Skip to main content
Springer Nature - PMC COVID-19 Collection logoLink to Springer Nature - PMC COVID-19 Collection
. 2022 Apr 18;15(7):6328–6339. doi: 10.1007/s12274-022-4282-x

STING and TLR7/8 agonists-based nanovaccines for synergistic antitumor immune activation

Bo-Dou Zhang 1, Jun-Jun Wu 1, Wen-Hao Li 1, Hong-Guo Hu 1, Lang Zhao 1, Pei-Yang He 1, Yu-Fen Zhao 1,3, Yan-Mei Li 1,2,
PMCID: PMC9014842  PMID: 35464625

Abstract

Immunostimulatory therapies based on pattern recognition receptors (PRRs) have emerged as an effective approach in the fight against cancer, with the ability to recruit tumor-specific lymphocytes in a low-immunogenicity tumor environment. The agonist cyclic dinucleotides (CDNs) of the stimulator of interferon gene (STING) are a group of very promising anticancer molecules that increase tumor immunogenicity by activating innate immunity. However, the tumor immune efficacy of CDNs is limited by several factors, including relatively narrow cytokine production, inefficient delivery to STING, and rapid clearance. In addition, a single adjuvant molecule is unable to elicit a broad cytokine response and thus cannot further amplify the anticancer effect. To address this problem, two or more agonist molecules are often used together to synergistically enhance immune efficacy. In this work, we found that a combination of the STING agonist CDGSF and the Toll-like receptor 7/8 (TLR7/8) agonist 522 produced a broader cytokine response. Subsequently, we developed multicomponent nanovaccines (MCNVs) consisting of a PC7A polymer as a nanocarrier encapsulating the antigen OVA and adjuvant molecules. These MCNVs activate bone marrow-derived dendritic cells (BMDCs) to produce multiple proinflammatory factors that promote antigen cross-presentation to stimulate specific antitumor T-cell responses. In in vivo experiments, we observed that MCNVs triggered a strong T-cell response in tumor-infiltrating lymphocytes, resulting in significant tumor regression and, notably, a 100% survival rate in mice through 25 days without other partnering therapies. These data suggest that our nanovaccines have great potential to advance cancer immunotherapy with increased durability and potency.

graphic file with name 12274_2022_4282_Fig1_HTML.jpg

Electronic Supplementary Material

Supplementary material (synthesis of CDGSF, 522, PC7A and OVA; preparation of MCNVs; representative gating strategies for flow cytometry) is available in the online version of this article at 10.1007/s12274-022-4282-x.

Keywords: nanovaccines, stimulator of interferon gene (STING), Toll-like receptor 7/8, synergistic immune activation, lymph node targeting

Electronic Supplementary Material

12274_2022_4282_MOESM1_ESM.pdf (1MB, pdf)

STING and TLR7/8 agonists-based nanovaccines for synergistic antitumor immune activation

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2019YFA0904200 and 2018YFA0507600), Tsinghua University Spring Breeze Fund (No. 2020Z99CFY042), and the National Natural Science Foundation of China (No. 92053108).

