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Abstract 

Background:  For a long time, breast cancer has been a leading cancer diagnosed in women worldwide, and 
approximately 90% of cancer-related deaths are caused by metastasis. For this reason, finding new biomarkers related 
to metastasis is an urgent task to predict the metastatic status of breast cancer and provide new therapeutic targets.

Methods:  In this research, an efficient model of eXtreme Gradient Boosting (XGBoost) optimized by a grid search 
algorithm is established to realize auxiliary identification of metastatic breast tumors based on gene expression. Esti-
mated by ten-fold cross-validation, the optimized XGBoost classifier can achieve an overall higher mean AUC of 0.82 
compared to other classifiers such as DT, SVM, KNN, LR, and RF.

Results:  A novel 6-gene signature (SQSTM1, GDF9, LINC01125, PTGS2, GVINP1, and TMEM64) was selected by feature 
importance ranking and a series of in vitro experiments were conducted to verify the potential role of each biomarker. 
In general, the effects of SQSTM in tumor cells are assigned as a risk factor, while the effects of the other 5 genes 
(GDF9, LINC01125, PTGS2, GVINP1, and TMEM64) in immune cells are assigned as protective factors.

Conclusions:  Our findings will allow for a more accurate prediction of the metastatic status of breast cancer and will 
benefit the mining of breast cancer metastasis-related biomarkers.
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Background
For a long time, breast cancer has been a leading cancer 
diagnosed in women worldwide, with 276,480-odd new 
diagnoses per year, accounting for 30% of female cancers. 
Breast cancer represents the second highest death rate, 
behind lung and bronchus cancer, responsible for more 
than 42,170 deaths per year (15% of all cancer-related 

deaths in women) [1]. According to reports, after diag-
nosis and treatment of the primary tumor, approxi-
mately 30% of breast cancer patients may experience 
metastasis, causing approximately 90% of cancer-related 
deaths. Compared with early-stage breast cancer, meta-
static breast cancer has a significantly reduced cure rate 
and can even be incurable. Although high-throughput 
sequencing technology has significantly advanced treat-
ments for cancer, it has little effect on the treatment of 
metastatic breast cancer [2, 3]. Early assessment of meta-
static status and recurrence risk is essential to improve 
breast cancer prognosis. To date, the effective clinical 
treatment targets for metastatic breast cancer are ER, 
PR and HER2 [4]. Relatively few studies utilize appropri-
ate methods to predict breast cancer metastatic status. 
Therefore, finding new biomarkers related to metastasis 
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is an urgent task to predict the metastatic status of breast 
cancer and provide new therapeutic targets.

With the explosive growth of high-throughput 
sequencing technology, big data has become a hot topic 
of research in the field of oncology. Continuous accumu-
lation of multiomics sequencing data has supported can-
cer research from a bioinformatic perspective. However, 
the characteristics of tumor gene expression data, such 
as high dimensionality, small sample sizes, and category 
imbalance, usually bring about great computational chal-
lenges [5]. Machine learning, a kind of computer algo-
rithm that improve its performance automatically with 
experience, has unique advantages in solving problems 
such as clustering, classification and regression. Many 
machine learning approaches are applied to deal with 
biological multiomics data of high-dimensional samples 
[6]. Compared with traditional biometric methods, the 
maximum likelihood method is more flexible and has 
been widely used in oncology [7]. Using machine learning 
algorithms, many studies have achieved improved accu-
racy by using various tumors to predict the diagnosis and 
survival outcome of breast [8–10], ovarian [11], and lung 
cancers [12], among others. In terms of the classification 
of breast cancer, the support vector machine (SVM) algo-
rithm was used to classify breast cancer patients into tri-
ple-negative and non-triple-negative groups using tumor 
gene expression data [10]. Based on serum biomarkers 
and clinicopathological data instead of sequencing data, 
the random forest (RF)-based model was used to predict 
the metastatic status of breast cancer; however, the area 
under the receiver operating characteristic (ROC) curve 
was only 0.75 [8], indicating a low accuracy rate in clini-
cal practice.

