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Abstract

Setting cutoff scores is one of the most common practices when using scales to aid in
classification purposes. This process is usually done univariately where each optimal
cutoff value is decided sequentially, subscale by subscale. While it is widely known that
this process necessarily reduces the probability of ‘‘passing’’ such a test, what is not
properly recognized is that such a test loses power to meaningfully discriminate
between target groups with each new subscale that is introduced. We quantify and
describe this property via an analytical exposition highlighting the counterintuitive geo-
metry implied by marginal threshold-setting in multiple dimensions. Recommendations
are presented that encourage applied researchers to think jointly, rather than margin-
ally, when setting cutoff scores to ensure an informative test.
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Introduction

The use of measures and scales to classify individuals is one of the oldest and perhaps

most controversial uses of testing to this day (Kaplan & Saccuzzo, 2017; Loewenthal

& Lewis, 2018; Thorndike et al., 1991). From the early days of the Standord-Binet

test for mental capacity to modern computerized adaptive testing, relying on tests to

classify people into groups or rank them according to some trait or (latent) ability has

been of major interest. To understand the scope of this prevalence, consider the
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following. According to the College Board (2019), in the United States alone 2.2 mil-

lion students took the SAT and more than 8 million students took a test from the SAT

suite of tests during the 2018-2019 school year. For the GRE, more than a half million

people took the test in the past year alone (Educational Testing Services, 2019).

Large-scale educational testing has become a critical component of a high school stu-

dent’s aim to be selected to a prestigious college, university, or other postsecondary

program, and the decision hangs, at least in part, on whether the student is above or

below a certain cutoff score on those tests, usually derived from their quantile posi-

tion with respect to other students (Soares, 2015).

Given the relevance that testing has in helping classify, rank, or diagnose individu-

als, various approaches have been developed to find optimal decision points along a

scale above (or below) which an individual must score before she or he is categorized

(Cizek, 2006; Habibzadeh et al., 2016; Kaftandjieva, 2010). The immediate question

then becomes how should this threshold be determined? Since many of the conclu-

sions derived from a test administration depend on whether or not the threshold has

been chosen as correctly as possible to match the intended uses of the test, this ques-

tion is among the most salient.

In the majority of cases, the process of setting thresholds depends on whether a

test is norm-referenced or criterion-referenced (Hambleton & Novick, 1973). Norm-

referenced tests compare a test-taker’s responses with the responses of their peers in

order to create a distribution of scores along which each respondent can be located.

Criterion-reference tests specify a cutoff score in advance, which does not change

irrespective of the performance of the test-takers.

Perhaps one of the most widely used classification systems of methods used to set

cutoff scores is the Jaeger (1989) system, which divides them into test-centered or

examinee-centered. Test-centered methods seek to establish threshold values based

on the characteristics of the test, the items or the scoring process, whereas examinee-

centred rely on the particular characteristics of the test-takers to set the cutoff scores.

In spite of the importance of considering the characteristics of test-takers during the

scoring process, test-centered methods are more widely used and we will offer a brief

summary of some methods that are popular among researchers and test-developers

(Kane, 1998; Lewis & Lord-Bessen, 2017). For a more extensive discussion of

examinee-centered methods please consult Kaftandjieva (2010).

Judgment-based methods encompass procedures such as those described in

Angoff (1971), Ebel (1972), Jaeger (1982), and Nedelsky (1954). The commonality

among these (and other) methods is that the impressions of subject-matter experts

and experienced researchers in the domain area play a role in deciding which items

or test scores should be used as thresholds. They usually intersect with other types of

statistical analyses, but the emphasis is placed on the subjective evaluation and

agreement among expert judges regarding what the cutoff score should be.

There are also a variety of statistically oriented techniques where the emphasis is

on the score distribution and cutoffs are set based on whether or not this distribution

has certain properties. One of the oldest and perhaps most popular methods still
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being used within the applied psychometric literature is selecting the threshold value

to correspond to a certain number of standard deviation (SD) units above or below

the mean, usually under the assumption of normally distributed data. Traditionally, a

value beyond 2 SD units is selected to emphasize the fact that individuals are

categorized on the basis of their extreme scores, which differentiates them from what

a ‘‘typical’’ score respondent would look like. Scales such as the Ages and Stages

Questionnaire (Bricker et al., 1988), the Minnesota Multiphasic Personality Inventory

(Schiele et al., 1943) and the Early Development Instrument (Janus & Offord, 2007)

have relied on this method, at least in their initial conceptualization. A closely related

method that is widely used in the health sciences is setting cutoff values based on percen-

tiles (Loewenthal & Lewis, 2018). In this scenario, the threshold values would also come

from a normative sample, but the difference from the SD units described above is that a

particular cumulative probability is used as a decision point, as opposed to a value away

from the mean. Both methods are intrinsically related, though, since one could switch

from one approach to the other under the assumption that the random distribution’s para-

meters are known. For instance, if X is a random variable defining the responses to a par-

ticular scale and X;N (m, s2), whether one chooses a threshold value 2 SDs above the

mean or the 97.5th percentile, the cutoff point would be (nearly) the same.