References

  • [1].Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480–489. doi: 10.1038/nature10673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Sanmamed M F, Chen L P. A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell. 2018;175:313–326. doi: 10.1016/j.cell.2018.09.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [3].Esfahani K, Roudaia L, Buhlaiga N, Del Rincon S V, Papneja N, Miller W H. A review of cancer immunotherapy: From the past, to the present, to the future. Curr. Oncol. 2020;27:87–97. doi: 10.3747/co.27.5223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].Pardoll D M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012;12:252–264. doi: 10.1038/nrc3239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Ribas A, Wolchok J D. Cancer immunotherapy using checkpoint blockade. Science. 2018;359:1350–1355. doi: 10.1126/science.aar4060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [6].Hu Z T, Ott P A, Wu C J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol. 2018;18:168–182. doi: 10.1038/nri.2017.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Liu Y F, Sun Z Y, Chen P G, Huang Z H, Gao Y, Shi L, Zhao Y F, Chen Y X, Li Y M. Glycopeptide nanoconjugates based on multilayer self-assembly as an antitumor vaccine. Bioconjugate Chem. 2015;26:1439–1442. doi: 10.1021/acs.bioconjchem.5b00150. [DOI] [PubMed] [Google Scholar]
  • [8].Cai H, Huang Z H, Shi L, Zou P, Zhao Y F, Kunz H, Li Y M. Synthesis of Tn/T antigen MUC1 glycopeptide BSA conjugates and their evaluation as vaccines. Eur. J. Org. Chem. 2011;2011:3685–3689. [Google Scholar]
  • [9].Sun Z Y, Chen P G, Liu Y F, Shi L, Zhang B D, Wu J J, Zhao Y F, Chen Y X, Li Y M. Self-assembled nanoimmunostimulant for synergistic immune activation. ChemBioChem. 2017;18:1721–1729. doi: 10.1002/cbic.201700246. [DOI] [PubMed] [Google Scholar]
  • [10].Irvine D J, Hanson M C, Rakhra K, Tokatlian T. Synthetic nanoparticles for vaccines and immunotherapy. Chem. Rev. 2015;115:11109–11146. doi: 10.1021/acs.chemrev.5b00109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Shao Y, Sun Z Y, Wang Y J, Zhang B D, Liu D S, Li Y M. Designable immune therapeutical vaccine system based on DNA supramolecular hydrogels. ACS Appl. Mater. Interfaces. 2018;10:9310–9314. doi: 10.1021/acsami.8b00312. [DOI] [PubMed] [Google Scholar]
  • [12].Li W H, Li Y M. Chemical strategies to boost cancer vaccines. Chem. Rev. 2020;120:11420–11478. doi: 10.1021/acs.chemrev.9b00833. [DOI] [PubMed] [Google Scholar]
  • [13].Sun Z Y, Chen P G, Liu Y F, Zhang B D, Wu J J, Chen Y X, Zhao Y F, Li Y M. Multi-component self-assembled antitumor nano-vaccines based on MUC1 glycopeptides. Chem. Commun. 2016;52:7572–7575. doi: 10.1039/c6cc02000c. [DOI] [PubMed] [Google Scholar]
  • [14].Beatty G L, Gladney W L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 2015;21:687–692. doi: 10.1158/1078-0432.CCR-14-1860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [15].Khalil D N, Smith E L, Brentjens R J, Wolchok J D. Erratum: The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 2016;13:394. doi: 10.1038/nrclinonc.2016.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, Mueller B, Quaratino S, Sabatos-Peyton C, Petruzzelli L, et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat. Rev. Cancer. 2017;17:286–301. doi: 10.1038/nrc.2017.17. [DOI] [PubMed] [Google Scholar]
  • [17].Fridman W H, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 2017;14:717–734. doi: 10.1038/nrclinonc.2017.101. [DOI] [PubMed] [Google Scholar]
  • [18].Binnewies M, Roberts E W, Kersten K, Chan V, Fearon D F, Merad M, Coussens L M, Gabrilovich D I, Ostrand-Rosenberg S, Hedrick C C, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018;24:541–550. doi: 10.1038/s41591-018-0014-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [19].Mount A, Koernig S, Silva A, Drane D, Maraskovsky E, Morelli A B. Combination of adjuvants: The future of vaccine design. Expert Rev. Vaccines. 2013;12:733–746. doi: 10.1586/14760584.2013.811185. [DOI] [PubMed] [Google Scholar]
