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Abstract

The SARS-CoV-2 epidemic is merely the most recent demonstration that our current approach 

to emerging zoonotic infectious disease is ineffective. SARS, MERS, Ebola, Nipah, and an array 

of arenavirus infections sporadically spillover into human populations and are often contained 

only as a result of their poor transmission in human hosts, coupled with intense public health 

control efforts in the early stages of an emerging epidemic. It is now more apparent than ever 

that we need a better and more proactive approach. One possibility is to eliminate the threat 

of spillover before it occurs using vaccines capable of autonomously spreading through wild 

animal reservoirs. We are now poised to begin developing self-disseminating vaccines targeting 

a wide range of human pathogens, but important decisions remain about how they can be 

most effectively designed and used to target pathogens with a high risk of spillover and/or 

emergence. In this perspective, we first review the basic epidemiological theory establishing the 

feasibility and utility of self-disseminating vaccines. We then outline a road map for overcoming 

remaining technical challenges: identifying high-risk pathogens before they emerge, optimizing 

vaccine design with an eye to evolution, behavior, and epidemiology, and minimizing the risk of 

unintended consequences.

Introduction

In the last few decades, viral zoonoses have become part of the global mindset: Ebola, H1N1 

influenza, SARS, COVID-19, MERS, and Nipah are all infectious diseases that developed 

into epidemics, sometimes contained and sometimes not. There are also many viral zoonoses 

that routinely or sporadically spillover into human or livestock populations but have so far 

not led to major self-propagating epidemics: rabies, rodent-borne arenaviruses (e.g., Lassa, 

Junin, Machupo, Lujo), and Hantaviruses (e.g., Sin Nombre virus) [1, 2, 3, 4, 5]. For most of 

these pathogens, human and livestock vaccines do not yet exist. The result is a chronic and 

substantial burden on human health and well-being for those viruses that spillover regularly 

(e.g., Lassa and Rabies) and a reliance on contact tracing and quarantine when sustained 

transmission within humans becomes established (e.g., Ebola and SARS-CoV-2). Although 

technological advances are continually reducing the time required for vaccine development 

[6, 7, 8, 9] and beginning to automate the process of contact tracing [10], the failure to 
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contain the SARS-CoV-2 pandemic illustrates that those methods remain inadequate with 

more than 5 million sickened and hundreds of thousands dead only five months after the 

virus was first detected in Wuhan, China in late December 2019.

A promising approach for mitigating the public health burden of chronic spillover and 

reducing the threat of future pandemics, is to shift our focus to target high risk pathogens 

within their animal reservoirs before viral spillover and/or emergence can occur [11]. 

Precedent for this approach is long-standing, with wildlife vaccination programs in Europe 

and North America substantially reducing the risk of rabies infection for the human 

population [12]. An additional advantage of proactively vaccinating the animal reservoir 

rather than the human population itself is that long-term risk reduction through pathogen 

elimination or eradication becomes possible. For other threats, however, the inaccessibility 

and rapid turnover of reservoir populations confounds standard vaccination practices to 

suppress viruses at the source. Advances in genetic engineering now raise the possibility 

of overcoming these challenges through the use of self-disseminating vaccines capable of 

transferring from one individual to the next [13, 14].

Self-disseminating vaccines have their roots in the Australian effort to create sterilizing 

vaccines for small mammal control [15, 16], and have also been developed and 

tested experimentally as a tool for vaccinating rabbits against Myxomatosis and Rabbit 

Hemorrhagic Fever [17, 18, 19]. Their obvious advantage, of course, is that for each animal 

you vaccinate directly, additional animals are vaccinated for ”free” either through behavioral 

transmission of a conventional vaccine or through the contagious spread of a transmissible 

vaccine. There are two possible applications for self-disseminating vaccines, one that can 

be realized now and another that is more aspirational. The immediate application focuses 

on well-characterized pathogens such as rabies and Lassa virus that regularly spillover into 

the human population from known animal reservoirs. The aspirational application envisions 

the possibility of preventing future pandemics by eliminating high risk zoonotic pathogens 

from their animal reservoirs before spillover into the human population occurs. Despite 

their promise, self-disseminating vaccines have not yet been used to reduce the risk of viral 

spillover into humans. In this perspective, we begin by reviewing the basic epidemiological 

theory establishing the feasibility and utility of self-disseminating vaccines. We then outline 

a road map for addressing remaining technical challenges and design decisions: identifying 

high-risk pathogens before they emerge, optimizing vaccine design, and minimizing the risk 

of unintended consequences.

