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ease progression.

dementia, partial least squares structural equation pathway modeling was used to
assess the direct and indirect effects of imaging biomarkers (global A-positron emis-
sion tomography [PET] uptake, regional tau-PET uptake, and regional magnetic reso-
nance imaging-based atrophy) and risk-factors (age, sex, education, apolipoprotein E
[APOE], and white-matter lesions) on cross-sectional cognitive impairment and longi-
tudinal cognitive decline.

Results: Sixteen percent of variance in cross-sectional cognitive impairment was
accounted for by AB, 46% to 47% by tau, and 25% to 29% by atrophy, although 53%
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1 [ BACKGROUND

Although deposition of fibrillar amyloid beta (AB) in the brain was iden-
tified as one of the earliest pathological changes occurring at least a
decade before the clinical diagnosis of Alzheimer’s disease (AD), treat-
ments targeting AS have been, thus far, largely ineffective in slowing
cognitive decline, with modest beneficial clinical effects being reported
recently.l:? There have been many explanations suggested for AD ther-
apeutic trial failure, especially that the treatments were administered
too late in the disease process, aimed at the wrong targets, or that the
treatments failed to properly engage with the targets. It is also likely
that not all cognitive decline, even if diagnosed with AD biomarkers, is
due to AD pathology, defined as AB and tau leading to neurodegenera-
tion. That being the case, the extent to which AD pathology accounts
for clinical symptoms and disease progression in living individuals in
the AD continuum is indeed of great interest for the development and
targeting of effective therapies.

There is strong evidence from prior clinicopathology studies sug-
gesting that the age-related neuropathologies account for 40% to 50%
of the variation in late life cognitive decline in which the pathologi-
cal markers of AD accounted for 30% to 36% of the variation.>* Fur-
thermore, the proportion of the observed cognitive loss accounted for
by AD pathology at the individual level ranges widely from 22% to
100%.* These findings highlight the complexity of cognitive aging and
have important implications for the ongoing effort to develop effec-
tive therapeutics, yet only partially elucidate the precise pathological
sequence and its impact on cognitive impairment and decline in living
humans.

With advances in AD pathology biomarkers for in vivo assessments
we now have compelling evidence that AD in its continuum is a complex
disease in nature; that AB, tau, and neurodegeneration impact cogni-
tionin concert as dynamic neuropathological factors; and that different
pathology positivity stages throughout the disease continuum might
have distinct mechanisms affecting the clinical disease progression.”
Leveraging multimodal neuroimaging, our objective was to determine
the extent to which cognitive impairment and decline is accounted for
by the level of AB and tau pathologies and neurodegeneration detected
by imaging markers, in particular florbetapir® or florbetaben”’ positron
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to 58% of total variance in cognitive impairment was explained by incorporating medi-
ated and direct effects of AD risk factors. The AB-tau-atrophy pathway accounted for
50% to 56% of variance in longitudinal cognitive decline while Ag, tau, and atrophy inde-
pendently explained 16%, 46% to 47%, and 25% to 29% of the variance, respectively.

Discussion: These findings emphasize that treatments that remove A3 and completely
stop downstream effects on tau and neurodegeneration would only be partially effec-

tive in slowing of cognitive decline or reversing cognitive impairment.

Alzheimer’s Disease Assessment Scale-Cognitive Subscale, amyloid beta, atrophy, cognition,
magnetic resonance imaging, positron emission tomography, Preclinical Alzheimer Cognitive
Composite, tau, white matter lesions

emission tomography (PET) for global AB burden, flortaucipir PET® for
the burden and the anatomical distribution of tau, and structural mag-
netic resonance imaging (MRI) for the anatomical distribution of neu-
rodegeneration. The study cohort consists of older individuals with
biomarker evidence of Ag-positivity with and without clinical symp-
toms from a multicenter observational study, the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). Combined AD biomarker (Ag, tau, and
neurodegeneration) pathways mediating the effects of AD risk fac-
tors (age, sex, education, apolipoprotein E [APOE], and vascular brain
lesion burden) on Preclinical Alzheimer Cognitive Composite (PACC)
and Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-
Cog) were assessed to determine how much of the variance of baseline
cognition and longitudinal cognitive decline was accounted for by AD
imaging biomarkers.