Due to their tendency of learning in large classes while 
ignoring small classes, traditional machine learning algo-
rithms aim at high accuracy (ACC) without considering 
the misclassification cost, leading to great bias in clas-
sifiers [13]. For example, during the cancer diagnosis, 
98% of patients are typically tumor-free, and only 2% 
have cancer; if the model simply predicts that everyone 
is tumor-free, then the overall prediction accuracy is as 
high as 98%. Neglection of any patient with cancer can 
lead to fatal outcomes clinically. In addition, the cost of 
diagnosing metastatic patients as nonmetastatic is much 
higher than that of the opposite diagnosis. There is a crit-
ically unmet medical need to distinguish metastatic from 
nonmetastatic breast cancers. The eXtreme Gradient 
Boosting (XGBoost), as a variant of the Gradient Boost-
ing Machine (GBM), is an open-source machine learn-
ing classifier developed by Chen et al. [14]. XGBoost has 
been widely applied for classification problems. There 
have been reports on the capabilities of XGBoost in han-
dling label-imbalanced data by adjusting the weights 

of positive and negative samples [15]. XGBoost is often 
more accurate in cancer research than other machine 
learning algorithms, such as the RF, SVM, logistic regres-
sion (LR), and K-nearest neighbors (KNN) algorithms. 
For instance, XGBoost is the most precise model for 
predicting the 1-year survival rate of patients with non-
small-cell lung cancer (NSCLC) bone metastases [16]. 
XGBoost can deduce the tissues of origin for 10 different 
cancer types with better performance than other tradi-
tional machine learning algorithms [17].

In this research, an efficient model of eXtreme Gradi-
ent Boosting (XGBoost) optimized by a grid search algo-
rithm is established to realize auxiliary identification 
of metastatic breast tumors based on gene expression. 
Estimated by ten-fold cross-validation, the optimized 
XGBoost classifier achieved an overall higher mean AUC 
of 0.82 compared to other classifiers, such as DT, SVM, 
KNN, LR, and RF. A novel 6-gene signature (SQSTM1, 
GDF9, LINC01125, PTGS2, GVINP1, and TMEM64) was 
selected by feature importance ranking, and a series of 
in vitro experiments were conducted to verify the poten-
tial role of each gene. We explored the potential role of 
each gene of the proposed gene signature during breast 
cancer metastasis from the viewpoint of tumor cells and 
immune cells. Our results will allow for a more accu-
rate prediction of the metastatic status of breast cancer 
and will benefit the mining of breast cancer metastasis-
related biomarkers.

Methods
Data preparation
Tumor expression data for modeling in this research were 
based upon data generated by the Cancer Genome Atlas 
(TCGA) database. All paired clinical data and transcript 
profiles of breast cancer (BRCA) samples were obtained 
and trimmed from the TCGA Data Portal by R package 
“GDCRNATools” [18]. The original data consisted of 
1,097 samples in total. According to the pathologic_M 
column in the clinical information table, data rows with 
M0 and M1 status remained unchanged, and data with 
MX status (ambiguous metastatic status) were removed. 
A total of 923 BRCA samples, including 901 non-meta-
static samples and 22 metastatic samples, were finally 
retained. Then, we grouped the BRCA samples into 2 
groups depending on the status of pathologic metastasis. 
The metastatic and non-metastatic groups were labeled 
M1 and M0, respectively. M0 and M1 were used as labels 
for binary samples before classification by the follow-
ing machine learning algorithms. Single-cell sequencing 
data were achieved from the Gene Expression Omnibus 
(GEO) database, GEO accession number was GSE162726 
[19]. The R package “Seurat” [20] was used for the quality 
control and integration of the single-cell RNA-seq data.
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Recognition of metastasis‑related differentially expressed 
genes (DEGs)
After data were downloaded and integrated, we 
grouped the BRCA samples into 2 groups according 
to the status of pathologic metastasis. The metastatic 
and non-metastatic groups were labeled M1 and M0, 
respectively. Samples with unclear metastatic sta-
tus were removed. The R package “DESeq2” [21] was 
adopted to generate DEGs between the two groups 
based on a negative binomial distribution. The signifi-
cance criteria for DEGs was P value < 0.05, and the |log2 
Fold-change| ≥ 1. The R package “EnhancedVolcano” 
was used to conduct the volcano plot and visualize the 
results of differential expression analyses. Then, clus-
tering and visualization of the non-redundant biologi-
cal terms of genes in a functionally grouped network 
was conducted with the Cytoscape (V3.8.0) desktop 
application and the “ClueGO” plug-in.

Machine learning model selection
Different machine learning models were adopted to 
decide which model was the best one suitable for the pre-
sent study. The XGBoost, DT, SVM, KNN, LR, and RF 
classifiers were used to establish the classification model. 
Tenfold cross-validation was performed for each model, 
and the ROC curve was plotted to calculate the mean 
area under the curve (AUC). The model with the high-
est mean AUC value was selected for modeling. We used 
Jupyter Notebook (version 6.1.4), a web-based applica-
tion for interactive computing in Anaconda Navigator 
(anaconda3), to implement different machine learning 
algorithms. Scikit-learn module in Python (version 3.9) 
programming was adopted.