As computational power became more readily available, more sophisticated

approaches also became popular among researchers interested in developing new

measures. A particularly popular one, which comes from signal detection theory, is

the receiver operating characteristic curve (ROC). In essence, ROC curve analysis

attempts to solve a binary classification problem by finding the optimal points that

balance the classifier’s true positive rate (also known as probability of detection or

sensitivity) and the false negative rate (also known as probability of false alarm or

specificity; Fawcett, 2006; Zou et al., 2016). Ideally, the point that maximizes the

area under the curve also offers the best balance between sensitivity and specificity,

thus offering researchers with an optimal cutoff value to use as a threshold. Since the

popularization of ROC curve analysis in psychometrics came after the use of the per-

centile or the SD method, many scales have collected further validity evidence by

analyzing new data using this technique, such as the Beck Depression Inventory-II

(Beck et al., 1996) or the revised version of the Ages and Stages Questionnaire

(Squires et al., 1997). For a more exahustive overview of how to use ROC curve

analysis, please refer to Fawcett (2006).

Item response theory is perhaps the most advanced theoretical framework devoted

to the development and analysis of tests and measures. Item response theory

approaches attempt to relate the probability of item responses to hypothesized, true

latent traits (usually designated by the Greek letter u), with the assumption being that

items whose parameters best provide information about the latent u would be the

most optimal ones in the development and scoring of a scale. Based on these item

parameters, one can also locate scores within the test that maximize the information

it contains through the test information function. Lord and Novick (1968) offer a
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procedure to set up threshold values either at the item level or the test level to mini-

mize the loss of information and maximize discrimination among test-takers.

Irrespective of which method is employed to set the threshold values, their practi-

cal and applied use is very similar across scales. Once a respondent scores above or

below the predefined cutoff, she or he is assigned to a particular category to comple-

ment the process of assessment or to aid in some diagnostic procedure. As we will

unpack in the following sections, such a process imposes a particular geometry on

the resulting categories. When these categories are the product of cutoff scores from

many subscales set independently, we will show that such assessments quickly lose

their value; that is, lose their ability to meaningfully discriminate members of one

category from another. Even when a categorization is based on as few as 4 subscale

scores, as many as 25% of sample subjects will be unreliably classified (see section

Empirical Demonstrations). Such tests thus may be considered to have questionable

discriminatory reliability simply because of how they create their diagnostic categor-

izations marginally over multiple dimensions/subscales of the target phenomenon.

Theoretical Framework

Reliably Classified Individuals

Throughout this article, the method of setting threshold values based on being above

or below the mean plus or minus a certain number of SD units will be employed as

our primary working example, as we consider it to be the easiest one to understand

(and one of the oldest ones still in use). Nevertheless, it is important to point out that

similar conclusions would be found if different methods, as discussed in the

Introduction, were implemented.

Anytime one employs an imperfect measurement (i.e., test) to classify individuals

into groups, some sample individuals will eventually be misclassified. Intuitively, the

less reliable a test, the less reliable the classifications. We mean to invoke both the

intutitive and the technical meaning of reliablity here, as defined classically in, for

example, Lord and Novick (1968). Indeed, low reliablity of a test necessarily implies

that individuals with the same (latent) true score will likely be assigned substantially

different observed scores by the test. The less reliable the test, the more variation we

will observe in these observed scores for otherwise interchangeable sample respon-

dents (interchangeable in that they all share a true score/ability). And by the same

token, a perfectly reliable test would perfectly distinguish sample individuals accord-

ing to their (latent) true scores/abilities; thus, classification arising from such a test

would be error-free.

We do not intend to dwell here on the exhausting number of ways to quantify

reliablity that have been proposed and argued in the literature, as our point only

requires the acknowledgement that a test that is not perfectly reliable in the popula-

tion will inevitably lead to misclassification when people are split into groups that

are supposed to reflect some latent ability/trait according to their observed scores on

the test. Then, those individuals whose observed scores fall near the boundary of
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these group definitions are the most likely to be misclassified. A few examples will

help us illustrate this.

Let Y be a test with a single (sub)scale, composed of an arbitrary number of items

and, for ease of exposition, assume that Y is well approximated as Y;N(0, 1). Also,

let X be a test with two subscales (X1, X2), each composed of an arbitrary number

of items, and again for ease of exposition, assume that (X1, X2);

N
0

0

� �
,

1 r

r 1

� �� �
. Note that r denotes the correlation coefficient between both

subscales. For these hypothetical tests, we will consider a sample respondent to

‘‘pass the test’’ if they score above 21 on all subscales; otherwise, they ‘‘fail the

test.’’ Thus, our testing classification scheme creates two disjoint groups according

to a sample unit’s observed scores.

Under test Y , we theoretically expect about 84% of sample individuals to pass the

test; that is, to achieve an observed score greater than 21. If test reliablity is less

than perfect though, some of these sample individuals will be misclassified. In partic-

ular, those who achieve an observed score close to the threshhold of 21 are the most

likely to be misclassified. Depending on how reliable we consider this test to be,

individuals with observed scores falling inside the interval ½�1� d, � 1 + d� for

some d . 0 can be considered unreliably classified. For our purposes, the exact value

of d, and how it is computed, are immaterial. One could arrive at many reasonable

values for it depending on how one chooses to quantify reliablity of the test. The

point is that (at least one) such a functional d . 0 exists, as this allows us to identify

those individuals for whom we feel the least confident in our classifications. For this

illustration, we will set d = 0:2. The first graphic in Figure 1 then shows the approxi-

mately 9% of sample individuals who are unreliably classified under test Y from a

simulated sample of 1,000 respondents.

