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Abstract

Astrocytes have a prominent role in metabolic homeostasis of the brain and can signal to adjacent
neurons by releasing glutamate via a process of regulated exocytosis. Astrocytes synthesize
glutamate de novo owing to the pyruvate entry to the citric/tricarboxylic acid cycle via pyruvate
carboxylase, an astrocyte specific enzyme. Pyruvate can be sourced from two metabolic fuels,
glucose and lactate. Thus, we investigated the role of these energy/carbon sources in exocytotic
glutamate release from astrocytes. Purified astrocyte cultures were acutely incubated (1 h) in
glucose and/or lactate-containing media. Astrocytes were mechanically stimulated, a procedure
known to increase intracellular Ca2* levels and cause exocytotic glutamate release, the dynamics
of which were monitored using single cell fluorescence microscopy. Our data indicate that
glucose, either taken-up from the extracellular space or mobilized from the intracellular glycogen
storage, sustained glutamate release, while the availability of lactate significantly reduced the
release of glutamate from astrocytes. Based on further pharmacological manipulation during
imaging along with tandem mass spectrometry (proteomics) analysis, lactate alone, but not in

the hybrid fuel, caused metabolic changes consistent with an increased synthesis of fatty acids.
Proteomics analysis further unveiled complex changes in protein profiles, which were condition-
dependent and generally included changes in levels of cytoskeletal proteins, proteins of secretory
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organelle/vesicle traffic and recycling at the plasma membrane in aglycemic, lactate or hybrid-
fueled astrocytes. These findings support the notion that the availability of energy sources and
metabolic milieu play a significant role in gliotransmission.
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Introduction

Astrocytic glutamate acts at the crossroads of signaling and metabolism in the mammalian
brain (reviewed in [1]). Astrocytes have a prominent role in the brain operation as they are
capable of gliotransmission, i.e. cell-cell, be that to nearby astrocytes or neurons, signaling
by releasing a variety of transmitters, including glutamate, through a process of regulated
exocytosis (reviewed in [2, 3]). As glutamate is the main excitatory transmitter in the brain,
both its intra- and extracellular concentrations are tightly controlled (reviewed in [4, 5]).
The intracellular glutamate concentration in astrocytes is dually regulated both by the action
of cytosolic glutamine synthetase [6] and the mitochondrial oxidative metabolism, which
mainly imparts the activity of glutamate dehydrogenase and the tricarboxylic acid (TCA)
cycle enzymes (reviewed in [7-9]). A portion of cytosolic glutamate is concentrated into
glutamatergic secretory vesicles. Indeed, astrocytes express all the three known types of
vesicular glutamate transporters [10-12], of which VGLUTS3, but not VGLUTs 1 and 2,
along with the availability of cytosolic glutamate contribute to the regulation of exocytotic
glutamate release from these glial cells [13].

As alluded to above, astrocytes serve as a metabolic hub whereby glutamate interlaces
carbohydrate and amino acid metabolisms. Astrocytes are the lone cells in the brain that
synthesize glutamate de novo, thereby controlling the overall glutamate availability within
the brain. This astrocytic function critically depends on the activity of pyruvate carboxylase
[14, 15], an astrocyte-specific enzyme carrying an important anaplerotic reaction that creates
oxaloacetate from pyruvate. In turn, this feeds the production of a-ketoglutarate, another
TCA cycle intermediate, which can exit the TCA cycle by transamination into glutamate
due to the activity of mitochondrial aspartate and alanine aminotransferases [16, 17].
Consequently, two major cellular fuels, D-glucose and L-lactate, not only serve as sources
of pyruvate but also as precursors of glutamate [18]. Yet, it is unknown whether and how
the availability of these main energy substrates may affect exocytotic glutamate release from
astrocytes, which is the very subject of the present investigation.

Using purified cultures of rat cortical astrocytes and single-cell fluorescence microscopy,
we obtained data indicating that D-glucose, either taken-up from the extracellular space or
mobilized from the intracellular glycogen storage, promoted exocytotic release of glutamate
from astrocytes, while the availability of L-lactate, as either the sole or auxiliary (to
glucose) fuel, hampered this process. Based on additional pharmacological manipulations,
lone lactate action on astrocytic secretory function appears to be associated with metabolic
changes consistent with an increased synthesis of fatty acids carried out by fatty acid

Neurochem Res. Author manuscript; available in PMC 2022 April 18.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Montana et al.

Page 3

synthase, an increased amount of which was detected using a tandem mass spectrometry
(proteomics) analysis. Additional proteomics findings support the notion that the availability
of specific energy source (D-glucose, L-lactate or their hybrid) results in the remodeling of
the protein landscape in astrocytes, a condition-dependent process that generally included
changes in levels of cytoskeletal proteins, proteins of secretory organelle/vesicle traffic

and recycling at the plasma membrane in aglycemic, lactate or hybrid-fueled astrocytes
when compared to normoglycemic cells. These metabolic and protein profile changes
render astrocytes with a modifiable output via glutamatergic gliotransmission. As astrocytic
metabolic, glucose- and lactate-based, networks play roles in sustainability of glutamatergic
synaptic transmission [19] along with the requirement for long-term memory formation [20],
our findings are of importance to brain operation in health and disease.