XGBoost classifier
XGBoost classifier is a gradient boosting method that 
combines the regression tree [14]. The goal function of 
the XGBoost algorithm model is obj(θ) = L(θ)+�(θ) , 
where L(θ) is the training loss function, and �(θ) is the 
complexity function of the tree. L(θ) =

∑n
i=1 l(yi, ŷi) , 

l(yi, ŷi) corresponds to the training loss function for 
each sample, where yi represents the true value of the 
ith sample, and ŷi represents the estimated value of the 
ith sample. ŷi =

∑K
k=1 fk(xi), fk ∈ F  , where K represents 

the number of trees, F represents all possible DT, and f 
denotes a specific CART tree. �(f ) = γT + 1

2
�
∑T

i=1 w
2
i  , 

where wi is the score on the ith leaf node, and T is the 
number of leaf nodes in the tree. By adjusting parameters, 
the objective function was continuously optimized, and 
optimal results were obtained. The grid search algorithm 
was used to optimize the hyper-parameters, including 

max_depth, min_child_weight, gamma, subsample, col-
sample_bytree and learning_rate in each iteration.

Cell transfection to obtain knockdown cell lines
The lentivirus construction to knockdown SQSTM1, 
GDF9, LINC01125, PTGS2, GVINP1, and TMEM64 was 
purchased from Genepharma (Shanghai, China). Breast 
cancer cell line MCF-7 was plated in six-well dishes at 
50% confluence and then infected with the above 6 len-
tiviruses (termed as shSQSTM1, shGDF9, shLINC01125, 
shPTGS2, shGVINP1, and shTMEM64), or control 
(termed as shCtrl) in MCF-7 cell, respectively. Stable cell 
lines were generated by selection using puromycin at a 
concentration of 4 µg/mL for 2 weeks. The cell transfec-
tion protocol described above was in accordance with the 
manufacturer’s instructions.

MTT assay, colony formation assay, transwell assay 
and wound healing assay
In MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl 
tetrazolium bromide) assay, the shSQSTM1, shGDF9, 
shLINC01125, shPTGS2, shGVINP1, shTMEM64 and 
shCtrl MCF-7 cells were seeded into 96-well plates (Cat. # 
3599, Cornning) at a density of 2 × 103 cells per well over 
night. Before adding 150 μL of DMSO, 20 μL of MTT at 
a concentration of 5 mg/mL was added to each well and 
incubated for 4 h. Then, a microplate reader was used to 
measure the optical density at 490 nm. Colony formation 
assay and transwell assay were performed according to 
our previous research [22]. Cell migration was observed 
using a wound healing assay. Transfected MCF-7 cells 
were maintained in 6-well plates and upon reaching 90% 
confluence, scratches were created using micropipette 
tips. Cells were washed 3 times using sterile PBS to wash 
off non-adherent cells generated by the scratch, and fresh 
serum-free medium was replaced to continue culturing 
the cells. The wound status was observed at 0 h and 24 h 
after scratching with an X71 inverted microscope (Olym-
pus). The means of intercellular distances were calculated 
using the ImageJ software. All experiments were per-
formed in triplicates.

Correlations between the proposed gene signature 
and immune cells
We analyzed the correlation between the expression 
of the selective gene signature and several immune 
cell markers to determine the association of infiltrat-
ing immune cells with our proposed gene signature. 
Immune gene markers were selected from the website 
of R&D Systems or from the GEPIA 2.0 [23] recommen-
dations, including markers of B cell, naïve T cell, effec-
tor T cell, resident memory T cell, T helper 1 (Th1) cell, 
regulatory T cell (Treg), T cell exhaustion, macrophage, 
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tumor-associated macrophage (TAM), monocyte, natural 
killer (NK) cell, neutrophil, and dendritic cell (DC). Gene 
expression correlation analysis was performed of BRCA 
tumor datasets of TCGA expression data by GEPIA 2.0. 
Correlation coefficients were determined by the Spear-
man method.