Now consider the analogous situation under test X = (X1, X2) when r = 0; that is, a

two subscale test where those subscales are uncorrelated. Under this test, we theoreti-

cally expect about 70% of sample individuals to pass the test; that is, to achieve an

observed score greater than 21 on each subscale simultaneously. If the test is less

than perfectly reliable though, we will again be most suspicious of those individuals

whose scores place them near the boundary defined by these cutoffs. For d = 0:2
again, this region of unreliably classified individuals is illustrated in the second gra-

phic in Figure 1 and it contains approximately 16% of all sampled individuals. Notice

that this region looks like the corner of a box, a geometrical observation that will be

very important for us in the following sections.

What we see here is that a test with two subscales and independently set cutoff

scores creates a considerably higher proportion of unreliably classified individuals

than an analogous test on only one (sub)scale. The situation gets worse as we con-

tinue to add subscales (see the next section), until eventually virtually the entire sam-

ple will be unreliably classified.
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There are two ways one could hope to address this problem. One would change

how the subscales relate to each other; the other would change how the pass/fail

boundary is defined. Considering the first possibility, we will see in the next section

that inducing correlation between subscales can slow but not ultimately prevent the

problem. Indeed, this can be visualized as in Figure 2. Here, the previous two sub-

scale test X is compared with another two subscale test where those subscales are

now highly correlated, r = 0:85. For this second test, only 10% of sample individuals

are now reliably unclassified (using the same choice of d = 0:2 as before), close to

but still larger than the proportion of sample individuals unreliably classified by the

single (sub)scale test Y . This result makes intuitive sense since as r! 1, the two

subscales collapse into a single scale. Nevertheless, aside from this pathological sce-

nario, the proportion of unreliably classified individuals will continue to grow with-

out bound as the number of subscales increases (see the next section).

The second option then is where we can hope to avoid this problem. In the next

section, we state and prove a theorem that quantifies just how informative a test can

be as the number of subscales to be (independently) thresholded increases, assuming

normal data. More precisely, we show that as the number of subscales increases, a

test determined by independently setting thresholds at each subscale necessarily loses

all of its ability to disciriminate between ‘‘passing’’ and ‘‘failing’’ individuals; that

is, all sample respondents will become unreliably classified, indistinguishable up to

ordinary measurement error. This suggests that the way forward requires setting cut-

off scores jointly across subscales, rather than marginally/independently.

Figure 1. Unreliably classified individuals (black points) from a one subscale or two subscale
(uncorrelated) test where cutoffs have been set independently. Approximately 9% of sample
individuals are unreliably classified under test Y , whereas approximately 16% are unreliably
classified under test X.
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Theoretical Results

We first present our main result and its proof. In the subsequent subsections, we

unpack the practical meaning of this result for applied practice, with a focus on the

geometrical implications of threshold-setting in higher dimensions (i.e., with many

subscales). We focus on the case of multivariate normality for two important reasons.

First, because it appears that (either explicitly or implicitly) this is the standard

assumption made regarding the joint distribution of subscale scores in most testing

situations. And second, because the requisite mathematics are reasonably accessible

under a multivariate normal structure.

Theorem 1. Let Xd = (X1, . . . , Xd) be a d-dimensional normal random vari-

able with mean vector md and covariance matrix Sd. Denote

qc:¼ Pr DM (Xd � md) � cð Þ,

where c . 0 and DM (Xd � md) is the d-dimensional Mahalanobis distance from Xd

to md:

DM (Xd � md) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Xd � md)T S

�1
d (Xd � md)

q
:

Also denote

Figure 2. Two tests, each composed of two subscales with r = 0 or r = 0:85. Cutoffs have
been set independently. Unreliably classified individuals (black points) make up approximately
16% of the sample under the first test, whereas only about 10% of the sample is unreliably
classified under the second test.
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pc :¼ Pr
\d
i = 1

fjXi � md j � cig
 !

,

where c :¼ (c1, . . . , cd) is a fixed vector with all components positive. Then if cd 6!0

and cd 6!‘ as d ! ‘, and sup
d . 0

sup
i 6¼j

jCorr(Xi, Xj)j
 !

\1, then qc=pc ! 0 as d ! ‘.

In one dimension, qc is simply the probability that a normal X lies within cs of

its mean. In an arbitrary number of dimensions d, this is the probability that Xd lies

within an ellipsoid with principal axes and orientation determined by the elements of

Sd . When Sd = Id , this ellipsoid is the d-dimensional unit sphere. One can view Sd

(or, more precisely, S
1=2
d ) as tranforming the sphere into an ellipsoid via directional

scalings along the principal axes defined by the correlations between the components

of Xd . In this way, Mahalanobis distance is the ordinary Euclidean distance scaled

by the square root of the inverse covariance matrix S
�1=2

d .