2 | METHODS

2.1 | Study design

Data were obtained from the ADNI database (adni.loni.usc.edu). The
National Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, the Food and Drug Administration, pri-
vate pharmaceutical companies, and nonprofit organizations launched
ADNI in 2004 as a public-private partnership. ADNI is a longitudinal
multicenter natural history study designed to characterize clinical, neu-
ropsychological, MRI and PET, genetic, and biochemical biomarkers for
early detection and tracking of AD.? The principal investigator of ADNI
is Michael Weiner, MD, VA Medical Center and University of Califor-
nia, San Francisco. For current information on ADNI, see www.adni-

info.org.

2.2 | Study participants

The main study cohort included ADNI participants who (1) had PET
evidence for AB-positivity; (2) underwent multimodality neuroimaging
for flortaucipir-PET, florbetapir- or florbetaben-PET, structural MRI,
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and fluid-attenuated inversion recovery (FLAIR) MRI, all performed
no longer than 6 months apart; and (3) had clinical and cognitive
assessments cross-sectionally within 6 months of neuroimaging and
longitudinally up to 4 years after neuroimaging assessments.

2.3 | Cognitive outcome measures
A modified version of PACC (mPACC)'° and the ADAS-Cog 13-item
score were used as the cognitive outcome measures as these are tools
typically used in AD clinical trials.! ADAS-Cog and mPACC scores
were corrected for normal confounding effects of age, sex, and educa-
tion based on scores of ADNI individuals who were cognitively unim-
paired (CU), APOE ¢4-noncarriers, and AB-negative based on AB-PET.
Rates of cognitive decline were estimated from the longitudinal
assessments within 4 years of flortaucipir-PET (cf. supporting informa-
tion), prospectively, allowing for linear approximation of decline rates,

known to be nonlinear in the disease spectrum.’?

2.4 | Image processing

A threshold of global cortical A8 load >1.11 for florbetapir!® and
> 1.08 for florbetaben was used to determine Ag-positivity. Global
cortical AB load in Centiloid units was estimated using the ADNI
pipeline (http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-
v2/documents/pet/ADNI%20Centiloids%20Final.pdf).
PET were quantitatively evaluated for estimation of a tau standardized

Flortaucipir-

uptake value ratio (SUVR) for 31 bilateral cerebral regions of interest
(ROIs) according to published methods.’* Atrophy within each ROI
was estimated using the DiReCT method.'® Total volume of cerebral
white matter hyperintensities (WMH) detected in FLAIR-MRI nor-
malized to total intracranial volume was estimated as a measure of
vascular white matter lesion (WML) burden for each participant.® For
detailed information on image processing methods, see the supporting
information.

2.5 | Statistical analysis

We assessed the direct and indirect effects of observed and latent vari-
ables of AD imaging biomarkers (global A burden, regional tau burden
from all ROls, and regional atrophy from all ROls), and AD risk factors
(age, sex, years of education, APOE genotype, and WML burden) on cog-
nitive outcome measures using partial least squares structural equa-
tion modeling (PLS-SEM),Y” testing a priori hypothesized biomarker

pathways illustrated in Figure 1 (cf. supporting information).

3 | RESULTS

Based on the clinical assessment closest in time to neuroimaging visit,
the study cohort included 120 CU, 83 with mild cognitive impairment
(MCI), and 45 with dementia (Table 1). Seventy-three percent of CU,

RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional (e.g., PubMed) sources and meeting
abstracts. While the extent to which Alzheimer’s disease
(AD) imaging biomarkers account for the clinical symp-
toms and progression in living individuals is not widely
studied, there have been several clinicopathology publi-
cations describing the degree to which late life cognitive
decline is driven by age-related neuropathologies.