Materials and Methods

Ethical Approval

All procedures involving animals were in strict accordance with the National Institutes of
Health Guide for Care and Use of Laboratory Animals and were approved by the University
of Alabama at Birmingham Institutional Animal Care and Use Committee. The procedures
also conform to the principles of UK regulations [21].

Cell Cultures

We prepared enriched astrocytic cultures using a modification [22] of the originally
described shaking procedure [23]. Visual cortices isolated from 0- to 2-day-old Sprague
Dawley rats were treated enzymatically in Hank’s Balanced Salt Solution (HBSS) (Life
Technologies; Carlsbad, CA) containing 20 1U/ml papain and 0.2 mg/ml L-cysteine (1 h at
37 °C). After subsequent treatment with trypsin inhibitor (10 mg/ml; type 11-O; 5 min at
room temperature) to terminate the enzymatic reaction, tissue was dispersed mechanically
by triturating through a glass pipette in cell culture medium containing a-minimum
essential medium (Cat.No. 41061; without phenol red; Life Technologies, Carlsbad, CA)
supplemented with fetal bovine serum (10% v/v, Hyclone, Cat. No. SVV30014.03, Lot No.
FTM33793; Logan, UT), sodium bicarbonate (14 mM), sodium pyruvate (1 mM), D-glucose
(20 mM), L-glutamine (2 mM), penicillin (100 1U/ml) and streptomycin (100 pug/ml) (pH
7.4). Cells were initially plated into tissue culture flasks (25 cm?) and maintained at 37

°C in a humidified 5% CQO,/95% air atmosphere in a complete culture medium. After

14-24 days in culture, the cells were shaken twice (260 rpm at 37 °C), first for 1.5-2

h and then, after exchange of complete medium, again for 18-20 h. At that time, the
procedure diverged. For proteomics, the remaining attached cells, i.e. purified astrocytes
were rinsed twice with HBSS, subjected to treatments (see below), then scraped off the
flask, pelleted by centrifugation (100 x g, 10 min) and their pellets snap frozen and stored at
—80 °C until used for mass spectrometry analysis (see below). For all other experiments,
cells that remained adhered after shaking procedure were detached from flasks using

trypsin [10000 A, -benzoyl-L-arginine ethyl ester hydrochloride (BAEE) units/ml; Sigma-
Aldrich] and replated onto round (12 mm in diameter) glass coverslips precoated with
polyethyleneimine (1 mg/ml; Sigma-Aldrich). These purified astrocytes were kept in culture
for 1-3 d (15-27 d after initial plating) until used in experiments. Our astrocytic cultures
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consistently reach the purity of well over 99%, as confirmed by glial fibrillary acidic protein
immunoreactivity and visualization of accumulation of the dipeptide g-Ala-Lys conjugated
to 7-amino-4-methylcoumarin-3-acetic acid, as we previously described [10].

All (pre)treatments were done at room temperature (20-24 °C) for 60 min as follows: after
three washes in HBSS, external solution containing (in mM) 140 NaCl, 5 KCl, 2 CaCl,,

2 MgCly, and 10 HEPES, (pH 7.4) with (i) no (0 mM) D-glucose (Glc), (ii) 5 mM Gilc,

or (iii) 2.5 mM L-lactate (Lac) with or without 5 mM Glc was applied to astrocytes. Of
note, the concentrations of D-glucose and L-lactate are selected within the upper level of
the normal range values found in the blood/plasma with the rationale that astrocytes could
experience such levels in the brain as they are intimately interfaced with the vasculature. In
a subset of experiments, astrocytes in 0 mM Glc containing external solution were subjected
to a glycogenolysis (GL) treatment by receiving 100 uM of norepinephrine/noradrenaline
(NE) for 75 min, a period within which 1 mM 1,4-dideoxy-1,4-imino-d-arabinitol (DAB,
Sigma-Aldrich) was added for the last 15 min [24]. Alternatively, astrocytes in external
solution containing both 2.5 mM Lac and 5 mM Glc received 1 mM of phenylsuccinate (PS)
or 5 uM quercetine (Q) for 1 h. All chemicals were obtained from Sigma-Aldrich (St. Louis,
MO). For Ca2* and glutamate measurement, done promptly after the treatment, astrocytes
were washed with and then imaged in a fresh external solution as in the treatment (i-iii) but
devoid of additive(s), i.e., NE, DAB, PS and Q, where applicable. For solution preparation,
we used water as solvent, unless otherwise specified. Water was purified by the Milli-Q®
Synthesis system (Millipore Corp). This ultra-pure water has 18.2 MQ*cm resistivity, less
than five parts per billion (ppb) of organics content and pyrogen content less than 0.001
EU/mL.

Ca?* Measurements

We monitored cytosolic Ca2* levels of solitary astrocytes, devoid of cell-cell contact to
reduce intercellular signaling, using a Ca2* indicator, fluo-3 [25]. Cells were loaded in
external solution containing the acetoxymethyl (AM) ester derivative of fluo-3 (10 pg/ml;
Molecular Probes) and pluronic acid (0.025% w/v; Molecular Probes), for 30 min at room
temperature. After washing in external solution, de-esterification of the dye was permitted
for 30 min at room temperature. Coverslips containing fluo-3-loaded cells were mounted
into a recording chamber filled with external solution and imaged; an individual time-lapse
experiment lasted 3 min. All data were background subtracted, using regions of the coverslip
field containing no cells, and expressed as dF/Fo (percentage), where Fo represents the
fluorescent level before cell stimulation, and dF represents the change in fluorescence. The
dF/Fo of all groups were normalized to the control group median value. Data were expressed
as a median  interquartile range.