At the same time, in one dimension, pc is simply the probability that a normal X

lies within c1 of its mean. In an arbitrary number of dimensions d, this is the probabil-

ity that Xd lies within a d-dimensional box centred at md with sidelengths given by

2ci. It is critical to recognize that in one dimension, qc and pc denote the same prob-

abilities; that is, setting c1 = cs, we have qc = pc. However, these quantities capture

probabilities over very different regions (shapes) in higher dimensions (recall the cor-

ner of the box in two dimensions of the previous section). As we will see, boxes and

ellipsoids capture very different pieces of space in a high number of dimensions, and

their difference encapsulates the essence of unreliable classification. We exploit this

geometric reality to prove our theorem: that the ratio qc=pc ! 0 as the number of

dimensions/subscales d ! ‘, which should be viewed as an analytical rephrasing of

our claim that the proportion of unreliably classified individuals approaches 100% as

the number of subscales increases. We will unpack this in sections Geometry of

Cutoff Scores and Empirical Demonstrations to see how this analytical result implies

that multidimensional tests that set independent cutoff scores on each of their sub-

scales to classify individuals lose all their value to meaningfully discriminate between

individuals as the number of subscales increases.

Proof of Theorem 1. We first convert qc into a more useful expression. Define

Zd = S
�1=2

d (Xd � md). Then we have:

DM (Xd � md) =

ffiffiffiffiffiffiffiffiffiffiffi
Z

T
dZd

q

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiXd

i = 1

Z2
i

vuut
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where Zi;N (0, 1). That is, the square of the Mahalanobis distance follows a chi-

square distribution with degrees of freedom equal to the dimension of the vector Xd .

So:

qc = Pr(DM (Xd � md) � c)

= Pr(D2
M (Xd � md) � c2)

= Pr
Xd

i = 1

Z2
i � c2

 !
:

Note that, applying the central limit theorem and then standardizing, one recovers the

classical result that qc ! 0 as d ! ‘.

It is in fact also true that pc ! 0, a fact that will increase our workload as we

want to show that the ratio qc=pc ! 0. To see how, we again standardize so that

Zd = S
�1=2
d (Xd � md), where Zd;MVN(0, Id). Now, the event of interest

\d
i = 1

fjXi � md j � cig ð1Þ

describes a box in d dimensions determined by the collection of vertices defined by

the boundaries of the inequalities. There are precisely 2d such vertices, for example,

(c1, c2, . . . , cd), (� c1, c2, . . . , cd), (c1, � c2, . . . , cd), (� c1, � c2, . . . , cd), and so

on. Enumerate these vertices as c1, c2, . . . , c2d , and define ak :¼ S
�1=2
d (ck � md).

These new vertices define a parallelepiped, and since the transformation of ck � md

into ak is linear, invertible, and continuous, the event (1) on Xd is equivalent to the

event of falling on or inside this parallelepiped on Zd (see Figure 3). To take advan-

tage of the marginal independence structure of Zd however, we need to simplify this

geometry.

Define

a :¼ max
1�i�d

jai1j, max
1�i�d

jai2j, . . . , max
1�i�d

jaid j
� �

:

Consider the event

\d
i = 1

fjZij � aig,

where a = (a1, . . . , ad), Zi;N (0, 1). Just as in (1), this event describes a box in d

dimensions determined by the collection of vertices defined by the boundaries of the

inequalities. Moreover, this box contains the parallelepiped obtained by transforming

(1), by definition of a. Thus,
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Pr
\d
i = 1

fjXi � md j � cig
 !

� Pr
\d
i = 1

fjZij � aig
 !

,

and we are now in a position to take advantage of the simple structure of

Zd;MVN(0, Id). To whit,

pc = Pr
\d
i = 1

fjXi � md j � cig
 !

� Pr
\d
i = 1

fjZij � aig
 !

=
Yd

i = 1

(F(ai)� F(� ai))

=
Yd

i = 1

(2F(ai)� 1),

;

Figure 3. Transforming (a) a box/rectangle into a parallelepiped/parallelogram, via the
spectral decomposition of S

�1=2
d = QLQ�1, (b) rotation, (c) scaling, (d) undo rotation. For this

example, one transforms the box defined by f�2 � x1 � 2g \ f�1 � x2 � 1g via the

covariance matrix Sd =
1 0:5

0:5 2

� �
.
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where F( � ) is the cumulative distribution function of the univariate standard normal.

Since 1
2
\F(ai)\1 for all finite positive ai, this product is strictly decreasing in d.

Moreover, since cd 6!‘, this product converges to zero. More precisely, if a positive

sequence fa1, a2, . . .g of numbers in (0, 1) does not converge to 1, then log (ai) does

not converge to 0 by continuity. Thus, limn!‘

Pn
i = 1 log (ai) = � ‘, and (by continu-

ity of the exponential)
Q‘

i = 1 ai = 0:
Now, to prove that the ratio qc=pc ! 0, we will slightly adapt the previous argu-

ment to obtain a lower bound for pc. Just as we were able to construct a box in the

Zd coordinates that contained the event that Xd lies within another box, we may

instead construct a box in the Zd coordinates that itself is contained in the event that

Xd lies within the original box. Recall that ak denoted the 2d vertices that defined

the parallelepiped in Zd . Rather than containing this object in a larger (regular) box,

we instead consider the largest (regular) box that lies entirely inside the parallele-

piped (see Figure 3). Denote the 2d vertices of this box by bk .