2. Interpretation: Only a limited percentage of the variance
in cognitive decline can be explained by the currently
available imaging biomarkers (amyloid beta positron
emission tomography (PET), tau-PET, structural magnetic
resonance imaging (MRI), and fluid-attenuated inversion
recovery MRI). This is consistent with the previous clin-
icopathology studies reporting that < 50% of variance
in cognitive decline before death can be accounted for
by the indices of AD, cerebrovascular disease, and Lewy
body pathologies, even after considering hippocampal
sclerosis, TDP-43, and atherosclerosis.

3. Future directions: Our findings support the strategy for
biomarkers and disease-modifying therapies that target
non-AD pathologies that are highly comorbid in AD for
effective slowing of cognitive decline and ideally revers-

ing cognitive impairment.

80% of MCl, and 56% of dementia participants in the main study cohort
had longitudinal cognitive outcome measures available. The baseline
characteristics of the main study cohort and those of the longitudinal
subcohort did not differ statistically (cf. supporting information).

Full constructs of the PLS-SEMs considering mediation by the A-
tau-atrophy biomarker pathway of the effects of AD risk factors on
baseline mPACC and ADAS-Cog measures and the parameter esti-
mates for the final models are shown in Figure 2.

Overall, the final PLS-SEMs (Figure 2) explained 58% of variance in
baseline mPACC and 53% of the variance in baseline ADAS-Cog. AS,
tau, and atrophy each independently explained 16%, 46% to 47%, and
25% to 29% of variance in baseline cognition, respectively. Estimated
direct and indirect effects of AD-biomarkers on cognitive impairment
are plotted in Figure 3.

Fifty-six percent of the variance in AmMPACC and 50% of the vari-
ance in AADAS-Cog were accounted for by Ag-tau-atrophy pathway
partially mediating the AD risk factor and cognitive decline relations,
as illustrated in Figure 4. To a great extent, the significant pathways
identified in cognitive decline modeling were similar to ones in baseline
cognitive impairment modeling, with the exception of male sex having a
significant direct effect on tau latent variable (LV) but not on either cog-
nitive decline measures, and of greater WML having a significant direct
effect on AADAS-Cog but not AmPACC. Overall, AB, tau, and atrophy
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FIGURE 1 A priori hypothesized biomarker pathways by which amyloid beta (Ag)-tau-atrophy biomarkers might mediate the association of
Alzheimer’s disease (AD) risk factors and cognition. Rectangles represent manifest variables and ellipses represent latent variables. Each
single-headed arrow denotes a hypothesized unidirectional effect of one variable on another. For graphical simplicity, age, sex, education, and
apolipoprotein E (APOE) ¢4 is grouped although each AD risk factor is separately hypothesized to have unidirectional effect on white matter lesion
(WML), cortical AB burden, tau latent variable (LV), atrophy LV, and cognitive outcome. Our analysis is premised on a conceptual Ag-tau-atrophy
pathologic pathway thought to mediate the association of AD risk factors and cognition. A priori, age, sex, years of education, and presence of
APOE ¢4 allele were specified to have direct effects on global A, regional tau, regional atrophy, and WML, in addition to their direct effects on
cognition. WML was hypothesized to have a direct effect on global AB, regional tau, and regional atrophy, in addition to its direct effect on
cognition. Global A8 was hypothesized to have a direct effect on regional tau and regional atrophy, in addition to its direct effect on cognition. In
turn, the regional tau was hypothesized to have direct effect on regional atrophy, together with the direct effects of regional tau and regional
atrophy on cognition. We note that the regional specificity of A pathology was examined by including regional A burden from all 31 ROls instead
of limiting the Aj construct to the global cortical AB burden in the partial least squares structural equation modeling (PLS-SEM). The estimated
latent construct for the regional A burden in the final PLS-SEM involved all but bilateral entorhinal, amygdala, and hippocampus regions,
suggesting the effect of A being distributed across the cortex rather than localized in specific cortical regions in this cohort of all AB-positive
individuals. Therefore, AS construct of all PLS-SEMs in this study was limited to global cortical AS burden.

independently explained 12% to 13%, 39% to 41%, and 23% to 30% of
the variance in longitudinal cognitive decline, respectively.