The numbers: not all self-dissemination is equal

Mathematical and computational models demonstrate that self-disseminating vaccines 

reduce the effort required to eliminate human pathogens from their wildlife reservoirs [20, 

21, 22]. The magnitude of the benefits provided by vaccine self-dissemination, however, 

depends on the type of self-disseminating vaccine and on elements of vaccine epidemiology, 

which in turn depend on how the vaccine is created and released. A major distinction among 

self-disseminating vaccines with significant epidemiological consequences is whether the 

vaccine is ‘transmissible’ and capable of indefinite transmission or is ‘transferable’ and 

restricted to a single round of transmission (Figure 1). In the next sections, we review 
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the basic epidemiological theory quantifying the gains provided by each type of self-

disseminating vaccine. These theoretical results use the classical epidemiological concept 

of a basic reproductive number, R0, that quantifies the number of secondary ‘vaccine 

infections’ created by the first vaccinated individual in the population.

‘Transmissible’ vaccines reduce vaccination effort.

Transmissible vaccines capable of infectious spread through a reservoir population reduce 

the vaccination effort required to suppress a target pathogen. With high enough transmission, 

a transmissible vaccine allows for autonomous pathogen eradication [20]. These benefits 

of vaccine transmission can be easily quantified in simple models where the reservoir 

population is assumed to be homogeneous and well-mixed and the vaccine can be 

continuously introduced into the reservoir population at a rate σ. In this idealized scenario, 

the reduction in the vaccination effort required to eliminate the pathogen (relative to a 

non-transmissible vaccine) is given by the factor ρ:

ρ = R0, V
R0, P

, (1)

where R0,V and R0,P measure the average number of new infections produced by an 

infectious individual introduced into an entirely susceptible population (for the vaccine and 

pathogen, respectively) [20]. This result establishes guiding principles for the engineering 

and use of transmissible vaccines that achieve a desired impact on the pathogen. If 

the sole concern is rapid pathogen extirpation, transmissible vaccines with greater R0,V 

values will always be preferable, and autonomous eradication will require a vaccine with 

an R0,V greater than that of the target pathogen. This requirement will be particularly 

important for pathogens with reservoir species that are difficult to vaccinate directly, or 

pathogens that circulate in regions lacking the resources and infrastructure to implement 

regular vaccine introduction. In contrast, if regular introduction of the vaccine into the 

reservoir population is feasible and concerns about vaccine safety predominate, pathogen 

eradication can be facilitated using a vaccine with an R0,V < 1 that will self-extinguish once 

introduction ceases. In both cases, vaccine self-dissemination facilitates pathogen control 

and/or elimination, although these benefits can obviously be magnified manifold for highly 

transmissible vaccines with R0,V values well above 1.

One-step, ‘transferable’ vaccines reduce vaccination effort despite being dead ends.

It might seem that a vaccine which transfers only a single step is at a strong disadvantage 

relative to one that transmits indefinitely. There is indeed a disadvantage of limited 

transmission, but not necessarily much [23]. For instance, in a homogeneous and well-

mixed reservoir population, a transferable vaccine reduces the vaccination effort required to 

eradicate a target pathogen by a proportion ρ:

ρ = R0, V
R0, V + R0, P

. (2)
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Comparing this result (2) with our earlier result for a transmissible vaccine (1) shows that, 

all else being equal, a single-step transferable vaccine will always perform worse than 

fully transmissible vaccine. However, comparing equations (1) and (2) and their respective 

panels in Figure 2 shows that this difference is negligible for weakly self-disseminating 

vaccines. Biologically, this quasi-equivalence occurs because even fully transmissible 

vaccines with low R0,V produce only short chains of transmission, reducing their advantage 

over single-step transferable vaccines. As vaccine R0,V increases, however, the advantage 

of a transmissible vaccine becomes more appreciable. Most importantly, a transmissible 

vaccine will automatically displace the pathogen whenever the vaccine has the higher R0, 

whereas a transferable vaccine has no such possibility – it must be applied continually up to 

the point that the pathogen is extinguished.