Glutamate Measurements

We optically monitored extracellular glutamate levels using an L-glutamate dehydrogenase

(GDH)-linked assay [10, 26], in which GDH generates NADH from NAD™ (B-nicotinamide
adenine dinucleotide) in the presence of glutamate. Astrocytes were bathed in an enzymatic
assay solution containing external solution supplemented with NAD* (1 mM; Sigma-
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Aldrich, Cat. No. N6522) and GDH (~ 53 1U/ ml; Sigma-Aldrich, Cat. No. G2626) (pH
=7.4). Glutamate released from solitary astrocytes in the extracellular space was detected as
an increase in NADH (conversion from NAD™ as glutamate is converted to a-ketoglutarate)
fluorescence in areas surrounding cells. Every experiment (3 min time-lapse) was preceded
by a sham run (3 min time-lapse) on cells bathed in solution lacking GDH and NAD*, which
was used to correct for photo-bleaching and background subtraction. Data were expressed as
dF/Fo (percentage), in which dF represents the change of fluorescence, while Fo represents
the fluorescence level of a region of the coverslip in the near vicinity of the astrocyte,
immediately and laterally of its soma, before mechanical stimulation. The dF/Fo of all
groups were normalized to the control group median value in order to allow comparisons
between experimental batches and accommaodate for variations in GDH concentration and
culture conditions. Furthermore, we made ratios of ranked glutamate over Ca2* peaks (15
pair of cells in each condition) which were then normalized to the median value of the
control group (the latter with the inherently proportional ratio of 1) to gain an insight

on whether the various treatments have a (dis)proportional effect on two contributing
parameters. Data were expressed as a median * interquartile range.

Mitochondrial NADH/NADPH Imaging

Changes in intracellular/mitochondrial NADH and NADPH content were determined by
imaging astrocytes (solitary and/or in contact) prior to and after one of the three treatments
(normoglycemia, aglycemia or GL) as described above. Analyzed regions of interest were
defined as rectangles of minimum 6.4 um x 6.4 um in the perinuclear region containing
mitochondria, as per image inspection [27, 28]. Each cell received three such regions of
interest positioned to triangulate the nucleus, and the average fluorescence intensity of each
cell reported. All imaging data were corrected for background subtraction, and expressed as
F/Fo (percentage), in which F represents the fluorescence intensity after the treatment, while
Fo represents the initial fluorescence intensity prior to the treatment. Data were expressed as
a median + interquartile range.

Imaging Acquisition and Processing

All experiments were done at room temperature. We used an inverted microscope (TE

300; Nikon, Melville, NY) equipped with differential interference contrast and widefield
epifluorescence illumination (100-W halogen and 100-W xenon arc lamps, respectively).
Images were captured through a 40X SFluor oil-immersion objective (1.3 numerical
aperture; Nikon) using a CoolSNAP-HQ cooled CCD camera (Roper Scientific, Tucson,
AZ) driven by V** imaging software (Digital Optics, Auckland, New Zealand). For Ca2*
imaging, we used a standard fluorescein/FITC filter set (Chroma Technology, Rockingham,
VT, USA), while for glutamate imaging experiments we used a DAPI filter set (Nikon). The
later DAPI filter set was also used for detection of native cell autofluorescence representing
intracellular, mainly mitochondrial, NADH [29-32]. For time-lapse image acquisition, a
camera and an electronic shutter (Vincent Associates, Rochester, NY) inserted in the
excitation pathway were controlled by software. All the raw fluorescence images had pixel
intensities without saturation and within the camera’s dynamic range (0-4095).
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Stimulation of Astrocytes

To evoke an increase in the cytosolic Ca2* concentrations in astrocytes and consequential
exocytotic/vesicular glutamate release from these cells, we mechanically stimulated
astrocytes using patch pipettes [25, 33], a stimulus promoting vesicular fusions in these

glial cells [34]. In addition, this approach allows spatial-temporal control of the stimulus
application without affecting the plasma membrane integrity [34, 35]. Of note, Rose Bengal,
an inhibitor of vesicular glutamate uptake abolishes mechanically-induced glutamate release
from astrocytes [10]. To control for the contact between the pipette and the solitary

astrocyte we monitored pipette resistance using a patch-clamp amplifier (PC-ONE; Dagan,
Minneapolis, MN) to achieve the comparable strength of the stimulus (increase in resistance)
under all conditions tested [36]

Gel-Based Liquid Chromatography-Tandem Mass Spectrometry (GeLC-MS/MS)

To study astrocyte proteomics, we used the GeLC-MS/MS approach [37], whereby SDS-
PAGE is used to separate astrocytic protein lysate followed by in-gel digestion, and analysis
by LC-MS/MS. Frozen astrocyte pellets were resuspended in ice-cold, 1.25 X buffer A