We need to ensure that this box does not degenerate as d ! ‘; that is, we would

be in trouble if this box collapsed into a lower than full dimensional object. This can

only happen, however, if some of the eccentricities of the parallelepiped approach

zero as d ! ‘. This is not possible though as long as cd 6!0, cd 6!‘, and

sup
d>0

sup
i 6¼j

jCorrðXi;XjÞj
 !

\1, as we have assumed in the statement of Theorem 1. This

first condition ensures that the original box does not degenerate (i.e., collapse into a

lower than full dimensional object), so by continuity of our transformations, the paral-

lelepiped in Zd also cannot degenerate. The second condition on the sequence fcdg
ensures that the parallelepiped in Zd does not become pointy and narrow without

bound, so the relative lengths of the principal axes of the parallelepiped (i.e., the

eccentricities) remain bounded away from infinity. Notice that we used this second

fact to prove that pc ! 0, but we did not care in that argument if our boxes in Xd or

in Zd degenerated in the first sense. The condition that sup
d . 0

sup
i 6¼j

jCorr(Xi, Xj)j
 !

\1

ensures that our subscales can never become perfectly correlated, which would result

in another less than full dimensional object.

Now, we may construct a lower bound on pc as before:

pc = Pr
\d
i = 1

fjXi � md j � cijg
 !

� Pr
\d
i = 1

fjZij � big
 !

=
Yd

i = 1

(2F(bi)� 1):
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Note that since bi can never equal 0 (because the box defined by the bk vertices is

nondegenerate), this lower bound is nonzero for all d. Thus,

qc

pc

� qcQd
i = 1 (2F(bi)� 1)

As we have already seen, the numerator can be expressed as

qc = Pr
Xd

i = 1

Z2
i � c2

 !
,

where Zi;N (0, 1) are i.i.d. This is the probability that a random d-vector

Zd;MVN(0, Id) is contained in the d-ball of radius c. Since the maximum of the

density function of the standard multivariate normal in any number of dimensions d

is always less than 1, this probability is bounded by the ordinary (Lebesgue) volume

of the d-ball of radius c (see section Geometry of Cutoff Scores). Thus,

qc

pc

�
p

d
2

G d
2

+ 1ð Þ c
d

Qd
i = 1 (2F(bi)� 1)

\
;

2ep
d�1

2 cdd�
d + 1

2Qd
i = 1 (2F(bi)� 1)

,

ð2Þ

where the ‘‘\
;

‘‘ notation signifies that the inequality may require a positive con-

stant that does not depend on any quantities of interest (notably, d); this standard

analytical notation (e.g., see Tao, 2011) eliminates the need to consider lower order

asymptotic remainders. See section Geometry of Cutoff Scores for more details on

these analytics.

For the denominator of (2), we apply the mean value theorem to find

2F(bi)� 1 =
1ffiffiffiffiffiffi
2p
p

Z bi

�bi

e�
x2

2 dx =
2biffiffiffiffiffiffi

2p
p � e�

b2
i
2 ,

for some bi 2 (� bi, bi). Since the bis are uniformly bounded away from zero and

from infinity, we find that

2F(bi)� 1 � m

2
� e�s2

2 ,

for each i, where s :¼ sup
d . 0

sup
1�i�d

bi

 !
\‘ and m :¼ inf

d . 0
inf

1�i�d
bi

� �
. 0.

Consequently, we bound (2) as follows:
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qc

pc

\
;

2ep
d�1

2 cdd�
d + 1

2Qd
i = 1 (2F(bi)� 1)

� 2ep
d�1

2 (2c)dd�
d + 1

2

md exp � ds2

2

� �
\
;

rd � d�d + 1
2 ,

for some positive constant r. Regardless of the value of r, this quantity goes to zero.

Geometry of Cutoff Scores

The consequences of Theorem 1 for the discriminatory power of a test defined by set-

ting cutoff scores in multiple subscales demands a closer consideration of the ambient

geometry. While practitioners are generally quite comfortable with intuiting univari-

ate phenomena, this intuition can severely breakdown in higher dimensions.

We first reiterate that the quantities qc and pc are equivalent in a single dimension.

In higher dimensions however, qc captures the multivariate normal probability of

occupying an ellipsoid, while pc captures the multivariate normal probability of occu-

pying a box, the shape that is necessarilly produced when one sets cutoff scores inde-

pendently in each subscale. To help develop a geometric intuition for these higher

dimensional structures, we consider in detail the simplest cases when the ellipse/ellip-

soid is simply a circle/sphere, and the box is simply a square/cube.

In d-dimensional Euclidean space, the traditional Euclidean (closed) d-ball cen-

tered at the origin of radius r is defined as

Bd(0, r):¼ fx 2 R
d: jxj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 + � � � + x2
d

q
� rg: ð3Þ

In two dimensions, this is all points on or in the circle of radius r centred at the origin,

and in three dimensions, this is all points on or in the sphere of radius r centred at the

origin. Another important geometric object is the regular (closed) d-box centred at

the origin of sidelength 2c, defined as

Cd(0, 2c):¼ fx 2 R
d: jx1j � c, . . . , jxd j � cg: ð4Þ

In two dimensions, this is all points on or in the square of sidelength 2c centred at

the origin, and in three dimensions, this is all points on or in the cube of sidelength

2c centred at the origin.