  • [20].Deng L F, Liang H, Xu M, Yang X M, Burnette B, Arina A, Li X D, Mauceri H, Beckett M, Darga T, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41:843–852. doi: 10.1016/j.immuni.2014.10.019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [21].Woo S R, Fuertes M B, Corrales L, Spranger S, Furdyna M J, Leung M Y K, Duggan R, Wang Y, Barber G N, Fitzgerald K A, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41:830–842. doi: 10.1016/j.immuni.2014.10.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [22].Wu J J, Zhao L, Hu H G, Li W H, Li Y M. Agonists and inhibitors of the STING pathway: Potential agents for immunotherapy. Med. Res. Rev. 2020;40:1117–1141. doi: 10.1002/med.21649. [DOI] [PubMed] [Google Scholar]
  • [23].Jiang M L, Chen P X, Wang L, Li W, Chen B, Liu Y, Wang H, Zhao S, Ye L Y, He Y Y, et al. cGAS-STING, an important pathway in cancer immunotherapy. J. Hematol. Oncol. 2020;13:81. doi: 10.1186/s13045-020-00916-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [24].Chen Q, Sun L J, Chen Z J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 2016;17:1142–1149. doi: 10.1038/ni.3558. [DOI] [PubMed] [Google Scholar]
  • [25].Gao P, Ascano M, Zillinger T, Wang W Y, Dai P H, Serganov A A, Gaffney B L, Shuman S, Jones R A, Deng L, et al. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell. 2013;154:748–762. doi: 10.1016/j.cell.2013.07.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [26].Corrales L, McWhirter S M, Dubensky T W, Jr, Gajewski T F. The host STING pathway at the interface of cancer and immunity. J. Clin. Invest. 2016;126:2404–2411. doi: 10.1172/JCI86892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [27].Li A P, Yi M, Qin S, Song Y P, Chu Q, Wu K M. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J. Hematol. Oncol. 2019;12:35. doi: 10.1186/s13045-019-0721-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [28].Fu J, Kanne D B, Leong M, Glickman L H, McWhirter S M, Lemmens E, Mechette K, Leong J J, Lauer P, Liu W Q, et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci. Transl. Med. 2015;7:283ra52. doi: 10.1126/scitranslmed.aaa4306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [29].Demaria O, De Gassart A, Coso S, Gestermann N, Di Domizio J, Flatz L, Gaide O, Michielin O, Hwu P, Petrova T V, et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc. Natl. Acad. Sci. USA. 2015;112:15408–15413. doi: 10.1073/pnas.1512832112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [30].Hanson M C, Crespo M P, Abraham W, Moynihan K D, Szeto G L, Chen S H, Melo M B, Mueller S, Irvine D J. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J. Clin. Invest. 2015;125:2532–2546. doi: 10.1172/JCI79915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [31].Corrales L, Glickman L H, McWhirter S M, Kanne D B, Sivick K E, Katibah G E, Woo S R, Lemmens E, Banda T, Leong J J, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11:1018–1030. doi: 10.1016/j.celrep.2015.04.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [32].Nakamura T, Miyabe H, Hyodo M, Sato Y, Hayakawa Y, Harashima H. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma. J. Controlled Release. 2015;216:149–157. doi: 10.1016/j.jconrel.2015.08.026. [DOI] [PubMed] [Google Scholar]
  • [33].Curran E, Chen X F, Corrales L, Kline D E, Dubensky T W, Jr, Duttagupta P, Kortylewski M, Kline J. STING pathway activation stimulates potent immunity against acute myeloid leukemia. Cell Rep. 2016;15:2357–2366. doi: 10.1016/j.celrep.2016.05.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [34].Ohkuri T, Kosaka A, Ishibashi K, Kumai T, Hirata Y, Ohara K, Nagato T, Oikawa K, Aoki N, Harabuchi Y, et al. Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunol. Immunother. 2017;66:705–716. doi: 10.1007/s00262-017-1975-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [35].Koshy S T, Cheung A S, Gu L, Graveline A R, Mooney D J. Liposomal delivery enhances immune activation by STING agonists for cancer immunotherapy. Adv. Biosyst. 2017;1:1600013. doi: 10.1002/adbi.201600013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [36].Gulen M F, Koch U, Haag S M, Schuler F, Apetoh L, Villunger A, Radtke F, Ablasser A. Signalling strength determines proapoptotic functions of STING. Nat. Commun. 2017;8:427. doi: 10.1038/s41467-017-00573-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [37].Wu J J, Li W H, Chen P G, Zhang B D, Hu H G, Li Q Q, Zhao L, Chen Y X, Zhao Y F, Li Y M. Targeting STING with cyclic di-GMP greatly augmented immune responses of glycopeptide cancer vaccines. Chem. Commun. 2018;54:9655–9658. doi: 10.1039/c8cc04860f. [DOI] [PubMed] [Google Scholar]