Results
Differentially expressed mRNAs between metastatic 
and nonmetastatic tissue
After we grouped the BRCA samples into 2 groups 
depending on the status of pathologic metastasis, the 
metastatic and nonmetastatic groups were labeled M1 
and M0. There were 901 nonmetastatic breast tumor 
samples and only 22 metastatic breast tumor samples, 
representing an imbalanced-class dataset. To recog-
nize distinct patterns between subgroups of meta-
static and nonmetastatic breast cancer, we conducted 
a DEG analysis. A total of 117 mRNAs passed the 

threshold screening, including 37 upregulated genes 
and 80 downregulated genes, as exhibited in the vol-
cano plot (Fig.  1a). Based on these 117 genes, Gene 
Ontology (GO) analyses were further conducted, indi-
cating that these differentially expressed mRNAs were 
mainly enriched in biological processes associated with 
chemokine-mediated signaling pathways and regula-
tion of humoral immune responses (Fig.  1b). These 
results suggested that the antitumor immune response 
could have an immunological effect on the metastasis 
of breast cancer, and the stemness of tumor cells might 
also be responsible since the GO term “positive regula-
tion of stem cell differentiation” was also enriched sig-
nificantly. Survival analysis by Kaplan–Meier (KM) plot 
differed significantly in survival outcome between the 
M0 and M1 groups (Fig.  1c), with significantly worse 
survival in the M1 group (i.e., the metastatic group), 
consistent with a previous report showing poor survival 
in metastatic breast cancer [8, 19].

Fig. 1  Differentially expressed mRNAs between metastatic and nonmetastatic breast cancer. a Volcano plot showing that 117 mRNAs were 
differentially expressed between the two groups. b Gene Ontology (GO) enrichment of the differentially expressed mRNAs. c Survival analysis by 
Kaplan–Meier (KM) plot between the two groups
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Machine learning‑based prediction of metastatic status 
in breast cancer
To precisely predict tumor metastatic status in breast 
cancer patients using gene expression profiling data, we 
sought to develop an effective classification model that 
would identify metastatic cases from nonmetastatic 
cases. Based on 117 DEGs screened out above as features 
or modeling, machine learning classification algorithms, 
including DT, support vector machine, KNN, LR, RF and 
XGBoost, were used to establish the classification model 
(Fig. 2). Since the accuracy could still reach 98% when all 
the metastatic samples were classified as nonmetastatic, 
we chose area under the ROC curve (AUC) instead of 
accuracy (ACC) as the evaluation index. Ten-fold cross-
validation was performed for each model, and the ROC 
curve was plotted to calculate the mean AUC. The results 
showed that the classification model based on XGBoost 
performed best, with the highest mean AUC, reaching 
0.64. The PR (precision-recall) curves was also plotted in 

Additional file 1: Fig. S1. This might be because XGBoost 
is a machine learning technique featuring significant 
improvements in efficiency and performance relative to 
other classifiers.

Feature selection and optimized XGBoost model 
for the prediction of metastatic status in breast cancer
Compared with 901 nonmetastatic breast tumor samples, 
only 22 metastatic breast tumor samples were found in 
this study, indicating an imbalanced binary classifica-
tion problem. When training imbalanced-class data, 
oversampling the minority class or undersampling the 
majority class is often used to alleviate the positive–nega-
tive sample ratio in datasets [24]. XGBoost provides an 
additional method to handle imbalanced data, with the 
scale_pos_weight parameter set to give samples of the 
minority class a certain weight. Therefore, we manually 
adjusted two hyperparameters, setting the parameter 
objective to binary: logistic based on our purpose and 

Fig. 2  Machine learning-based gene signature for predicting metastatic status in breast cancer. a XGBoost, b decision tree, c support vector 
machine, d K-nearest neighbor, e logistic regression, and f random forest binary classifiers were used to establish the classification model. Tenfold 
cross-validation was performed for each model, and the receiver operating characteristic (ROC) curve was plotted to calculate the mean area under 
the ROC curve (AUC). The standard deviation (SD) was used in conjunction with the mean AUC​
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setting the parameter scale_pos_weight to 200 based on 
the positive and negative sample ratio. Then, we used 
the grid search algorithm to optimize other important 
relevant hyperparameters, including max_depth, min_
child_weight, gamma, subsample, colsample_bytree and 
learning_rate. The grid search algorithm attempted to 
maximize the average AUC score in each iteration. After 
a given number of iterations were completed, the model 
with the highest mean AUC score was selected for the 
following prediction. The order in which the param-
eters are tuned and the final parametric results are pre-
sented in Fig. 3a. Figure 3b shows that using the current 
settings of XGBoost hyperparameters, the mean AUC 
score obtained by ten-fold cross-validation increased to 
0.8, and the prediction performance of the optimized 
XGBoost model was greatly improved, the PR curves was 
plotted in Additional file 1: Fig. S1a. However, there were 

still many redundant features among the 117 features, 
which may cause overfitting and difficult clinical appli-
cation. To improve the generalization capability of clas-
sifiers and reduce the time for training the classifier, we 
calculated the importances of the features (Fig.  3c) and 
selected the top 6 features higher than 100 ranked by fea-
ture importance score for subsequent modeling.