Notice that B1(0, r) = C1(0, 2r); that is, the one-dimensional ball and cube are the

same object, simply an interval. This is the biggest hint that our univariate intuition

will not be sufficient for multidimensional phenomena. Indeed, while it is perfectly

intuitive that most of the density of a univariate normal lies near its mean/mode, as

we increase the number of dimensions, more and more of the limited probability den-

sity (which must always integrate to 1) must disperse over ‘‘larger’’ sets in Euclidean
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Figure 4. (a) Approximately 95% of the probability density lies within two units of zero of
the univariate standard normal. (b) Approximately 86% of the probability density lies within
two units of zero of the bivariate standard normal.

Figure 5. (a) Circle (2-ball) of radius r1 contained inside a square (regular 2-box) of
sidelength 2r1. (b) Sphere (3-ball) of radius r1 contained inside a cube (regular 3-box) of
sidelength 2r1. In general, by the Pythagorean theorem, there is no regular d-box of smaller
diagonal than

ffiffiffi
d
p
� r1 that contains the d-ball of radius r1.
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space. Figure 4 illustrates the situation for one and two dimensions. Here, we illus-

trate that while in one dimension, approximately 95% of the probability density falls

within 2 SDs of the mean/mode, in two dimensions, this probability falls to approxi-

mately 86%. Moreover, the amount of density that necessarily falls near the boundary

created by these cutoffs necessarily increases, reflected in the fact that the ratio qc=pc

decreases. In multiple dimensions then, we must better understand the interplay

between balls and boxes.

It is a classical fact of analytic geometry that any d-ball of radius r can be con-

tained inside a d-box of sidelength 2r. The situation is depicted in Figure 5 for two

and three dimensions. In general, this fact is a direct consequence of the Pythagorean

theorem. That is, for any x 2 Bd(0, r), the d-ball centred at the origin (without loss

of generality) of radius r, we know by (3) thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 + � � � + x2
d

q
� r:

Squaring both sides of this inequality, we see that x2
i � r2 must hold for every

1 � i � d, else this sum of d nonnegative numbers would exceed r2. But this means

that x must also be contained in the box of sidelength 2r centred at the origin by (4);

i.e., x 2 Cd(0, 2r) since

jx1j � r, . . . , jxd j � r

for all x 2 Bd(0, r).

For completeness, we show the classical but rather counterintuitive result in high

dimensional geometry that, as the number of dimensions grows, the volume of the

unit d-ball approaches zero while the volume of the smallest regular d-box contain-

ing the unit d-ball approaches infinity. Indeed, the volume of the unit d-ball is given

by the equation

Vol(Bd(0, R)) =
p

d
2

G d
2

+ 1
� �Rd ,

where G( � ) is the regularized gamma function defined as:

G
d

2
+ 1

� �
=

Z ‘

0

t
d
2e�tdt:

By Stirling’s formula, this function is asymptotically equivalent to

G
d

2
+ 1

� �
;

ffiffiffiffiffiffi
pd
p d

2e

� �d
2

:

Thus,
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Vol(Bd(0, 1)) =
p

d
2

G d
2

+ 1
� �

;
2ep

d�1
2

d
d + 1

2

! 0,

since dd grows far more rapidly than rd for any fixed positive constant r. On the other

hand, the smallest regular d-box containing Bd(0, 1) is the hypercube centred at the

origin of sidelength 2: Cd(0, 2). But clearly,

Vol(Cd(0, 2)) = 2d ! ‘:

It is easy to see that these results can be extended to balls and regular boxes of nonu-

nit scale. Specifically, Vol(Bd(0, R))! 0 for any fixed R, and Vol(Cd(0, 2R))! ‘

when R . 1
2
, Vol(Cd(0, 1))! 1, and Vol(Cd(0, 2R))! 0 when R\1

2
. It is important

to notice though that even when the volume of the hypercube goes to zero with

increasing dimension, it does so at a much slower rate than the volume of the ball,

by virtue of the gamma function in the denominator of Vol(Bd(0, R)).

One major consequence of these facts is that most of the volume of the regular d-

box must be contained near its corners. A glance back at Figure 5 should be helpful.

As the number of dimensions grows, the unit d-ball encompasses less and less of the

volume of its smallest enclosing d-box. But since the d-ball still touches each face of

the d-box at its center, the only way the two volumes can diverge so massively is if

the d-box is essentially ‘‘all corners’’ as the dimension grows.

These results immediately generalize to ellipsoids and irregular boxes, so long as

the lengths of their principal axes and, respectively, sidelengths remain uniformly

bounded (this was our condition that cd 6!‘ in Theorem 1). That is, the volume of

such an ellipsoid must go to zero as the dimension grows, and most of the volume of

the smallest irregular d-box containing this ellipsoid is concentrated near its corners.

This generalization is a direct consequence of the fact that ellipsoids are simply

images of balls under invertible linear transformations.

What is important for us though, and what Theorem 1 establishes, is that a similar

geometry holds when we measure the volume of an ellipsoid or box using a multivariate

normal measure, rather than the standard notion of Euclidean volume (i.e., Lebesgue

measure). Indeed, Theorem 1 shows that the multivariate normal probability of falling

inside a d-ellipsoid or a d-box centered at the mean approaches zero as d increases, and

that the ratio qc=pc ! 0. It is this final piece that ensures that more and more of the

multivariate normal mass of the box lies in its corners (i.e., outside the largest d-ellip-

soid contained inside the box) as the dimension increases (see Figures 4, 5, and 6).