Identifying appropriate targets: high-risk pathogens and their reservoirs

To design and use a self-disseminating vaccine effectively, we minimally require a modest 

understanding of pathogen epidemiology and the distribution and ecology of its zoonotic 

reservoir(s). For some important human pathogens this is a relatively straightforward task 

because reservoir species and pathogen are well known. For instance, Rabies, Lassa, and Sin 

Nombre viruses are well characterized and their reservoir species relatively well-understood 

[24, 25, 26, 27, 12]. Rabies virus, in particular, makes a compelling target for development 

of a self-disseminating vaccine because effective wildlife vaccines already exist – the only 

remaining hurdle is achieving self-dissemination.

Still, even for a virus as well-studied as rabies, challenges must be overcome. Perhaps 

the most significant is the circulation of virus within multiple wildlife reservoirs [28], 

each of which contributes to the global persistence of rabies [29]. Fortunately, because 

rabies virus generally persists in species specific transmission cycles, spillover risk from 

any particular reservoir can be reduced using a single self-disseminating vaccine. Global 

eradication of rabies would be more complex, of course, and require development of 

multiple self-disseminating vaccines, each targeting a different reservoir species. Lassa virus 

also makes an obvious target for development of self-disseminating vaccines because the 

virus itself is well-characterized, and we have a relatively good understanding of the primary 

reservoir and its ecology [24, 30, 31]. Here too, however, multiple rodent species have been 

shown to harbor the virus [25] and we do not yet know what fraction of spillover into 

the human population can be attributed to the primary reservoir, Mastomys natalensis, and 

what fraction to the remaining secondary reservoirs. Other human pathogens that make more 

challenging candidates for the application of self-disseminating vaccines include Marburg, 

Hendra, and some well-studied coronaviruses [4, 32, 33, 34, 35].

Beyond application to these relatively well-studied viruses, self-disseminating vaccines 

could also be used to preempt spillover and emergence of novel pathogens. The challenge, of 

course, is predicting which of the myriad viruses circulating within wild animal populations 

represent imminent threats of emergence into the human population. Developing this 

capacity will require investment and expansion of global surveillance efforts within wild 

animals [11, 36]. For instance, the USAID PREDICT program has identified more than 

949 unique viruses, including the discovery of a novel Ebolavirus, and has improved our 
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understanding of viral distributions and reservoir species [37, 38, 35, 39, 34]. Surveillance 

alone is not sufficient, however, and needs to be coupled with new methods that capitalize on 

advances in genomics, phylogenetics, and machine learning to predict which novel viruses 

represent imminent threats of emergence, as well as their primary animal reservoirs [40, 

41, 42, 43, 44, 45, 46]. Despite these advances in viral surveillance and risk forecasting, 

it remains unclear to what extent we will ever be able to reliably anticipate which novel 

pathogens are likely to emerge in the near future. Thus, at least for the near-term, self-

disseminating vaccines are likely to have the greatest impact on human and animal health 

when applied to well-known viruses with an established history of spillover and emergence 

into the human population.

Strategies for implementation

Advances in genetic engineering have enabled the development of self-disseminating 

vaccines, but success will also rest on optimizing implementation with an eye toward 

ecology, evolution and epidemiological constraints. Below, we explain some of the more 

important considerations that are likely to affect the first generation of self-disseminating 

vaccines.

Tailoring to host biology

For transferable (one-step) vaccines, the primary challenge is identifying behavioral patterns 

of reservoir species that can be used to disseminate the vaccine with a high one-step R0,V. 

The best studied of these deliveries is allogrooming in bats, where individuals within a 

colony groom each other and provide an opportunity for the widespread oral transmission of 

vaccines delivered to the bat’s fur. Using topical application to individual bats of rhodamine 

b, a biomarker that causes fluorescence in hair follicles after ingestion, Bakker et al. 