Next, the selected 6 features were fed into the opti-
mized XGBoost predictive model. The results showed 
that through parameter optimization and feature selec-
tion, the average AUC value increased from 0.64 to 
0.82, indicating that the deletion of redundant fea-
tures was beneficial to improving the model’s accuracy 
(Fig.  3d). It should be noted that the long noncoding 
RNA LINC01125 plays the most important role in dif-
ferentiating metastatic and nonmetastatic breast can-
cers. LINC01125 was previously reported to suppress 

Fig. 3  Feature selection and optimized XGBoost model for the prediction of metastatic status in breast cancer. a The order in which the parameters 
were tuned and the final parametric results are presented. b The ROC curve was plotted, and the mean AUC was calculated following XGBoost fed 
by 117 features generated by DEG analysis. c The importance of the features fed for XGBoost modeling was calculated and ranked in descending 
order. d The ROC curve was plotted, and the mean AUC was calculated following XGBoost fed by the selected 6 features
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the proliferation of breast cancer cells via in vitro experi-
ments [25], consistent with our study that the expression 
of LINC01125 decreased in metastatic tissues.

Detailed information on the 6 selected genes is illus-
trated in Table  1, including Ensembl ID, gene symbol, 
log2 fold change, standard error, Wald statistic, Wald 
test P value and BH adjusted P value, calculated by the R 
package “DESeq2”. The highest ranking for classification 
importance was not necessarily the one with the great-
est fold change and vice versa. This was also the advan-
tage of the feature selection algorithm over traditional 
statistical methods, favoring the selection of biomark-
ers that could serve as a distinction between metastatic 
and nonmetastatic breast cancer. The feature selection 
before modeling was also called informative gene selec-
tion when handling the RNA-seq data. Table 1 also shows 
that only SQSTM1 is upregulated in metastatic breast 
cancer tissues, while the rest are downregulated to some 
extent, indicating that SQSTM1 is a risk factor, while 
LINC01125, GDF9, PTGS2, GVINP1 and TMEM64 are 
protective factors. Although bulk-tissue RNA-seq is fre-
quently used to illustrate transcriptomic variations under 
case-specific conditions such as metastatic status, under-
standing the composition and proportion of cell types 
in intact tissues is important because of their different 
properties [26]. Therefore, we then explored the role of 
the selective gene signature in metastatic breast cancer 
from both the tumor cell and immune cell perspectives.

Exploration of the role of the selective gene signature 
from the tumor cell perspective
To explore the role of the selective gene signature from 
the tumor cell perspective, first, we utilized public 
breast cancer single-cell sequencing data to probe the 
gene expression levels of the selective gene signature 
in fast-moving migratory breast cancer cells compared 
to those in non-migratory cancer cells. The R pack-
age “Seurat” was used for quality control and integra-
tion of the single-cell RNA-seq data. Uniform Manifold 
Approximation and Projection (UMAP) [27] cluster-
ing demonstrated the distinct gene expression profiles 
of migratory and non-migratory breast cancer cells, 

with each dot representing a cell (Fig.  4a). Migratory 
and nonmigratory populations of the same cell line 
were easily distinguished, suggesting differential gene 
expression patterns consistent with previous research 
using t-SNE clustering [19]. We explored the expres-
sion of the selective gene signature for each cluster 
and found that among all 6 informative genes, only 
the expression of SQSTM1 was generally increased in 
migratory GUM36 cells compared to non-migratory 
GUM36 cells (Fig. 4b, Additional file 2: Fig. S2). As can 
also be seen from the chart label in Additional file  2: 
Fig. S2, in addition to the gene SQSTM1, the expres-
sions of the other 5 genes in breast cancer cells are 
relatively low. Based on this, we infered that SQSTM1 
might play a role to breast cancer cell migration from 
the tumor cell perspective.