  • [38].An M, Yu C S, Xi J C, Reyes J, Mao G Z, Wei W Z, Liu H P. Induction of necrotic cell death and activation of STING in the tumor microenvironment via cationic silica nanoparticles leading to enhanced antitumor immunity. Nanoscale. 2018;10:9311–9319. doi: 10.1039/c8nr01376d. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [39].Baird J R, Bell R B, Troesch V, Friedman D, Bambina S, Kramer G, Blair T C, Medler T, Wu Y P, Sun Z Y, et al. Evaluation of explant responses to STING ligands: Personalized immunosurgical therapy for head and neck squamous cell carcinoma. Cancer Res. 2018;78:6308–6319. doi: 10.1158/0008-5472.CAN-18-1652. [DOI] [PubMed] [Google Scholar]
  • [40].Leach D G, Dharmaraj N, Piotrowski S L, Lopez-Silva T L, Lei Y L, Sikora A G, Young S, Hartgerink J D. STINGel: Controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy. Biomaterials. 2018;163:67–75. doi: 10.1016/j.biomaterials.2018.01.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [41].Park C G, Hartl C A, Schmid D, Carmona E M, Kim H J, Goldberg M S. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci. Transl. Med. 2018;10:eaar1916. doi: 10.1126/scitranslmed.aar1916. [DOI] [PubMed] [Google Scholar]
  • [42].Wilson D R, Sen R, Sunshine J C, Pardoll D M, Green J J, Kim Y J. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy. Nanomed.: Nanotechnol., Biol. Med. 2018;14:237–246. doi: 10.1016/j.nano.2017.10.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43].Junkins R D, Gallovic M D, Johnson B M, Collier M A, Watkins-Schulz R, Cheng N, David C N, McGee C E, Sempowski G D, Shterev I, et al. A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination. J. Controlled Release. 2018;270:1–13. doi: 10.1016/j.jconrel.2017.11.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [44].Collier M A, Junkins R D, Gallovic M D, Johnson B M, Johnson M M, Macintyre A N, Sempowski G D, Bachelder E M, Ting J P Y, Ainslie K M. Acetalated dextran microparticles for codelivery of STING and TLR7/8 agonists. Mol. Pharmaceutics. 2018;15:4933–4946. doi: 10.1021/acs.molpharmaceut.8b00579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [45].Shae D, Becker K W, Christov P, Yun D S, Lytton-Jean A K R, Sevimli S, Ascano M, Kelley M, Johnson D B, Balko J M, et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 2019;14:269–278. doi: 10.1038/s41565-018-0342-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Hu H G, Wu J J, Zhang B D, Li W H, Li Y M. Pam3CSK4−CDGSF augments antitumor immunotherapy by synergistically activating TLR1/2 and STING. Bioconjugate Chem. 2020;31:2499–2503. doi: 10.1021/acs.bioconjchem.0c00522. [DOI] [PubMed] [Google Scholar]
  • [47].Li S X, Luo M, Wang Z H, Feng Q, Wilhelm J, Wang X, Li W, Wang J, Cholka A, Fu Y X, et al. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat. Biomed. Eng. 2021;5:455–466. doi: 10.1038/s41551-020-00675-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [48].Wu J J, Zhao L, Han B B, Hu H G, Zhang B D, Li W H, Chen Y X, Li Y M. A novel STING agonist for cancer immunotherapy and a SARS-CoV-2 vaccine adjuvant. Chem. Commun. 2021;57:504–507. doi: 10.1039/d0cc06959k. [DOI] [PubMed] [Google Scholar]
  • [49].Staats H F, Ennis F A., Jr IL-1 is an effective adjuvant for mucosal and systemic immune responses when coadministered with protein immunogens. J. Immunol. 1999;162:6141–6147. [PubMed] [Google Scholar]
  • [50].Huang T, Zhao K L, Zhang Z Q, Tang C, Zhang X Y, Yue B S. DNA vaccination based on pyolysin co-immunized with IL-1β enhances host antibacterial immunity against Trueperella pyogenes infection. Vaccine. 2016;34:3469–3477. doi: 10.1016/j.vaccine.2016.04.025. [DOI] [PubMed] [Google Scholar]