[47] demonstrated that each direct application led to ingestion by between 1.45 and 2.11 

additional bats. Another behavior that might provide an effective avenue for single-step 

vaccine transfer is nursing in mammals, either through topical application or development 

of vaccine baits that can be excreted in milk and ingested by offspring or disseminated 

more broadly through allosuckling [48]. A secondary challenge in designing effective 

transferable vaccines is optimizing the vaccine itself so that it can be effectively passed to 

other individuals. Thus, issues of vaccine concentration, the matrix in which it is embedded 

and even the anatomical sites of delivery will need to be worked out [49]. There may also be 

strong seasonality in some systems that can be used to tune the timing of vaccine delivery to 

magnify impact on population level immunity [50].

Success of transmissible vaccines will also benefit from delivery to individuals with specific 

behaviors. Choice of who to directly vaccinate will be most important in planning the 

initial introduction of the vaccine and may also influence the rate and extent of spread 

through the reservoir population. For instance, timing the introduction of the transmissible 

vaccine to coincide with seasonal birth pulses in the reservoir species may increase the 

likelihood of vaccine establishment and spread [50]. Vaccine transmission may also differ 

among classes of individuals (e.g., be higher from aggressive males or new mothers), so 

choice of which individuals to initially vaccinate may have a large influence on the success 
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of vaccine introductions [51]. Spatial structure of the reservoir, too, is likely to influence 

the spread of a transmissible vaccine and to be an important consideration in planning the 

number and location of initial introductions [21]. In addition to these impacts on initial 

establishment, reservoir species biology may influence the long-term rate of vaccine spread 

through the population, creating challenges and opportunities for transmissible vaccine 

design, particularly the choice of viral vectors.

Attenuated versus recombinant vector vaccines

Two types of live vaccine designs potentially suitable for self dissemination are attenuated 

and recombinant vector vaccines (Figure 3). Attenuated vaccines are wild-type viruses 

modified to avoid pathogenesis, usually by reducing viral growth rate. Recombinant vector 

vaccines are developed by inserting immunogenic genes from the target pathogen into a 

competent but innocuous viral vector. For single-step transferable vaccines, the decision 

between these two types of vaccine designs may be of little importance because the ability 

to transmit infectiously from host to host does not need to be maintained. For transmissible 

vaccines, however, the choice between attenuated and recombinant designs may determine 

how well the vaccine is able to self-disseminate.

Effective transmissible vaccines developed using attenuation must maintain significant 

levels of transmission while producing minimal disease. Yet, evolutionary theory and 

observations from many attenuated vaccines suggests that reduced disease (or virulence) and 

decreased rates of transmission can go hand in hand [52]. Thus, developing safe but highly 

transmissible attenuated vaccines may be challenging. An additional problem confronting 

attenuated transmissible vaccines is the possibility of evolution returning the vaccine to its 

wild-type and pathogenic state. For instance, we now know that Oral Polio Vaccine (OPV) 

is transmissible and readily evolves back to wild type virulence [53]. Although new methods 

of attenuation greatly limit evolutionary reversion [54, 55], an attenuated vaccine whose R0 

exceeds 1 will always pose an ongoing threat of reversion if the wild-type pathogen has been 

extinguished, enabling the attenuated virus to persist indefinitely. For this reason, attenuated 

transmissible vaccines are unlikely to ever be suitable tools for eliminating human pathogens 

from their wildlife reservoirs. They may, however, be safe and effective tools for controlling 

pathogens that exclusively infect wild or agricultural animal populations and pose no risk of 

infection for humans, as long as the benefits gained from vaccination outweigh the costs of 

reversion to wild-type virulence at the population level [20].

Recombinant vector vaccines avoid both problems of attenuated transmissible vaccines. 

Transmission should depend primarily on the vector, making it possible to develop 

transmissible vaccines with an R0 exceeding that of the target pathogen while maintaining 

the avirulent phenotype of the vector. It may also be possible to enhance vector R0 

by selecting highly transmissible vector strains or even adapting the vector for rapid 

transmission using serial passages through captive reservoir populations. Consequently, 

recombinant vaccines are a priori the most promising approach for a transmissible vaccine. 

Furthermore, because selection favoring increased transmission is likely to favor mutations 

resulting in the loss or down-regulation of the immunogenic insert, we expect the most 

likely outcome of evolution to be a return to the innocuous viral vector. Thus, evolution 
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may reduce the effectiveness of recombinant vaccines, but is unlikely to result in increased 

virulence or pathogenecity [56].

