our randomization-based method
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—accounted for varying cluster-period sizes via regression-based test statistics. These 

different ways in which cluster-period sizes were (or were not) incorporated into the 

analysis could explain why the cluster-period summary approaches led to stronger effect 

estimates in the XpertMTB/RIF trial. Of course, there is a lot more complexity involved 

in each inferential procedure that could have driven these numerical differences as well. 

For example, cluster-period summary methods generally target different parameter values, 

as mentioned in Section 3.1.1. These differences could also have been simply the result 

of sampling variability, as we demonstrated in Figure S3 in the Supporting Information by 

simulating datasets similar to the XpertMTB/RIF trial and comparing the concordance of 

coefficient estimates across methods.

5 | DISCUSSION

In this article, we investigated the use of randomization-based inference for analyzing 

cross-sectional SWTs. Randomization-based methods do not require assuming the data 

come from a known family of distributions, specifying a particular correlation structure for 

the outcomes, or having a large number of clusters, periods, or individuals to guarantee 

nominal type I error and CI coverage. Extending previous work in the parallel setting,28 we 

developed a framework for calculating randomization-based p-values and CIs for a marginal 

treatment effect in SWTs using test statistics derived from individual-level generalized 

linear models. We also demonstrated that a randomization-based analysis can maintain a 

nonstratified marginal target of inference while accounting for design features.

Let us now step back and consider how this proposed randomization-based approach fits 

in with other existing SWT analysis methods. On one end of the spectrum, randomization-

based methods using cluster-period summary statistics, such as those proposed by 

Thompson et al and Kennedy-Shaffer et al,25,26 are the most robust: their statistical validity 

does not require specifying a mean model for individual-level outcomes nor does it rely on 

having a large number of clusters. On the other end, fully parametric approaches like fitting 

a GLMM via maximum likelihood could result in optimally powerful tests and precise CIs, 

especially if cluster-period sizes vary substantially; however, maintaining nominal type I 

error and CI coverage would hinge upon these structural and distributional assumptions 

being met as well as a large enough number of clusters to ensure adequate accuracy of 

the asymptotic approximations relied upon for inference. Our randomization-based method 

offers a compromise between these two extremes. By using test statistics derived from 

individual-level generalized linear models, which additionally requires correct specification 

of the mean model for individual-level outcomes, we gain some efficiency; by leaving 

other components unspecified (eg, outcome distribution, correlation structure), we retain 

some robustness; and by using randomization as the basis for inference, we do not require 

a large number of clusters to guarantee nominal type I error and CI coverage rates. 

Similar to our randomization-based method, semiparametric marginal models fit via GEE 

also offer a compromise between these two extremes; thus, it is important to weigh the 

advantages and disadvantages of each. For example, GEEs may be advantageous in settings 

where the underlying correlation structure is impacted by treatment assignment, since our 

randomization-based method relies on such features being unaffected by the intervention, 

whereas GEEs do not. However, valid GEE-based inference requires either a large number 
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of clusters or an appropriate small-sample adjustment, the latter of which is complicated 

by the fact that the performance of different adjustment methods can vary depending on 

attributes of the trial, such as cluster size variability.14–17 As we presented in Section 2.3, 

randomization-based inference may have the advantage over GEE in terms of it naturally 

accounting for design features in the analysis without requiring additional covariates being 

introduced into the regression model, thus, maintaining a nonstratified marginal target of 

inference.

For illustration and comparison in our simulations and example, we examined only a single 

GEE small-sample adjustment method based on Fay and Graubard.43 Other finite-sample 

adjustment methods have been proposed, for example, Kauermann and Carroll or Mancl 

and DeRouen.46,47 Ford and Westgate demonstrated that a method averaging these two 

adjustments works especially well in SWTs with at least six clusters and when a given 

cluster’s size does not vary across periods; they also provided general guidance on when 

certain GEE adjustments should or should not be used in the SWT setting.16 Another recent 

paper by Thompson et al examined the comparative performance of various small-sample 

adjustments in SWTs with a binary outcome.17 Further examination of how the validity and 

efficiency of these alternative small-sample GEEs compare to randomization-based methods 

for SWTs would be useful.

Although we focused on cross-sectional SWTs in this article (ie, where each participant 

contributes to only a single cluster-period), our method could also be used for cohort 

SWTs, in which each participant provides repeated outcome measurements across the study 

periods. Since we do not impose any particular within-cluster correlation structure in model 

(1)—other than it not depending on treatment—any additional within-individual dependence 

induced by repeated measures will not impact the validity of our randomization-based 

approach. We also focused on randomization-based inference for a marginal treatment 

effect from a generalized linear model rather than a conditional treatment effect from a 

GLMM.23,24 It would be useful to investigate theoretical and practical implications of using 

our offset adjustment method to calculate randomization-based CIs for such conditional 

treatment effects in SWTs. For example, given the computational fitting procedure for 

GLMMs is more complex than fitting a generalized linear model, this could mean longer 

computation times for obtaining a randomization-based p-value and CI, or could even cause 

the entire procedure to fail if some permutations of the data result in model convergence 

issues.

Some structure imposed by population model (1) might be insufficient in certain settings. 

For example, the assumption of a common θ across time means that the only impact 

of treatment occurs immediately at the crossover point (before outcomes are assessed) 

and treatment has no additional effect during subsequent periods. Depending on the 

intervention and outcome, this could be unreasonable. One could extend (1) to allow for 

treatment effect heterogeneity, but this would require modification of the randomization 

test and CI procedure. Model (1) also assumes any distributional components aside from 

the g-transformed mean are not impacted by treatment. Again, this assumption could be 

violated if, for example, correlation or variance components change once the intervention is 
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introduced, as we demonstrated in some of our simulations in Section 3.1. More work on 

such extensions of our randomization-based method would be useful.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Simulation results of a nonstratified SWT across 2000 datasets simulated via model (5) 

as described in Section 3.1.1 with (σ, υ) = (0.1, 0.01). Methods considered included our 

proposed individual-level randomization-based approach (Randomization), a logistic mixed 

model with random cluster effects (GLMM-C), a logistic mixed model with random cluster 

and cluster-period effects (GLMM-CP), a marginal model fit via a small-sample adjusted 

generalized estimating equation (GEE-FGd5), a nonparametric within-period approach 

(NPWP), a crossover method (Crossover), and a closed-form permutation-based estimator 

(CF-Perm). This figure appears in color in the electronic version of this article. SWT, 

stepped wedge cluster randomized trial
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FIGURE 2. 
Cluster-periods in the XpertMTB/RIF SWT. Cell numbers correspond to cluster-period 

sizes; darker cell colors indicate higher percentage of unfavorable (ie, worse) outcomes 

within each cluster-period. Cells below/above solid black line correspond to control/

intervention condition
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