Stratifying the main study cohort into those with and without cogni-
tive impairment and dementia and allowing the path coefficients to be
estimated separately for each cognitive diagnostic group, the A3-tau-
atrophy model together with the AD risk factors explained a smaller
percent of the variance in baseline cognitive impairment and longitu-
dinal cognitive decline within CU compared to MCI and dementia (i.e.,
10% vs. 49% vs. 53% variance in baseline mPACC; 17% vs. 34% vs.
47% variance in baseline ADAS-Cog; 16% vs. 51% vs. 59% variance in
AmPACC; and 12% vs. 37% vs. 59% variance in AADAS-Cog, respec-
tively), although the models had excellent global fit (goodness-of-fit of
0.37-0.48). The sensitivity analyses on cognitive impairment outcome
measures within each cognitive diagnostic group suggested greater
direct effect of global AB (a standardized coefficient of 8 = 0.22 and
standard error [SE] of 0.10) but lower direct effect of tau LV (8 = 0.22;
SE = 0.11) with a lack of a direct effect of atrophy in CU (Figure 3). In
contrast, only tau LV (8 = 0.43; SE = 0.11) but not global AB or atrophy
had a direct effect on baseline cognitive impairment in MCI. Greater
direct effect of atrophy LV (8 = 0.29; SE = 0.16) with tau LV (8 = 0.48;
SE = 0.17) but not global A3 was observed in dementia. Finally, only
global AB, but neither tau nor atrophy LVs, had a greater direct effect
(B =0.25; SE = 0.12) on longitudinal cognitive decline in CU, although
tau LV had a greater direct effect on cognitive decline in MCI and
dementia (8 = 0.40; SE = 0.13 and 8 = 0.66; SE = 0.26, respectively),

while direct effects of global A and atrophy LV were not significant in
these models.

4 | DISCUSSION

Our study was conducted to determine the contribution of A and
tau pathologies and atrophy, jointly with AD risk factors of age, sex,
education, APOE, and WMLs to the cognitive impairment and cog-
nitive decline in older individuals in the AD continuum. Our major
findings were that across the AD continuum in individuals with PET
biomarker evidence for AB-positivity (1) 16% of variance in cross-
sectional cognitive impairment, measured by mPACC or ADAS-Cog,
was accounted for by AS, 46% to 47% by tau, and 25% to 29% by atro-
phy, although about 53% to 58% of total variance in cognitive impair-
ment was explained by incorporating mediated and direct effects of AD
risk factors; and (2) the AB-tau-atrophy pathway accounted for 50%
to 56% of variance in longitudinal cognitive decline while Ag, tau, and
atrophy each independently explained 16%, 46% to 47%, and 25% to
29% of the variance, respectively.

Among all neurodegenerative imaging markers considered in this
study, tau and atrophy had the greatest and most consistent relation-
ship to cognitive decline. Recent studies suggested that tau, not AS,
burden and topography in PET predicts atrophy, and might be the key