Three important implications for multivariate threshold-setting follow:

1. In direct contrast with the univariate setting, more and more of the sample

data from a multivariate normal distribution will fall away from the ‘‘typical
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respondent’’ (i.e., the d-ball centred at the mean/mode vector of the distribu-

tion) as the dimension increases.

2. Consequently, if sample individuals are required to satisfy many marginal

thresholds simultaneously and independently in order to be classified as

belonging to some normative group of interest (i.e., in order to ‘‘pass the

test’’), then most of these individuals will appear near the boundary of at

least one of these thresholds.

3. In the presence of naturally occuring measurement error (or, equivalently, under

a less than perfectly reliable test), these individuals inside the normative group

and near the boundary are indistinguishable from individuals outside the norma-

tive group. Thus, such a test loses all its discriminatory power of classification.

Implication 3. is the most relevant for our practical recommendations. If we imag-

ine a collection of subscales designed to assess aptitude of some particular latent trait

u, then (3) implies that most individuals who are classified as belonging to the group

of interest are virtually indistinguishable from those who just missed classification.

Put another way, the more subscales with thresholds one must cross, the less discri-

minating the test actually is. That is, most classified individuals are essentially

exchangeable with nonclassified individuals, and this problem gets worse with the

inclusion of more thresholded subscales. This suggests several problems of fairness

and efficacy of setting thresholds marginally for many subscales simultaneously.

It is important to note that while we have concentrated on normative sets defined

by regular, symmetric thresholds, the same results hold for irregular, asymmetric

thresholds (e.g., c1 � X1 � c2 with jc1j 6¼ jc2j). The same proof that we have pro-

vided holds in this case with only minor modifications. Furthermore, Implications 1,

2, and 3 will also hold if only a single threshold is set for each subscale; for example,

X1 � c1 and X2 � c2.

Empirical Demonstrations

Theorem 1 demonstrates that any normative set constructed via independent thresh-

olding of subscales will become less discriminating as the number of subscales

increases. This is a reflection of the ambient geometry of higher dimensional space,

where most of the mass of a normative set is forced to lie near the ‘‘corners’’ of the

set, as defined by the subscale thresholds. Consequently, as the number of subscales

increases, most individuals become very atypical in the sense that they must occupy a

point in space that is far away from the mean/mode for multivariate normal phenom-

ena. Moreover, if the normative set is defined as those individuals who fall within a

certain distance from the marginal means of the subscales, then the size of this set

will shrink without bound as the number of subscales increases. Take, for instance, a

scenario where a battery of screening psychological tests are implemented on a group

of participants with the aim of grouping them in ‘‘at risk’’ versus ‘‘not at risk’’ cate-

gories. One would expect that only a certain percentage of participants would exhibit
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enough markers or symptoms to be classified as belonging to the clinical group, the

‘‘true’’ population percentage of people exhibiting the pathology or characteristic of

interest. If decision thresholds classifying participants as ‘‘at risk’’ versus ‘‘not at

risk’’ did not consider how the various tests interact (i.e., setting them scale by scale

as opposed to jointly), one would expect to have more participants classified as ‘‘at

risk’’ as the number of tests or subscales increases arbitrarily, missing the true popu-

lation percentage of participants who exhibit the pathology or characteristic of inter-

est. Counterintuitively, having more tests or more subscales classifying participants

does not necessarily imply these participants are being more reliably classified, unless

the process of setting thresholds was calibrated with the aim to make one decision

based on the joint relationship between tests, as opposed to one decision based on

simply their individual, marginal structures.

Figure 6. Percentage of reliably classified individuals as a function of the number of
subscales. That is, ratios of the multivariate normal probability of falling inside the ellipsoid
over the multivariate normal probability of falling inside the smallest box containing the
ellipsoid as a function of the number of dimensions. The ellipsoids and boxes are determined
by hypothetical threshold 62 z scores from the mean vector. Different dotted lines and
shapes correspond to multivariate normal distributions with different degrees of correlation
(r = 0:0, 0:1, 0:3, 0:5, 0:7, and 0:9). All dimensions/subscales are assumed to be equicorrelated.
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To showcase the practical implications of Theorem 1 and the geometrical explana-

tions that follow, Figure 6 presents the decreasing probabilities of qc=pc from six dif-

ferent types of multivariate normal distributions. To locate oneself within the context

of the examples of the previous section, the x-axis corresponds to the number of sub-

scales in a hypothetical test and the y-axis is the probability of falling within two SD

units of the mean (i.e., the thresholds would be at the z scores at 62). The focal point

of the simulation is to contrast the naive understanding of reliably classifying individ-

uals by setting thresholds marginally, subscale by subscale, with the actual mathe-

matical structure of this action implied in higher dimensions. Univariately, setting

thresholds at 62 implies that 95% of respondents would be classified as belonging to

the normative group and only the 5% of those in the extreme tails of the distribution

would not. However, when multiple dimensions (i.e., subscales) with respective

thresholds are at play, that 95% group of respondents shrinks so that fewer and fewer

people end up being classified in the normative group.