(50 mM Tris—HCI pH 7.8 at 4 °C, 5 mM EDTA, 1 mM EGTA, 10% glycerol and 2 mM
phenylmethanesulfonyl fluoride), solubilized by addition of 4% SDS, and subjected to in-gel
tryptic digestion using a modified trypsin intended to minimize autolysis (Trypsin Gold,
Promega, Cat. No. VV5280), as previously described [38]. Mass spectrometry was performed
at the UAB Targeted Metabolomics and Proteomics Laboratory core facility using a hybrid
Triple TOF 5600 mass spectrometer (AB SCIEX, Toronto, ON) coupled online to a split-less
NanoLC-1D Plus System (Eksigent Technologies, Dublin, CA). Peptides (200 ng) were
loaded onto a Nano cHiPLC trap column (75 pm x 15 cm ChromXP C18-CL 3 ym

120 A, Eksigent Technologies) at a constant flow rate of 2 ul/min using a NanoLC-AS1
autosampler (Eksigent Technologies). After washing the trap column for 4 min in solvent

A (0.1% formic acid in water), peptides were loaded on a Nano cHiPLC analytical column
(200 pm x 0.5 mm ChromXP C18-CL 3 pm 120 A, Eksigent Technologies) at a flow

rate of 300 nl/min and then eluted with a linear gradient from 95% solvent A and 5%
solvent B (0.1% formic acid in acetonitrile) to 50% solvent A and 50% solvent B over

90 min. Peptides were then electrosprayed and analyzed on a hybrid Triple TOF 5600

mass spectrometer (AB SCIEX, Toronto, ON) operating in data-dependent mode using
Analyst Software version 1.5 TF (AB SCIEX). Survey scans were acquired in 250 ms

from 400 to 1250 m/z and 20 product ion scans were collected with 50 ms dwell times

from 400 to 2000 m/z if exceeding a threshold of 100 counts per second. The data were
centroided and de-isotoped using Analyst (AB SCIEX). Peptide matches were inferred
using the in-house Mascot Server (version 2.2.07) to search the fragment ion (MS2) spectra
against a concatenated reverse target-decoy database containing rat sequences extracted from
the UniProtKB/Swiss-Prot protein database (release 2014 _10). All searches were performed
with full tryptic cleavage specificity. Carbamidomethyl (C) was set as a fixed modification;
oxidation (M) and deamidation (N and Q) were set as variable modifications. The maximum
allowed missed cleavages = 2, peptide mass tolerance = + 0.05 Da, and MS/MS mass
tolerance = + 0.03 Da. MS/MS based peptide and protein identifications were validated with
Scaffold (version Scaffold_4.2.1). Peptide identifications were accepted if their identities
were established at greater than 90.0% probability by the Scaffold Local FDR algorithm.
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Protein identifications were accepted if their identities were established at greater than
99.0% probability and if containing at least two identified peptides. Protein probabilities
were assigned by the Protein Prophet algorithm [39]. The estimated protein false discovery
rate was 0.7% based on the number of decoy hits at the PeptideProphet cut-off score.
Differences in protein abundance were assessed by spectral counting. Spectral counts per
protein were normalized to total spectral counts per sample and then averaged across three
(in some cases two) biological replicates.

Statistical Analysis

Results

We used the GB-Stat software (version 6.5; Dynamic Microsystems Inc., Silver Spring,
MD) and the SAS® software (version 9.2 for Windows; SAS Institute Inc., Cary, NC)

for statistical analysis. All groups contain sample sizes (astrocytes or their frozen pellets)
originating from at least three independent experimental runs/culture preparations, each
preparation containing tissue pooled from two animals of either sexes. For an individual

set of experiments, the number of subjects (astrocytes or their preparations) required for

the study was estimated using power analysis (set at 80% and a = 0.05). As some of

the imaging data did not conform to normality as per the Shapiro-Wilk or D’ Agostino

tests, for simplicity, we analyzed all data using non-parametric statistics. The increase in
fluo-3 and exogenous NADH fluorescence due to mechanical stimulation was tested using
Wilcoxon Signed Rank Test. The comparison of the effects caused by various treatments

on mechanically-evoked changes in cytosolic Ca2* and extracellular glutamate, as well

as that of native intracellular/mitochondrial autofluorescence (NADH and NADPH) were
done using Kruskal-Wallis One-Way ANOVA (KWA) followed by Newman-Keuls post-hoc
test for multiple comparisons (NKA). Differences in average normalized spectral counts of
proteins were identified by applying a likelihood ratio test for independence, i.e., G-test. The
G-value was calculated as previously described [40] and then used to determine p-values
according to the chi-square distribution table with one degree of freedom. Significance was
established at **p < 0.01, or *p< 0.05.

D-Glucose Promotes Exocytotic Glutamate Release from Astrocytes

D-glucose serves as a precursor of pyruvate, which is utilized in the TCA cycle not only

to drive (additional to glycolysis) ATP synthesis but also for de novo glutamate synthesis
[reviewed in [41] (Fig. 1)]. We assessed whether the availability of D-glucose, be that by the
uptake from the extracellular source or by the recruitment from the intracellular glycogen
store, may affect Ca2*-dependent exocytotic glutamate release from cultured astrocytes. For
simplicity, from here on, when we refer to D-glucose we may omit its chirality, except when
deemed necessary.