Next, we did some in  vitro experiments to verify the 
above assumption. The MCF-7 cell line is by far the 
most commonly used xenograft model of breast can-
cer. To elucidate the biological functions of SQSTM1, 
GDF9, LINC01125, PTGS2, GVINP1, and TMEM64 in 
breast tumor cells, we knocked down the expression of 
the 6-gene signature using shRNA or the negative con-
trol in MCF-7 cell lines to assess cell proliferation, migra-
tion and invasion in vitro. The MTT assay demonstrated 
that tumor proliferation was significantly inhibited in the 
shSQSTM1 group compared to the shCtrl group (Fig. 5a, 
b). In MCF-7 knockdown cells, the number of cell clones 
decreased in the shSQSTM1 group compared with that 
in the shCtrl group (P < 0.05, Fig. 5c, d). Transwell assays 
revealed that MCF-7 cell invasion was significantly 
reduced after downregulation of SQSTM1 (Fig.  5e, f ). 
Finally, cell migration was evaluated by wound-healing 
assay, and decreased expression of SQSTM1 significantly 
inhibited the migration of MCF-7 cells (Fig. 5g, h). Taken 
together, the above data indicated that knockdown of 
SQSTM1 could inhibit the proliferation, migration and 
invasion of breast tumor cells in  vitro. In other words, 
SQSTM1 functioned from the perspective of tumor cells 
since it was significantly upregulated in metastatic breast 
cancer, and its knockdown attenuated the ability of tumor 
cells to invade metastases.

Table 1  The detailed information of the selected 6 genes by classification importance ranking

Rank Gene symbol Gene description logFC lfcSE stat P-value FDR

1 LINC01125 Chromosome 2 open reading frame 92 − 0.6904 0.19028 − 3.6283 0.000285 0.037017

2 GDF9 Growth differentiation factor 9 − 1.788 0.37498 − 4.7682 1.86E−06 0.001245

3 PTGS2 Prostaglandin-endoperoxide synthase 2 − 2.5955 0.41785 − 6.2115 5.25E−10 3.54E−06

4 GVINP1 GTPase, very large interferon inducible 
pseudogene 1

− 1.1863 0.31198 − 3.8024 0.000143 0.024158

5 SQSTM1 Sequestosome 1 0.63783 0.15658 4.07338 4.63E−05 0.013525

6 TMEM64 Transmembrane protein 64 − 1.4923 0.34524 − 4.3225 1.54E−05 0.006161
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Exploration of the role of the selective gene signature 
from of immune cell perspective
Since tumor cells and tumor infiltrating immune cells, 
especially T cells account for the highest proportion of 
cells in breast tumor tissues [28], and considering the 
expression of SQSTM1 was upregulated in metastatic 
breast cancer tissues, while the expression levels of the 
remaining genes were downregulated. We speculated 
whether these 5 genes, LINC01125, GDF9, PTGS2, 
GVINP1, and TMEM64, contributed to breast cancer 
metastasis because of immune dysfunction and con-
ducted an exploration from the immune cell perspec-
tive. First, we investigated the correlation between the 
selective gene signature and different types of immune 
cells based on breast tumor expression data in TCGA. 
GEPIA 2.0 was used to explore the correlation between 
the selective gene signature above and the indicated gene 
markers, including the markers of B cells, naïve T cells, 
effector T cells, resident memory T cells, Th1 cells, Tregs, 
T cell exhaustion, macrophages, TAMs, monocytes, NK 
cells, neutrophils, and DCs. As shown in Table  2 and 
Fig. 6a–d, these 5 genes may play a role in the metasta-
sis of breast cancer from an immunological point of view 
through naïve T cell, effector T cell, resident memory 
T cell and DC populations. Because the expression of 
these genes and immune cells represented a significantly 
positive correlation (correlation coefficient > 0.3) and 
these 5 genes were downregulated in metastatic breast 
cancer tissues, it could be speculated that these genes 

contributed to breast cancer metastasis by attenuating 
the immune response. Results also showed that there was 
no correlation between fibroblasts and these 5 genes in 
tumors, although there was a weak correlation in nor-
mal tissues. Next, we performed a correlation analysis of 
each gene in the selective gene signature with the indi-
cated immune cell marker genes. As shown in Fig.  6e, 
GVINP1 was significantly correlated with immunity, 
with high correlation coefficients above 0.7 with CD69 
and CCR7. PTGS2 also showed some correlation with 
immunity, mainly reflected by the correlation coeffi-
cients of more than 0.4 with CD1C and CD69. SQSTM1 
was poorly immune-related, validating previous results 
that SQSTM1 regulates breast cancer metastasis from a 
tumor cell perspective. LINC01125, GDF9 and TMEM64 
exhibited significant but very weak immune correlations.