driver of atrophy and subsequent neurodegenerative processes.>8
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FIGURE 2 Results of path analysis of combined Alzheimer’s disease (AD) imaging biomarker pathways mediating the effect of AD risk factors
on baseline cognitive outcome measure of modified Preclinical Alzheimer Cognitive Composite (mMPACC) and Alzheimer’s Disease Assessment
Scale-Cognitive subscale (ADAS-Cog) across the AD continuum. Goodness-of-fit was 0.43 for mPACC modeling and 0.42 for ADAS-Cog modeling.
Squares or rectangles represent manifest variables and brain maps represent latent variables (LV). Tau LV involved fusiform, inferior temporal,
middle temporal, superior temporal, supramarginal, inferior parietal, superior frontal, and caudal middle frontal bilaterally, and left posterior
cingulate, left superior parietal, right banks of superior temporal sulcus, and right precuenus. Atrophy LV involved amygdala, middle temporal,
superior temporal, lateral orbitofrontal, parsopercularis, parstriangularis, supramarginal, and insula bilaterally, and left hippocampus, left
entorhinal, right banks of superior temporal sulcus, right caudal middle frontal, right inferior temporal. Each single-headed arrow denotes a
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We observed that greater tau accumulation in a stereotypical brain
pattern affected cognitive impairment and decline. Overall, the topog-
raphy of significant regional tau accumulation overlapped with the
locational sensitivity to the cognitive tests, such as logical and verbal
memory function being localized mostly in the parietal-temporal brain
regions®? and deficits in semantic fluency involving the parietal lobe in
addition to the temporal lobe, frontal lobe, and anterior cingulate.°
Consistent with neuropathological reports,?! our findings suggested
an impact of significant tau accumulation in the Braak & Braak -1V
brain regions on detectable cognitive impairment, with an increased
regional burden and spread expanding to frontal regions. Persistent
direct tau-cognition association through different clinical stages sug-
gested that tau pathology may lead to cognitive impairments through
a variety of mechanisms, including, but not limited to, atrophy.1822 We
also observed that cognitive impairment and decline was directly asso-
ciated with a specific atrophy pattern particularly in advancing clin-
ical stages, consistent with the view that neurodegeneration is the
strongest driver of future cognitive decline.2223 The atrophy pattern
was similar, but not identical, to the spatial spread of tau. We should
note that gray matter tissue volume as a measure of atrophy reflects
a cumulative effect of diverse neurodegenerative processes includ-
ing not only AD pathologies but also the effects of aging,2* vascular
pathologies,?> a-synuclein,2® and TDP-43.27

In contrast to tau burden and atrophy, the effect of global AB burden
within AB-positive individuals on cognitive outcome measures shifted
from being largely direct at the CU stage to indirect effect medi-
ated through greater tau accumulation at the later clinical stages. The
observed indirect effects of AS are consistent with previous reports of
indirect effects of AG on memory function,®1? and closely conform
to the AD AB cascade hypothesis.?® These findings also support the
widely accepted AD biomarker model positing that AS has an initiat-
ing role in early stages of AD pathophysiological changes by facilitat-
ing spread and accumulation of tau pathology.2? In a separate PLS-SEM
(results not shown) that included regional AB burden from 31 ROls, we
observed that the effect of A was distributed across the cortex rather
than localized in specific regions. This may indicate that local Ag burden
did not convey additional information beyond the global AS burden in
explaining variance in concurrent impairment and decline in cognition,

or that we lacked the statistical power to detect regional specificity of

AB burden due to its limited within-subject variance once individuals
are A phenotype converted.

Risk factors beyond the Ap-tau-atrophy axis affected cognitive
impairment and decline. We observed both direct and mediated, by
greater regional tau and atrophy, effects of greater WML burden, sup-
porting a role for cerebrovascular disease. Most elderly individuals,
including those with clinical AD diagnoses, show comorbid cerebrovas-
cular brain pathologies with a prevalence as high as 32% to 48%, in
addition to AD-related AB and tau pathologies.* Together with the
emerging evidence that the threshold at which AD pathology becomes
symptomatic might be lowered by cerebrovascular disease,* our find-
ings support the idea that, in addition to AS or tau targeting therapies,
vascular protective strategies should be considered as the effects of
WM disease on cognition might be independent of A and tau patholo-
gies.