We imaged and measured the changes in extracellular glutamate concentration using the
GDH-based assay in which the accumulation of NADH fluorescence in the extracellular
space surrounding solitary astrocytes reports on glutamate released from these glial cells
(Fig. 2A-C). Cytosolic Ca2* dynamics in solitary astrocytes were monitored using fluo-3,
a fluorescent Ca2* indicator [25] (Fig. 2D-F). Mechanical stimulation of astrocytes in the
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control condition/normoglycemia, i.e. when cells were bathed in external solution containing
5 mM glucose, caused a significant increase in extracellular glutamate levels (NADH
median dF/Fo = 85.7%; Wilcoxon Signed Rank Test, p< 0.01) (Fig. 2A-B, and replotted

in Fig. 4A) along with the underlying increase in cytosolic Ca2* levels (fluo-3 dF/Fo

= 397%; Wilcoxon Signed Rank Test, p< 0.01) (Fig. 2D-E and replotted in Fig. 4C),
consistent with our previous work (e.g., [10, 27]). For further comparison of the effects

that various (pre)treatments may have on these measurements, we normalized the peak
evoked responses obtained from astrocytes in all conditions to the median peak response
obtained in the control condition (Fig. 2C, F; for details see materials and methods). In
normoglycemic astrocytes inherent to the approach, this ratio equals 1 both for glutamate
and Ca?* measurements as well as for their ratio (Fig. 2G; see materials and methods for the
normalization approach).

We deprived astrocytes of glucose (0 mM; 1 h) by pre-incubating them in external solution
lacking this sugar, and then kept in that solution throughout the imaging paradigm. Such
aglycemia leads to the reduction of cytosolic glucose level in astrocytes [42]. There was a
dramatic decrease in mechanically-induced glutamate release [Fig. 2C; Kruskal-Wallis one-
way ANOVA (KWA) followed by Newman—Keuls post-hoc test for multiple comparisons
(NKT), p < 0.01], accompanied with a significant decrease in cytosolic Ca?* response when
compared to control astrocytes in the normoglycemic (5 mM) condition (Fig. 2F; KWA

and NKT, p< 0.05). The reduced Ca2* response in aglycemic astrocytes is expected as
mechanical-stimulation recruits Ca2* from the endoplasmic reticulum (ER) store, the (re)
filling of which is glucose-dependent as it requires ATP for the activity of the store-specific
Ca2* ATPase [35]. However, exocytotic glutamate release is a process with a well-defined
Ca?*-dependency [43]. Thus, the 2.5-fold disproportionate hampering of glutamate release
vs. cytosolic Ca2* in aglycemia, seen as a decrease in the ratio (0.40) of these two
parameters (Fig. 2G), suggests a lack of secretory organellesvesicles available for fusion

to the plasmalemma and/or a decrease in glutamate availability for packaging into secretory
vesicles [13].

Next, we attempted to rescue the effect of external glucose deprivation by mobilizing
cytosolic glucose from glycogen (Fig. 1). To that end, astrocytes were submitted to

a glycogenolysis (GL) treatment whereby they were pre-incubated with norepinephrine
(NE, 100 pM, 75 min) in bath solution lacking glucose to promote GL [24]. To prevent
the cytosolic glucose re-entry to glycogen synthesis upon halting GL, we added 1,4-
dideoxy-1,4-imino-d-arabinitol (DAB; 1 mM) during the last 15 min of GL to allow

for DAB action. Of note, this inhibitor of glycogen synthesis also inhibits glycogen
phosphorylase, an enzyme that catalyzes the rate-limiting step in GL; thus, by the end

of our GL treatment we effectively blocked the so-called glycogen shunt activity [24], as
demonstrated in single cultured astrocytes [44]. After this GL treatment, astrocytes were
washed and then imaged in the absence of NE/DAB in external solution lacking glucose.
Washing cells let them recover from the exposure to NE, known to cause an increase in their
cytosolic Ca2* levels [43]. The GL maneuver partially rescued the effect of extracellular
glucose deprivation. This is evident by the intermediate mechanically-induced glutamate
and Ca?* responses, and their ratio, from GL-challenged astrocytes when compared to
those obtained from glucose-deprived astrocytes and astrocytes under the normoglycemic
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condition (Fig. 2C, F for glutamate and Ca?* response, respectively; Fig. 2G for the ratio of
glutamate release and cytosolic Ca2* responses).

To evaluate whether the reduction in glutamate release due to aglycemia could result from
consumption of glutamate in the TCA cycle, we implemented UV-induced autofluorescence
imaging to assess the status of mitochondrial NAD(P)H. Namely, glutamate can be oxidized
in mitochondria to a-ketoglutarate by GDH (Fig. 1), with concomitant reduction of non-
fluorescent NAD(P)* to fluorescent NAD(P)H; this is the very reaction that, in a simplified
form, we have utilized for our extracellular glutamate release imaging. This method has
been long used as a measure of cellular oxidative metabolism; increased glutamate oxidation
in mitochondria results in an increase in the mitochondrial NAD(P)H autofluorescence
signal [45, 46]. We imaged astrocytes in normoglycemic external solution, which was

then replaced with and incubated in the same solution (sham treatment) or in external
solution lacking glucose (aglycemic treatment), or astrocytes were subjected to the GL
treatment. At the end of incubation/treatment, the same astrocytes were re-imaged and
perinuclear regions containing mitochondria were analyzed for the change of NAD(P)H
signal. In normoglycemic astrocytes, the NAD(P)H signal was well retained after 1 h of
sham/normoglycemic treatment (Fig. 3A, B, median F/Fo = 91%). The signals originating
from aglycemic or GL-treated astrocytes were not statistically different from that of
normoglycemic cells (Fig. 3B). Thus, it appears that aglycemia or GL treatment do not
statistically affect consumption of glutamate in oxidative metabolism in astrocyte.