  • [51].Metzger D W. Interleukin-12 as an adjuvant for induction of protective antibody responses. Cytokine. 2010;52:102–107. doi: 10.1016/j.cyto.2010.06.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [52].Stevceva L, Moniuszko M, Ferrari M G. Utilizing IL-12, IL-15 and IL-7 as mucosal vaccine adjuvants. Lett. Drug Des. Discov. 2006;3:586–592. doi: 10.2174/157018006778194655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [53].Diehl S A, Schmidlin H, Nagasawa M, Blom B, Spits H. IL-6 triggers IL-21 production by human CD4+ T cells to drive STAT3-dependent plasma cell differentiation in B cells. Immunol. Cell Biol. 2012;90:802–811. doi: 10.1038/icb.2012.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [54].Arulanandam B P, O’Toole M, Metzger D W. Intranasal interleukin-12 is a powerful adjuvant for protective mucosal immunity. J. Infect. Dis. 1999;180:940–949. doi: 10.1086/314996. [DOI] [PubMed] [Google Scholar]
  • [55].Arulanandam B P, Mittler J N, Lee W T, O’Toole M, Metzger D W. Neonatal administration of IL-12 enhances the protective efficacy of antiviral vaccines. J. Immunol. 2000;164:3698–3704. doi: 10.4049/jimmunol.164.7.3698. [DOI] [PubMed] [Google Scholar]
  • [56].Ichinohe T, Lee H K, Ogura Y, Flavell R, Iwasaki A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 2009;206:79–87. doi: 10.1084/jem.20081667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [57].Kayamuro H, Yoshioka Y, Abe Y, Arita S, Katayama K, Nomura T, Yoshikawa T, Kubota-Koketsu R, Ikuta K, Okamoto S, et al. Interleukin-1 family cytokines as mucosal vaccine adjuvants for induction of protective immunity against influenza virus. J. Virol. 2010;84:12703–12712. doi: 10.1128/JVI.01182-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [58].Schulz E G, Mariani L, Radbruch A, Höfer T. Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-γ and interleukin-12. Immunity. 2009;30:673–683. doi: 10.1016/j.immuni.2009.03.013. [DOI] [PubMed] [Google Scholar]
  • [59].Randolph G J, Angeli V, Swartz M A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 2005;5:617–628. doi: 10.1038/nri1670. [DOI] [PubMed] [Google Scholar]
  • [60].Bousso P. T-cell activation by dendritic cells in the lymph node: Lessons from the movies. Nat. Rev. Immunol. 2008;8:675–684. doi: 10.1038/nri2379. [DOI] [PubMed] [Google Scholar]
  • [61].Smith D M, Simon J K, Baker J R., Jr Applications of nanotechnology for immunology. Nat. Rev. Immunol. 2013;13:592–605. doi: 10.1038/nri3488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [62].Trevaskis N L, Kaminskas L M, Porter C J H. From sewer to saviour—Targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov. 2015;14:781–803. doi: 10.1038/nrd4608. [DOI] [PubMed] [Google Scholar]
  • [63].Goldberg M S. Improving cancer immunotherapy through nanotechnology. Nat. Rev. Cancer. 2019;19:587–602. doi: 10.1038/s41568-019-0186-9. [DOI] [PubMed] [Google Scholar]
  • [64].Zhou K J, Wang Y G, Huang X N, Luby-Phelps K, Sumer B D, Gao J M. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem., Int. Ed. 2011;50:6109–6114. doi: 10.1002/anie.201100884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [65].Luo M, Wang H, Wang Z H, Cai H C, Lu Z G, Li Y, Du M J, Huang G, Wang C S, Chen X, et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 2017;12:648–654. doi: 10.1038/nnano.2017.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [66].Aroh C, Wang Z H, Dobbs N, Luo M, Chen Z J, Gao J M, Yan N. Innate immune activation by cGMP-AMP nanoparticles leads to potent and long-acting antiretroviral response against HIV-1. J. Immunol. 2017;199:3840–3848. doi: 10.4049/jimmunol.1700972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [67].Luo M, Liu Z D, Zhang X Y, Han C H, Samandi L Z, Dong C B, Sumer B D, Lea J, Fu Y X, Gao J M. Synergistic STING activation by PC7A nanovaccine and ionizing radiation improves cancer immunotherapy. J. Controlled Release. 2019;300:154–160. doi: 10.1016/j.jconrel.2019.02.036. [DOI] [PubMed] [Google Scholar]