Our results demonstrated that advanced age was an important
risk factor for both cognitive impairment and decline, acting predom-
inantly indirectly via greater AB burden, greater atrophy, and greater
WML burden, as has been repeatedly reported.3%3! We observed that
female sex was associated with greater tau burden. Neuropathologi-
cal studies suggest that women have a 3-year acceleration in tau tan-
gle neuropathology®? and this sex difference is largely attributable
to APOE &4 status.3® Recent in vivo neuroimaging studies replicated
some of these neuropathological findings, reporting that females had
greater brain resilience to pathological tau.>* These sex effects may be
explained by risk factors such as cardiometabolic disease, depression,
sleep cycle abnormalities, and menopause, as well as sociocultural fac-
tors such as education, exercise, and caregiving status.3> The impact
of these potentially modifiable factors on the clinical expression of
AD pathology and neurodegeneration warrants future studies. Finally,
education was a protective factor on cognitive functioning as well as
on cognitive decline. Epidemiological studies suggest that education, in
addition to other lifelong experiences, is associated with lower preva-
lence of AD.343¢ Education may increase cognitive reserve, the ability
to harbor greater AD pathology without experiencing cognitive decline
in their cognitive functioning.%”

Our observation that APOE ¢4 is associated with greater Ag bur-
den is consistent with APOE being the most replicated risk factor for

AD after advanced age.?83? Most neuropathological studies suggest

hypothesized unidirectional effect of one variable on another. Numbers associated with effects are standardized regression coefficients or
standardized factor loadings (i.e., from a latent variable to its indicators). Only the paths that were statistically significant at P < .05 are
represented. Paths that were hypothesized but were not statistically significant at P < .05 are excluded. All AD imaging markers considered in this
study, specifically greater global A3 burden, tau LV with greater burden in the parietotemporal neocortical regions, and atrophy LV within the
frontotemporal as well as parietal regions, together with presence of APOE ¢4 allele had significant direct effects on greater baseline cognitive
impairment measured by either mPACC or ADAS-Cog. Fewer years of education, male sex, and greater white matter lesion (WML) had significant
direct effects on worse baseline mPACC but not ADAS-Cog. In addition to these direct effects on cognitive impairment, we also observed that
advanced age had significant direct effects on greater cortical amyloid beta (AB), WML, and the atrophy LV, but not on the tau LV or baseline
cognitive outcome measures, suggesting that the biomarker model mediated the effect of age on cognitive impairment. Fewer years of education
had a significant direct effect on greater global Aj, even though its direct effect on baseline cognitive impairment was only significant in the
mPACC model. Similarly, presence of APOE 4 allele had significant direct effects on greater global AS and neocortical tau LV, but not on the WML
or atrophy LV. Greater WML had significant direct effects on both tau and atrophy LVs, but not on global Ag, and its direct effect on baseline
cognitive impairment was significant only for mPACC but not ADAS-Cog. Greater global AS had significant direct effects on tau LV but not atrophy
LV. Tau LV had a significant direct effect on atrophy LV, suggesting mediation of the effects of A on atrophy by tau. IL2, indicator loading squared.
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FIGURE 3 Direct and indirect effects of Alzheimer’s disease (AD) imaging biomarkers (AB: global cortical amyloid beta burden, Tau: latent
construct of the regional tau burden, and Atrophy: latent construct of the regional atrophy) on baseline cognitive impairment and longitudinal
cognitive decline operationalized with modified Preclinical Alzheimer Cognitive Composite (nPACC) and Alzheimer’s Disease Assessment
Scale-Cognitive subscale (ADAS-Cog). Confidence intervals were based on a bootstrapping procedure with 100 repetitions.
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the lack of an independent effect of APOE on neurofibrillary tau tan-
gle formation,*°-42 but an association of APOE with tau tangle pathol-
ogy only in the presence of AB.*® Our observation of this expected
mediated effect of APOE on cognitive impairment and decline through
greater AB burden in addition to the direct effect of APOE on tau-
mediated neurodegeneration is consistent with the evidence from ani-
mal models.*

