Skip to main content
. 2022 Apr 18;2022:6093613. doi: 10.1155/2022/6093613

Table 3.

Performance metrics for binary classification algorithms.

Classification algorithms Optimal
Parameterization
Performance metrics
Mean value (standard deviation)
ACC PRE REC F1 score AUC
BDT No. of Leaves: 16
Learning rate: 0.05
No. of trees: 100
0.724 (0.048) 0.714 (0.037) 0.7037 (0.063) 0.7088 (0.052) 0.717 (0.053)
DF Random split Count: 128
Maximum Depth: 32
No. of decision trees: 16
0.7317 (0.021) 0.7421 (0.017) 0.7892 (0.081) 0.7649 (0.025) 0.755 (0.017)
NN Learning rate: 0.001
No. of hidden Nodes: 314
0.711 (0.031) 0.7271 (0.043) 0.7188 (0.018) 0.7229 (0.029) 0.7616 (0.095)
LoR Optimization Tolerance: 1e-06
L1 regularization weight: 1
Memory size for L-BFGS: 18
0.6741 (0.019) 0.6805 (0.024) 0.6161 (0.027) 0.6467 (0.019) 0.6874 (0.065)
SVM Lambda – 0.001 0.694 (0.017) 0.673 (0.074) 0.6027 (0.019) 0.6359 (0.011) 0.6619 (0.037)