Discussion
Breast cancer is one of the most common malignan-
cies among women worldwide and is the leading cause 
of most cancer-related deaths. The high mortality rate 
of breast cancer has been linked to multiple factors, 
with metastasis identified as the main cause [1, 29]. Sev-
eral multigene assays have been employed in studies of 
breast cancer. For example, a 70-gene signature has been 
identified for better prediction of clinical outcome and 
contributes to the treatment decisions for women with 
early-stage breast cancer in selecting patients for adjuvant 
chemotherapy according to standard clinicopathological 

Fig. 4  Single-cell RNA sequencing of migratory breast cancer cells compared to that of nonmigratory cancer cells. a Uniform manifold 
approximation and projection clustering demonstrated the distinct gene expression profiles of migratory and nonmigratory breast cancer cells; 
each dot represents a cell. b Differential expression of SQSTM1 was illustrated across conditions and was mainly increased in M1 GUM36 cells



Page 9 of 12Li et al. Journal of Translational Medicine          (2022) 20:177 	

Fig. 5  Cell proliferation, migration and invasion in vitro after silencing each of the selective gene signatures in breast cancer cells. a, b MTT assays 
in SQSTM1-, GDF9-, LINC01125-, PTGS2-, GVINP1-, and TMEM64-silenced MCF-7 cells. c, d Colony formation assays in SQSTM1-, GDF9-, LINC01125-, 
PTGS2-, GVINP1-, and TMEM64-silenced MCF-7 cells. e, f Transwell assays in SQSTM1, GDF9-, LINC01125-, PTGS2-, GVINP1-, and TMEM64-silenced 
MCF-7 cells. g, h Wound healing assays in SQSTM1-, GDF9-, LINC01125-, PTGS2-, GVINP1-, and TMEM64-silenced MCF-7 cells. All representative 
pictures are shown on the left, and statistical results are shown on the right. Bar graph data are presented as the mean ± SEM; * refers to P < 0.05

Table 2  The correlation between the selective gene signature and different types of immune cells

Bold value represents condition which correlation coefficient > 0.3, it means they have significant relevance

Cell type Cell markers Tumor Normal

Cor P Cor P

B cell CD19|CD38|BLNK 0.25 *** 0.41 ***

Naïve T cell CCR7|LEF1|TCF7|SELL 0.43 *** 0.4 ***
Effector T cell CX3CR1|FGFBP2|FCGR3A 0.3 *** 0.0015 0.99

Resident memory T cell CD69|ITGAE|CXCR6|MYADM 0.44 *** 0.52 ***
Th1-like CXCL13|HAVCR2|IFNG|CXCR3|BHLHE40

|CD4
0.27 *** 0.23 **

Treg FOXP3|CCR8|IL2RA 0.24 *** 0.19 *

T cell exhaustion PDCD1|CTLA4 0.26 *** 0.32 ***
Macrophage CD68|CD11b 0.25 *** 0.041 0.66

TAM HLA-G|CD80|CD86 0.21 *** 0.18 0.055

Monocyte CD14|CD16A 0.12 *** -0.083 0.38

NK XCL1|KIR3DL1|CD7 0.22 *** 0.092 0.33

Neutrophil CD15|MPO 0.25 *** 0.091 0.34

DC CD1C|CD141 0.39 *** 0.19 *

Fibroblasts AIFM2|S100A4 0.06 0.03 − 0.26 ***
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criteria [30]. An 18-gene signature for predicting relapse 
in the indicated breast cancer subtype of ER-positive, 
HER2-negative breast cancer has been derived using 
penalized Cox regression [31]. A 5-gene metabolic sig-
nature has been demonstrated to predict worse overall 
and disease-free survival in patients with breast cancer 
through proteomic profiling [32]. Compared to predict-
ing prognosis and subtyping for breast cancer, relatively 
few studies utilize appropriate methods to predict breast 
cancer metastatic status. Therefore, finding new bio-
markers related to metastasis is an immediate task to 
predict the metastatic status of breast cancer and provide 
new therapeutic targets. Some studies have conducted 
preliminary explorations. For instance, a 39-gene signa-
ture was reported to screen out breast cancer patients 
with early metastasis using survival prediction analysis 
(AUC = 0.734) [33]. Based on the integrated gene expres-
sion profiles and clinical information, a 51-gene signature 
and a centroid classifier were constructed to predict bone 
metastasis in breast cancer (AUC = 0.66) [34]. However, 
the lack of a high AUC and the large number of gene sig-
natures identified in previous studies mean that the effi-
ciency in clinical application remains to be proven.