Taken together these data indicate that glucose, sourced either from the extracellular space
or from the intracellular glycogen store, is an important precursor of glutamate utilized in
exocytotic release of this transmitter from astrocytes.

L-Lactate Hinders Exocytotic Glutamate Release from Astrocytes

As it is the case for D-glucose, L-lactate can be used as a metabolic fuel; it gets
dehydrogenated to pyruvate, which enters the TCA cycle (reviewed in [41]) (Fig. 1).

Thus, in parallel to experiments assessing the role of glucose in Ca2*-dependent exocytotic
glutamate release from cultured astrocytes, we assessed the effect that L-lactate as the sole
fuel or an additional fuel to glucose may have on this process. For simplicity, from here on,
we mainly omit chirality referrals for L-lactate.

The replacement of extracellular glucose (5 mM) by lactate (2.5 mM; 1 h) caused a
reduction in mechanically-induced glutamate release (median of normalized peak = 0.28)
when compared to normoglycemic astrocytes (KWA and NKT, p< 0.01) (Fig. 4A,

B); this response from lactate-bathed astrocytes (Fig. 4B) was on par to that seen in
aglycemic astrocytes (median of normalized peak = 0.28) (Figs. 2C). In stark contrast,

the mechanically-induced Ca2* response in astrocytes bathed in extracellular solution
containing lactate as the sole energy substrate was unaffected when compared to that of
the control astrocytes solely utilizing glucose (Fig. 4C, D), yielding a low ratio (0.32;

1.00 in normoglycemic astrocytes) between glutamate release and cytosolic Ca%* response
in lactate-bathed astrocytes (Fig. 4E). These data suggest that pyruvate generated from
extracellular lactate does not as readily serve as a precursor for newly synthetized glutamate,
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while ATP synthesis remains sufficient to support Ca2* dynamics during the time course of
our experimental paradigms.

Next, we provided astrocytes with a hybrid fuel by bathing them (1 h) in the extracellular
solution containing both glucose (5 mM) and lactate (2.5 mM). Surprisingly, normoglycemia
in presence of lactate did not restore the level of mechanically-induced glutamate release
from astrocytes (median normalized peak = 0.26) (Fig. 4A, B), while Ca2* response was
unaffected (Fig. 4C, D); the resulting ratio (0.37) between glutamate release and cytosolic
Ca?* response (Fig. 4E) was similar to that seen in glucose-deprived astrocytes with or
without lactate (Fig. 2G). These data suggest that lactate as fuel alone does not readily

serve as a precursor of glutamate, while in the hybrid glucose-lactate fuel, it may prohibit
the glucose-powered production of glutamate; of course, treatments could also cause non-
metabolic intracellular changes.

Normally, astrocytes convert glycolytically-derived pyruvate to lactate in the cytosol via
lactate dehydrogenase (LDH) to retain high NAD*/NADH ratio in the cytosol and thus
sustain glycolytic rate (Fig. 1). The concentration of lactate we provided extracellularly
would lead to the “revert” operation of LDH, i.e. lactate oxidation, which competes with
glycolysis in production of pyruvate and contributes (along with glycolysis) to reduction

of the NAD*/NADH ratio. However, this ratio can be regenerated through the malate
shuttle (Fig. 1), involving malate transport from the cytosol to the mitochondrion via

the mitochondrial dicarboxylate carrier (MDC, solute carrier SLC25A10); malate in the
cytosol gets generated from oxaloacetate with simultaneous conversion of NADH to NAD*,
a reaction catalyzed by cytosolic malate dehydrogenase. In the cytosol, malate can also
convert to pyruvate by activity of malic enzyme. Consequently, blocking the malate shuttle
in the conditions of the hybrid glucose-lactate fuel provided in the extracellular space of
astrocytes would allow for the formation of pyruvate from glucose; in turn, pyruvate would
proceed to the TCA cycle and de novo glutamate synthesis. In order to assess this scenario,
we pre-incubated astrocytes, in the hybrid glucose-lactate fuel containing external solution,
with phenylsuccinate (PS; 1 mM, 1 h), a mitochondrial dicarboxylate carrier blocker and
hence a malate shuttle blocker [47]. After washout of PS, astrocytes were imaged while
bathed in external solution containing the hybrid fuel. This PS maneuver partially rescued
the hindering effect of lactate on mechanically-induced glutamate release (normalized peak
median = 0.61) (Fig. 4B), while Ca?* responses remained unaffected when compared to
the response of astrocytes bathed in the hybrid fuel without being exposed to PS (Fig. 4D).
There was recovery of the ratio of glutamate release to cytosolic Ca2* response (0.78; Fig.
4E). Of note, mechanically-induced Ca2* response in PS-treated hybrid fueled astrocytes
was marginally reduced when compared to those of normoglycemic astrocytes (Fig. 4D,
KWA and NKT, p< 0.05), perhaps indicating that the ER store-specific Ca 2+ ATPase is
differentially powered by ATP generated from glycolysis then that from the TCA cycle.
Nonetheless, these data are consistent with the fact that the malate shuttle is a main, but not
the only mechanism that regenerates NAD* from NADH; NAD* could be also recuperated
through the glycerol 3-phosphate shuttle [48].