Figure 6 illustrates the proportion of people in the normative group that are clearly

distinguishable (i.e., reliably classified) from those outside the normative group—the

multivariate normal volume of the ball divided by the multivariate normal volume of

the smallest box containing the ball, qc=pc—as a function of the number of subscales.

This is the proportion of individuals who fall near the mean/mode of the distribution,

away from the ‘‘corners’’ created by the multiple thresholds. In the context of some

latent trait u, Figure 6 shows how discriminating the test of the latent trait is as a func-

tion of the number of marginally thresholded subscales. Regardless of the correlation

between subscales, this discrimination is quite high for 2 or 3 subscales, but even at 4

subscales, about 25% of the normative group is essentially exchangeable with individ-

uals outside the normative group in terms of their value of u. That is, about 25% of the

normative sample falls in the ‘‘corners’’ of the 4-box created by the marginal thresh-

olds and so are about as atypical of respondents as individuals who fall outside this

box. Contrast this with the univariate situation depicted in Figure 5(a) where only a

very small fraction of normative individuals are indistinguishable from those outside

the group (i.e., those individuals with z scores very close to the gray/black cutoff).

As the number of thresholded subscales increases, Figure 6 clearly illustrates that

fewer and fewer people are reliably classified by the test as more respondents will be

forced into the ‘‘corners’’ of the ‘‘pass’’ and ‘‘fail’’ groups. These respondents will

not be reliably classified when the test is subject to measurement error. Moreover,

the lack of discriminatory power for marginally thresholded tests only worsens as test

reliability is compromised.

The degree of correlation between subscales also plays an important role in the

ability to reliably classify participants, with higher correlations slowing the rate of

unreliable classification as the number of subscales grows. This mathematical fact

makes good practical sense too, since one can easily argue that a test composed of

two highly correlated subscales has about as much ability to reliably classify individ-

uals as a single subscale test. Regardless, Theorem 1 guarantees that no amount of

correlation will be enough to overcome the problem eventually, given enough
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subscales. Figure 6 shows that by the time one reaches 10 subscales, a test with

highly correlated subscales (r = 0:9) will still unreliably classify about half of the

normative group. For the case of independent subscales, virtually the entire norma-

tive group will be indistinguishable from individuals who fall outside of it (i.e., the

upper bound on the probability of reliably classifying participants is about 0.1).

Conclusions and Recommendations

Given the frequent use of tests and measures as tools that aid in the classification of

respondents, we believe it is important to highlight the differences implied by the tra-

ditional method of setting thresholds marginally (i.e., each subscale at a time) versus

setting them jointly. From the theoretical results presented and the test scenarios

explored, we believe a few important lessons should be highlighted and brought into

consideration for applied researchers who may be interested in either developing

their own scales or interpreting existing ones. We have summarized these lessons in

Implications 1, 2, and 3 of section Geometry of Cutoff Scores and reiterate the les-

sons here.

First, if a scale has no subscales or a joint decision is not needed to aid in classify-

ing or diagnosing, then setting thresholds univariately bears little influence in the

final decision and the results presented here do not necessarily apply. The shape and

properties of the marginal distributions would be the only relevant ones in this case.

If, however, more than one subscale is used in the decision process, then it is impor-

tant to remind test users and developers that the probability of selection is always less

than or equal to the one implied by each subscale independently. Theorem 1 high-

lights this issue by pointing out the fact that, for example, even for the well–known

case where 95% of the probability of a normal distribution is contained within 2 SDs,

that probability goes to 0 as the number of dimensions grows. Implications 1 and 2 of

section Geometry of Cutoff Scores summarize this problem as the fact that more

sample respondents will necessarily fall far away from the ‘‘typical’’ respondent as

the dimension increases. Therefore, we would like to encourage researchers to con-

sider the decision process multivariately as opposed to in separate univariate pieces.

Marginal thinking is how the majority of cutoff values are currently set, but this

necessarily ignores joint dependency between the subscales and creates the possibil-

ity of entirely untenable diagnostics.

Moreover, the correlations among the subscales affects the probability of classifi-

cation. In general, larger correlations among the simulated subscales implies a slower

rate of decrease in the probability of reliable classification. Therefore, when deciding

on a cutoff value (irrespective of the method in which this cutoff value is selected),

it is important to keep in mind the correlations among the subscales and to adjust the

thresholds accordingly. A potential approach that could be explored would be to use

multivariate generalizations to univariate approaches that consider more than just the

marginal structure of the subscales. One could, for instance, rely on the centroid of

the distribution and the variance-covariance matrix so that thresholds could be set in
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terms of Mahalanobis distances and then see which combination of coordinates (i.e.,

sample individuals) correspond to the Mahlanobis distance of choice. Methods that

incorporate both marginal and joint information simultaneously are welcome to

tackle this issue.1

Applied practitioners should expect an inherent amount of measurement error to

be present in any testing situation. Too much measurement error often results in

unreliable testing procedures, thus motivating the push for the creation of formally

reliable scales. What our Theorem 1 demonstrates however, is that in the context of

independent subscale thresholding, such tests will necessarily lose their discrimina-

tory power to meaningfully categorize individuals as the number of subscales

increases, regardless of how formally reliable the underlying measurements/sub-

scales are. One natural way to address this intrinsically maladaptive feature is to

switch to a more thoughtful process of threshold setting, one that does not always set

thresholds on different subscales independently.
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