Only a limited percentage of the variance in cognitive decline was
explained by the currently available imaging biomarkers or by incor-
porating AD risk factors, consistent with the previous neuropatholog-
ical studies repeatedly reporting that <50% of the variance in cogni-
tive decline before death can be accounted for even after consider-
ing hippocampal sclerosis, TDP-43, and atherosclerosis in addition to
commonly considered demographics and indices of AD, cerebrovascu-

lar disease, and Lewy body pathologies.?23

invivo imaging studies have
reached similar conclusions.>1?4>=48 A combination of cortical thick-
ness, structural connectivity, and WMHSs accounted for only 20% of
total variance,*> and in MCI, temporal lobe atrophy rates explained
9.5% to 16% of the variance in decline in various cognitive domains.*®
Similarly, up to 38% of decline in memory could be explained by inter-
actions between measures of AB-PET, fluorodeoxyglucose-PET, and
structural-MRI,*” and tau-PET tracer binding in the early Braak &
Braak stage regions accounted for only 20% of the variance in mem-
ory decline, while measures of atrophy, A3 burden, age, sex, or edu-
cation did not explain additional variance in memory performance
in a CU cohort.’? In MCI/AD, microglial activation, tau, and atrophy
accounted for up to 52% of the variance in memory decline.*® Despite
the variability in the magnitude of estimated associations, which might
be explained by the differences in cohort composition, sensitivity of
the considered imaging modalities, or single versus multiple cogni-
tive domain considerations, both autopsy studies and in vivo imag-
ing biomarker studies including ours emphasize the need to consider
other neuropathology causes, such as TDP-43 aggregation, hippocam-
pal sclerosis, or neuroinflammation, to better explain cognition across
the AD continuum.

Most clinical trials using treatments aimed at AB pathology accu-
mulation target individuals with MCI and mild-to-moderate AD clini-
cal diagnoses, similar to participants recruited in ADNI. Based on our
results, treatments that remove A and completely stop downstream
effects on tau and neurodegeneration would only partially affect cog-
nitive decline in these individuals, consistent with previous reports.3*>

Furthermore, our findings that 16% of the total variance in cognitive
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decline of CU was explained by the PLS-SEM and that only 14% of
the variance was explained by Ag, tau, and atrophy biomarkers raise
concerns about the effectiveness of AS removing treatments to pre-
vent decline in CU, an approach being tested in several treatment tri-
als. One implication of this study could be that disease-modifying ther-
apies that target AB, tau, and neurodegeneration according to the clini-
cal disease stage may be more effective in slowing cognitive decline and
ideally reverting cognitive impairment. The substantial spatial overlap
between tau burden and atrophy signatures in our results could also
provide important support for promising anti-tau therapies.

It is worth noting that within the hypothesized structural pathway
model construct, the neurobiological basis of cognitive impairment and
decline measured by either mMPACC or ADAS-Cog was similar. This sug-
gests that the neural basis of cognition may be specific to the disease
but a continuum in the disease spectrum, and robust to the tools used
to measure the cognitive outcome even though the direct effects of AD
biomarkers on these cognitive outcomes showed clinical state-specific
differences (cf. Figure 3). A great similarity was observed between
models explaining variance in concurrent cognitive impairment and
decline in cognition. This might be due to the current level of cognition
being a good predictor of cognitive decline,*?°° reflecting the fact that
people who are declining are likely to already show some impairment,
and people with more severe impairments are more likely to be declin-
ing more rapidly.