Next, we pharmacologically manipulated the system by adding the plasmalemmal mono-
carboxylate transporter (MCT) blocker quercetine to the bath solution containing both
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lactate and glucose to reduce the lactate entry into the cell. Similarly, this strategy also
partially rescued mechanically-induced glutamate release (normalized peak median 0.57,
KWA and NKT, p< 0.01) (Fig. 4B), while Ca?* responses were unaffected by this treatment
(Fig. 4D). There was a partial recovery of the ratio of glutamate release to cytosolic Ca2*
response (0.58; Fig. 4E). This outcome supports the notion that the entry of lactate from the
extracellular space leads to its hindering effect on glutamate release.

Taken together, this series of experiments imply that lactate alone does not serve well as

a precursor for de novo glutamate synthesis in astrocytes and when utilized in presence

of glucose, lactate interferes with glutamate production from glucose and/or perhaps with
non-metabolic processes to consequently reduce vesicular glutamate release. Taken together,
it appears as lactate causes a shift in metabolism perhaps by “shunting” TCA cycle prior

to the production of a-ketoglutarate, presumably at the level of citrate, which would then
drive cytosolic fatty acid synthesis (Fig. 1). As further pharmacological dissection of the
TCA cycle to identify the site of possible action by lactate would require the usage of
agents lacking specificity, we undertook a proteomics approach. Using matching conditions
as used in the above glutamate release-cytosolic Ca* response study, we assessed whether
astrocytes, utilizing lactate as fuel as opposed to glucose or the hybrid fuel, have an altered
protein profile that would explain changes seen in glutamate release.

Lack of Glucose or Use of Lactate as Fuel Instead of, or in Addition to, Glucose Leads to
an Altered Protein Profile in Astrocytes

To study astrocyte proteomics, we used gel-based liquid chromatography-tandem mass
spectrometry (GeLC-MS/MS] [37], whereby SDS-PAGE was used to separate astrocytic
protein lysate followed by in-gel digestion and analysis by LC-MS/MS. We made protein
extractions from purified astrocytic cultures in four different conditions, i.e., bathed/treated
for 1 h in external solution containing: (A) 5 mM glucose (normoglycemia), (B) no (0 mM)
glucose (aglycemia), (C) 2.5 mM lactate as metabolic fuel instead of glucose and (D) the
hybrid fuel comprised of combined (A + C) glucose and lactate. The relative abundance of
each protein was assessed using label-free spectral counts recorded from protein extracts
obtained from three independent purified astrocytic culture preparations. Out of a total of
1319 proteins identified (raw data available in Supplementary Table S1), we discuss below
a subset of relevant proteins for this study, as listed in Table 1, which includes but is not
limited to proteins that show statistically significant change in abundance due to a treatment.
We provide concise function(s) for most of individual protein discussed; more detailed
information on individual proteins is available at https://www.uniprot.org/uniprot/ web site
by searching using UniProt ID and gene names, which we provide in Table 1. Although

we only initially (to avoid congestion) refer to the Table 1 in the text, one should read the
content of this entire subheading by following line items in Table 1 at all times. Also, we
textually only refer to spectral counts of a subset of proteins, while all the values are readily
available in Table 1 and Supplementary Table S1.

Initially, we assessed whether our tryptic digestion is consistently carried out in preparations
obtained from astrocytes subjected to different conditions/treatments. Albeit we used a
modified trypsin for in-gel digestion to minimize autolytic activity to the arginine cutting
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sites, porcine trypsin fragments are inevitable and we used their spectral counts for this
analysis. Astrocytic protein profiles in all conditions were similarly tainted with porcine
trypsin fragments (Table 1), indicating that any difference in spectral counts for native

(rat) proteins that we may find would be attributable to specific treatments(s) provided to
astrocytes in comparison to protein levels found in normoglycemic/control astrocytes (5 mM
Glc/condition A; Table 1).