Evading prevailing immunity

Spread of transferable and transmissible vaccines is impeded by pre-existing immunity 

to the vaccine: pre-existing immunity effectively reduces vaccine R0 and thus requires 

correspondingly greater effort (e.g., equations 1, 2). For transmissible vaccines using a 

recombinant vector design, prevailing host immunity to either vector or pathogen will 

slow vaccine spread [22]. Host immunity may thus strongly influence choice of a vector: 

viruses in the genus Cytomegalovirus (CMV) and their relatives in the Betaherpesvirinae 

are considered promising candidates because they have a demonstrated propensity for 

superinfection and apparent lack of protective immunity [14]. Alternative approaches to 

reducing the burden of pre-existing immunity to the vector include using a foreign vector 

that does not naturally infect the reservoir species or using rare strains of an endemic vector 

for which only limited immunity exists [9]. Using a foreign vector does, however, carry 

substantial risks unlikely to be justifiable in most cases.

Proof of concept

Although our understanding of self-disseminating vaccines and their promise remains 

largely theoretical, empirical studies have demonstrated that both transmissible and 

transferable vaccines can be developed. The best studied transmissible vaccine was created 

using a naturally attenuated myxoma virus that was engineered as a recombinant vector 

vaccine against rabbit hemorrhagic disease [18, 17, 19]. Field trials of this transmissible 

vaccine were conducted by releasing 76 directly vaccinated animals and 71 unvaccinated 

sentinel animals onto the small Isla del Aire, off the coast of Spain [18]. After 32 days, 

25 sentinel animals were recaptured; 56% had seroconverted due to indirect vaccination. 

Back of the envelope calculations show that these values suggest an R0 for the vaccine 

of between 1.39 and 2.11, depending on what is assumed about the recovery rate from 

vaccine infection. This study demonstrates the feasibility of a transmissible vaccine and also 

illustrates additional possibilities for vaccine design that use attenuated viruses as the vector.

As noted above, the potential feasibility of a transferable vaccine was demonstrated for 

vampire bats using ingestible dyes placed on the fur of index bats [47]. Their results suggest 

that topical application of a rabies vaccine would yield a transferable vaccine with an 

effective R0 of 1.45–2.11. From our equation (2), this degree of self-dissemination would 

reduce the vaccination effort required for rabies elimination by up to 51.3%, assuming 

rabies has an R0 <= 2.0, as was suggested for this system. Combined with earlier work 

demonstrating the feasibility of developing a topically applied recombinant vector vaccine 

against rabies [49], these results demonstrate a transferable vaccine is within our immediate 

reach.

Gaining approval: Minimizing deleterious and unintended consequences

Self-disseminating vaccines may well come with risks, some of which are already clear 

and others of which we may not yet be aware. For transferable vaccines, at least, the 
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risks are well-understood and no greater than those associated with current vaccination 

campaigns that rely on the widespread distribution of vaccine laced baits. For transmissible 

vaccines, the risks may be greater because their sustained replication and transmission 

creates substantial opportunities for evolution. A case in point is the evolution and escape 

of the live polio vaccine, which now circulates and causes disease [53, 57]. The risk can be 

eliminated, however, by using recombinant vector vaccines and perhaps, if using attenuated 

vaccines, by using new methods to engineer attenuation [54, 55].

Although recombinant vaccine evolution is not expected to be harmful, an additional layer of 

safety may be achieved by engineering them to self-extinguish, losing the antigenic insert on 

a schedule [56]. Even so, it would be naive to believe that recombinant vector vaccines are 

without risk. For instance, using a novel vector that is not circulating in the animal reservoir 

has the advantage of avoiding prevailing immunity but runs the risk of unknown evolution 

and virulence upon release. Further, there is at least some possibility that the immunogenic 

insert could be co-opted by the viral vector to expand its ecological niche by allowing access 

to new tissues or even hosts.