The cross-sectional nature of the imaging biomarker data assessed
in this study makes it impossible to speculate about longitudinal patho-
physiological changes potentially characteristic of future clinical pro-
gression at different disease stages. It is possible that the relative
contribution of AD risk and AD biomarkers to clinical progression in
this sample might increase over time as underlying neurodegenera-
tive processes progress. Additionally, the current study is based on
a convenience cohort in which the degree of true population repre-
sentation is not known. Most notably, WML burden was overall low
in our study cohort compared to the general population due to strict
exclusion of participants with vascular pathology etiologies in ADNI.
The WML measure does not cover all vascular pathology and a large
proportion of unexplained variance might still be related to a vascu-
lar origin. Although standardized ADNI-3 specific neuroimaging pro-
tocols were used at each ADNI site to minimize the non-biological
variance in biomarker measures, we acknowledge potential residual
scanner variability in multisite studies. Various statistical and deep

learning approaches for neuroimaging data harmonization have been

FIGURE 4 Results of path analysis of combined Alzheimer’s disease (AD) imaging biomarker pathways mediating the effect of AD-risk factors
on longitudinal cognitive decline measure of modified Preclinical Alzheimer Cognitive Composite (AmPACC) and Alzheimer’s Disease Assessment
Scale-Cognitive subscale (AADAS-Cog) across the AD continuum. Goodness-of-fit was 0.41 for both AmPACC modeling and AADAS-Cog
modeling. Squares or rectangles represent manifest variables and brain maps represent latent variables (LV). Tau LV involved fusiform, inferior
temporal, middle temporal, superior temporal, supramarginal, inferior parietal, and posterior cingulate bilaterally, and left superior parietal, left
superior frontal, right banks of superior temporal sulcus. Tau LV further involved bilateral caudal middle frontal, left pars opercularis, and right
precuneus in AADAS-Cog modeling. Atrophy LV involved hippocampus, amygdala, middle temporal, superior temporal, lateral orbitofrontal, pars
opercularis, pars triangularis, and insula bilaterally, and right banks of superior temporal sulcus, right caudal middle frontal, and right
supramarginal. Each single-headed arrow denotes a hypothesized unidirectional effect of one variable on another. Numbers associated with
effects are standardized regression coefficients or standardized factor loadings (i.e., from a latent variable to its indicators). Only the paths that
were statistically significant at P < .05 are represented. Paths that were hypothesized but were not statistically significant at P < .05 are excluded.
IL2, indicator loading squared.
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extensively applied to data from ADNI studies. In many,”! except
Fortin et al.,>2 imaging measures were harmonized by removing non-
biological variances estimated across different ADNI study phases by
pooling data from multiple sites within each study phase, an approach
that relys on the effectiveness of standardized study phase specific
imaging protocols deployed at each ADNI site. Although effectiveness
and robustness of neuroimaging data harmonization has been shown
in small sample sizes using an empirical Bayesian framework,>® we
believe that the current study cohort, which is limited to the ADNI-3
cases, does not provide enough samples per site for proper site-level
data harmonization. Specifically, T1-weighted images using the ADNI-
3 acquisition protocol are available from 59 different ADNI sites. The
number of subjects scanned at each site varies between 3 and 51, with
an average of 16.7 cases per site. When limited to CU, the subgroup
typically used for estimating empirical distributions, 22 sites have a
sample size < 10. Finally, stage-specific genetic contributions, other
than APOE, in relation to the differential stage-related pathophysiolog-
ical mechanisms warrant further studies.>*

Our results recapitulated the previously proposed mediating effects
of AB burden on cognitive impairment through cortical tau and cor-
tical atrophy, closely conforming to the AD Ag cascade hypothesis?®
and consistent with recently reported one-direction-only sequence of
pathological biomarker changes beginning with Ag deposition, through
tau deposition, neurodegeneration, and cognitive decline.”®> We also
observed that at every clinical stage, tau was a major contributor to
cognitive decline and that while tau mediated the effects of AS bur-
den on cognitive decline in all clinical stages, A burden had a stronger
independent direct effect on cognitive decline in CU, whereas cognitive
decline in MCl and dementia was largely accounted for by tau and atro-
phy. Our findings that a substantial proportion of the variance in cogni-
tion and cognitive decline was not explained by combinations of AS, tau,
and atrophy together with risk factors suggests that other pathologi-
cal aspects such as cerebrovascular, a-synuclein, or TDP-43 may con-
tribute to variance.
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