  • [68].Feng Q, Wilhelm J, Gao J M. Transistor-like ultra-pH-sensitive polymeric nanoparticles. Acc. Chem. Res. 2019;52:1485–1495. doi: 10.1021/acs.accounts.9b00080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [69].Wilhelm J, Wang Z H, Sumer B D, Gao J M. Exploiting nanoscale cooperativity for precision medicine. Adv. Drug Deliv. Rev. 2020;158:63–72. doi: 10.1016/j.addr.2020.08.012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [70].Li S X, Bennett Z T, Sumer B D, Gao J M. Nano-immune-engineering approaches to advance cancer immunotherapy: Lessons from ultra-pH-sensitive nanoparticles. Acc. Chem. Res. 2020;53:2546–2557. doi: 10.1021/acs.accounts.0c00475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [71].Wilhelm J, Quinoñes-Pérez M, Wang J, Wang X, Basava V S, Gao J M. Antigen folding improves loading efficiency and antitumor efficacy of PC7A nanoparticle vaccine. J. Controlled Release. 2021;329:353–360. doi: 10.1016/j.jconrel.2020.11.056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [72].Kim H, Niu L, Larson P, Kucaba T A, Murphy K A, James B R, Ferguson D M, Griffith T S, Panyam J. Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials. 2018;164:38–53. doi: 10.1016/j.biomaterials.2018.02.034. [DOI] [PubMed] [Google Scholar]
  • [73].Schiaffo C E, Shi C, Xiong Z M, Olin M, Ohlfest J R, Aldrich C C, Ferguson D M. Structure-activity relationship analysis of imidazoquinolines with Toll-like receptors 7 and 8 selectivity and enhanced cytokine induction. J. Med. Chem. 2014;57:339–347. doi: 10.1021/jm4004957. [DOI] [PubMed] [Google Scholar]
  • [74].Schmitz N, Kurrer M, Bachmann M F, Kopf M. Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J. Virol. 2005;79:6441–6448. doi: 10.1128/JVI.79.10.6441-6448.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [75].Guglani L, Khader S A. Th17 cytokines in mucosal immunity and inflammation. Curr. Opin. HIV AIDS. 2010;5:120–127. doi: 10.1097/COH.0b013e328335c2f6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [76].Warger T, Osterloh P, Rechtsteiner G, Fassbender M, Heib V, Schmid B, Schmitt E, Schild H, Radsak M P. Synergistic activation of dendritic cells by combined Toll-like receptor ligation induces superior CTL responses in vivo. Blood. 2006;108:544–550. doi: 10.1182/blood-2005-10-4015. [DOI] [PubMed] [Google Scholar]
  • [77].Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 2007;7:179–190. doi: 10.1038/nri2038. [DOI] [PubMed] [Google Scholar]
  • [78].Hu Y, Cong X Y, Chen L, Qi J, Wu X J, Zhou M M, Yoo D, Li F, Sun W B, Wu J Q, et al. Synergy of TLR3 and 7 ligands significantly enhances function of DCs to present inactivated PRRSV antigen through TRIF/MyD88-NF-κB signaling pathway. Sci. Rep. 2016;6:23977. doi: 10.1038/srep23977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [79].Bocanegra Gondan A I, Ruiz-de-Angulo A, Zabaleta A, Gómez Blanco N, Cobaleda-Siles B M, García-Granda M J, Padro D, Llop J, Arnaiz B, Gato M, et al. Effective cancer immunotherapy in mice by polyIC-imiquimod complexes and engineered magnetic nanoparticles. Biomaterials. 2018;170:95–115. doi: 10.1016/j.biomaterials.2018.04.003. [DOI] [PubMed] [Google Scholar]
  • [80].Matsumoto M, Seya T. TLR3: Interferon induction by double-stranded RNA including poly(I:C) Adv. Drug Deliv. Rev. 2008;60:805–812. doi: 10.1016/j.addr.2007.11.005. [DOI] [PubMed] [Google Scholar]
  • [81].Krieg A M. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 2006;5:471–484. doi: 10.1038/nrd2059. [DOI] [PubMed] [Google Scholar]
  • [82].Dellacherie M O, Seo B R, Mooney D J. Macroscale biomaterials strategies for local immunomodulation. Nat. Rev. Mater. 2019;4:379–397. [Google Scholar]
  • [83].Milling L, Zhang Y, Irvine D J. Delivering safer immunotherapies for cancer. Adv. Drug Deliv. Rev. 2017;114:79–101. doi: 10.1016/j.addr.2017.05.011. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

12274_2022_4282_MOESM1_ESM.pdf (1MB, pdf)

STING and TLR7/8 agonists-based nanovaccines for synergistic antitumor immune activation


Articles from Nano Research are provided here courtesy of Nature Publishing Group

RESOURCES