From this understanding, there are actions that can be taken to reduce unanticipated 

consequences of transmissible vaccines: 1) use recombinant vector rather than attenuated 

vaccines (or at least avoid attenuated vaccines derived from the pathogen), 2) use species-

specific vectors, 3) engineer self-regulatory mechanisms, and 4) use transmissible vaccines 

whose R0 assures eventual loss from the population. It will often be impractical to adhere to 

all of these recommendations, and caution may give way to expedience if the consequences 

of pathogen spillover are great. Following these basic design principles as guidelines as 

closely as possible will, however, minimize the possibility of unanticipated consequences.

Finally, the safe and effective use of transmissible viral vaccines will require carefully staged 

development with effectiveness and risk evaluated at multiple checkpoints. For instance, 

once a candidate transmissible vaccine has been developed, its effectiveness, transmission, 

and evolution should be studied using captive animal populations, also testing the potential 

for transmission into closely related reservoir species. Results from these initial studies with 

captive animals can be used to refine mathematical models predicting how well the vaccine 

is likely to work, in turn evaluating the potential gains for human and animal health. The 

obvious next step is to perform releases within carefully isolated populations in semi-natural 

enclosures or on small islands. Precedent for this approach was established during the 

first field trials of a transmissible vaccine targeting myxoma and rabbit hemorrhagic fever 

[18]. Here, too, effectiveness, transmission, and evolution should be studied and used to 

further refine models predicting likely gains that could be realized by release into natural 

populations. Throughout development and testing, regulatory agencies and stakeholders 

should be involved so that concerns can be addressed during controlled experiments, 

evaluating the road to release within natural populations.

Conclusions

Self-disseminating vaccines represent an opportunity to completely change how we 

approach emerging infectious disease. Rather than responding to outbreaks or epidemics, 
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self-disseminating vaccines make it possible to prevent them in the first place. However, 

there is much we do not yet know about the performance of self-disseminating vaccines 

under real-world conditions. A logical first step is to begin developing, testing, and 

deploying single-step transferable vaccines. Their risks are minimal and their benefits 

demonstrable. On the downside, transferable vaccines are likely to only modestly transform 

our ability to eliminate viral spillover and may be restricted to a narrow range of systems 

with particular behaviors, such as allogrooming. Transmissible vaccines, in contrast, entail 

greater risk but also have a much greater scope for eliminating hard to reach pathogens 

from their animal reservoirs. Thus, the logical next step is to begin developing and testing 

transmissible vaccines for a handful of well-understood systems where risks can be well 

managed as we develop a better understanding of the evolutionary epidemiology of these 

new tools. Although the financial investment required to develop and test the first generation 

of transmissible vaccines is likely to be substantial, it is inconsequential when compared 

to the cost of viral spillover – more than $3.6 billion dollars for the response to the West 

African Ebola epidemic of 2014–2016, $40 billion dollars for the SARS outbreak of 2003, 

and $8 billion dollars per year for rabies alone [58, 59, 60].
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Figure 1. 
Schematic of transmissible and transferable vaccines. In (A), a transmissible vaccine is 

administered directly to one bat via injection. This bat (pink outline) is then capable of 

vaccine transmission. In subsequent time steps (separated by dashed pink lines), this initial 

bat encounters other animals and transmits the vaccine to them infectiously (pink bursts). 

Infectiously vaccinated bats also go on to transmit the vaccine infectiously to others. In 

(B), a transferable vaccine is administered directly to a focal bat as a paste to its fur. In 

subsequent time steps, different bats groom the fur of the focal bat and become vaccinated. 
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The vaccine is not contagious in the usual sense, the focal bat merely serves as a delivery 

vehicle to the others.
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Figure 2. 
The reduction in vaccination effort (ρ) provided by vaccine self-dissemination for pathogens 

and vaccines with differing R0. The left-hand panel (A) shows the reduction in effort 

provided by a transmissible vaccine and the right-hand panel (B) the reduction in effort 

afforded by a transferable vaccine. The gray area in panel A shows the region of parameter 

space in which a single introduction of the transmissible vaccine is sufficient to eliminate the 

pathogen (autonomous pathogen eradication).
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Figure 3. 
Two methods for building transmissible vaccines. In panel A, attenuation is used to 

reduce the virulence of the wild type pathogen. Attenuation is shown here as the gradual 

accumulation of point mutations (blue). In panel B, recombination is used to insert an 

immunogenic region of the pathogen genome (red) into the genome of an innocuous but 

transmissible viral vector (yellow).
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