In this paper, we utilized machine learning algorithms 
for data mining, followed by biological experiments for 
experimental validation of the selective gene signature. 
We constructed a novel 6-gene signature (SQSTM1, 
GDF9, LINC01125, PTGS2, GVINP1, and TMEM64) and 

used an XGBoost model to predict the metastatic status 
in breast cancer (AUC = 0.82). Meanwhile, we explored 
the potential role of each gene of the proposed gene sig-
nature during breast cancer metastasis from the view-
points of tumor and immune cells. Based on the results 
above, we could infer that SQSTM1 functioned from the 
perspective of tumor cells since it was significantly upreg-
ulated in metastatic breast cancer, and its knockdown 
attenuated the ability of tumor cells to invade metasta-
ses. A previous study reported the ability of SQSTM1 to 
extend the mRNA half-life of pro-metastatic factors in 
melanoma cells [35] and mediate the epithelial-to-mes-
enchymal transition in nasopharyngeal carcinoma cells 
[36]. Therefore, it may be possible to target the SQSTM1 
gene for high expression in the metastatic breast cancer 
group, providing a basis for drug development against 
tumor cells as targets.

The metastatic cascade relies on reciprocal interac-
tions between cancer cells and their microenvironment. 
Immune cells in the tumor microenvironment (TME) are 
known to facilitate metastasis formation [37, 38]. In the 
present study, based on our in vitro experiments and the 
fact that the expression of SQSTM1 was upregulate ed in 
metastatic breast cancer tissues, while the expression of 
the remaining genes was downregulated, we speculated 
that 5 genes, LINC01125, GDF9, PTGS2, GVINP1, and 
TMEM64, contributed to breast cancer metastasis from 
the perspective of immune cells. Our results showed that 

Fig. 6  Correlations between the selective gene signature and different types of immune cells. Correlation coefficients were calculated between 
the selective gene signature and markers of the indicated immune cells, including a naïve T cells, b effector T cells, c resident memory T cells, and 
d dendritic cell populations. e Correlation coefficients were calculated between each gene of the selective gene signature and the marker gene of 
the indicated immune cells. Boxes that are not significant are marked with “×”
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these 5 genes might play a role in the metastasis of breast 
cancer through naïve T cells, effector T cells, resident 
memory T cells and DC populations. Decreased expres-
sion of these genes in metastatic breast cancer tissues 
weakened the function of some T cell subsets and anti-
gen-presenting cells (APCs) such as DCs, which could in 
turn decrease the immune function and therefore pro-
mote breast cancer cell metastasis. Previous studies also 
showed that tumor cells could directly present antigens 
to CD8 T cells via MHC class I molecules, and initiating 
immune responses required DCs to exert antigen pres-
entation [39]. Lymph nodes of metastatic breast cancer 
have a significantly increased proportion of CD8 T cells 
and a skewing toward an effector or memory phenotype 
of CD4 and CD8 T cells, indicating an ongoing immune 
response [40].

Through comparison each gene of our gene signature 
with existing studies separately, we found that there are 
many studies on the association between gene PTGS2, 
gene SQSTM1 and breast cancer. Researches on gene 
LINC01125 [25], gene GDF9 [41, 42] and gene GVINP1 
[43] is very limited, no studies have shown that there is a 
link between gene TMEM64 and breast cancer. Most of 
the genes we have proposed in this research have been 
biologically verified, which also proves the reliability of 
our gene signature. Meanwhile, we discovered new gene 
that not reported association with breast cancer, which 
also provides clues for our follow-up research.

Conclusions
In conclusion, our present research constructed a novel 
6-gene signature (SQSTM1, GDF9, LINC01125, PTGS2, 
GVINP1, and TMEM64) by feature importance score and 
used an XGBoost model to predict the metastatic sta-
tus in breast cancer (AUC = 0.82, higher than the previ-
ous studies to our knowledge). In summary, we assigned 
the effects of SQSTM in tumor cells as a risk factor and 
the effects of other 5 genes (GDF9, LINC01125, PTGS2, 
GVINP1, and TMEM64) in immune cells as protective 
factors. Therefore, mining gene expression data using 
appropriate machine learning algorithm can predict the 
metastatic status of breast cancer more accurately and 
can assist physician decision-making to some extent. 
Biomarkers used to predict metastasis of breast cancer 
can be used as complements to serological indicators 
and imaging examination in clinical, it also provides new 
targets and ideas for the treatment of metastatic breast 
cancer.
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