We previously reported, and also routinely confirmed here (see “Materials and Methods”
section), that our astrocytic cultures are of high purity, as per glial fibrillary acidic protein
(GFAP) immunoreactivity in well over 99%, if not all, cells that also lack neuronal

markers (e.g., [10, 34]). Indeed, using direct detection in our proteomics approach, we
found our preparations devoid of neuronal contamination as per absence of neuron-specific
enolase [49] and SNAP25 [10, 22, 34] (see Discussion on absence of protein detection).
Similarly, purified astrocyte cultures were devoid of oligodendrocytes (oligl/2 and myelin
basic protein) [50], microglia (ionized calcium binding adaptor molecule 1) [51] and NG2
(chondroitin sulfate proteoglycan 4) [52] cells as per lack of detection of their respective,
parenthetically provided, cell markers. In stark contrast, we detected high and comparable
levels (186.3-213.9 spectral counts, s.c., on average) of astrocytic marker GFAP [53], an
intermediate cytoskeletal filament, in preparations from astrocytes of all four treatments.
Astrocytic markers glutamine synthetase [54], Aldhlal [55], protein NDRG2 (N-myc
downregulated gene 2)[56] and Rab6a [57] were similarly present in all conditions, albeit
at a lower levels (9.1-13.1s.c., 4.0-4.7 s.c., 4.1-6.2 s.c. and 5.3-7.6 s.c. on average,
respectively). As our culture system yields astrocytes arrested in their developmental stage
at the time of harvest from the brain [10, 58], we find expression of excitatory amino acid
transporter 1 (EAAT1/GLAST), but not EAAT2/GIt-1, as previously described [59, 60];
levels of expression of EAAT1 (21.9-29.4 s.c. on average) were similar in all conditions.
We also find connexin 43 as the only gap junctional protein, which is consistent with the
notion that Cx43 is the sole connexin expressed in astrocytes within two postnatal weeks
[61, 62]; again, with similar levels of expression across different groups. Astrocytes in all
conditions similarly expressed aquaporin-4, which is particularly expressed on the astrocytic
plasmalemma at the blood-brain and brain-liquor interfaces [63]. Our GFAP and EAAT1
positive astrocytes also showed expression of nestin, f-3-tubulin and vimentin, as seen

in human fetal astrocytes [64]. While nestin (13.3-19.3 s.c. on average) and -3 tubulin
(76.5-97.3 s.c. on average) were expressed at similar levels in all conditions, expression of
vimentin (857.3-992.8 s.c. on average), the most abundant protein overall, was increased in
astrocytes utilizing lactate (2.5 mM Lac, condition C in Table 1), as compared to glucose, as
the sole fuel.

Intermediary filaments of the cytoskeleton, GFAP and vimentin, represent cytoskeletal
tracks for secretory vesicles and endosome trafficking in astrocytes [65], while nestin
modulates secretory vesicle fusions, in particular fusion pore dynamics [66]. Interestingly,
hybrid fueled astrocytes (5 mM Glc + 2.5 mM Lac, condition D in Table 1) had reduced
levels of plectin, a cytolinker that interlinks intermediate filaments with microtubules and
microfilaments, dysfunction of which results in neuronal tauopathy affecting organelle
trafficking and reduced learning and memory in a mouse model [67]. We also observed
several isoforms of the 14-3-3 protein (e, a/f, 8/C, v, © and m); see Supplemental Table
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S1, UniProt ID: 1433E_RAT, 1433B_RAT, 1433Z_RAT and 1433G_RAT, 1433T_RAT,
1433T_RAT, and 1433F, respectively), a family of regulatory adaptor proteins implicated as
mediators of diverse cellular functions including metabolism [68] and vesicular transport
[69]. Quantities of individual isoforms were statistically similar across all conditions.
Interestingly, the strongest signal we observed was for the epsilon isoform of 14-3-3 (Table
1) which has been reported to be increased in abundance in reactive astrocytes where it
interacts with GFAP and vimentin [70].

We further analyzed the proteins of, or associated with, major cytoskeletal components,
microtubules and actin filaments, known to play a role in vesicular trafficking in astrocytes
[71, 72]. Indeed, the second most abundant protein in our astrocytes was -y-/cytoplasmic

2 actin (390.9-482.2 s.c. on average), the amount of which was significantly lower in
aglycemic (0 mM Gilc, condition B in Table 1) and lactate-fueled astrocytes when compared
to normoglycemic/control astrocytes; this was unlike a-/cardiac 1 actin, the levels of which
were unaffected by various treatments. Same treatment-dependent reduction pattern as with
a-actin was seen in expression of a-actinin 4, a bundling protein thought to cross-link
F-actin to a variety of intracellular structures; another isoform, a-actinin 1, was reduced
only in aglycemic astrocytes.

Expression of drebrin, that links Cx43 to the actin cytoskeleton [73], was unaffected by
treatments. Acting-binding proteins ezrin and radixin, but not moesin, of the ERM family
proteins, which link actin cytoskeleton to the plasma membrane, have been described in
GFAP-devoid peripheral astrocytic processes (PAPS), filopodia, lammelipoda and microvilli
[74]. These PAPs surround synapses and can play a role in the tripartite synapse [75].

In our protein preparations, we found ezrin and moesin, but not radixin, and their levels
were unaffected by the various conditions/treatments. Furthermore, small GTPase Rac 1
and its effector ROCK2, a key regulator of actin cytoskeleton, were present similarly in

all conditions. Of note, the inhibition of ROCK2 causes restructuring of the astrocytic
cytoskeleton [76] leading to astrocytic stellation, along with an increase in glutamate uptake
via EAAT1/GLAST [60]. Expression of myosins 9 and 10 (that appear to play role in

cell shape) and tropomyosin a -1, B, a-3 and a-4 chains (implicated in stabilizing actin
filaments in non-muscle cells), were unaffected. However, there was significant reduction
of both fibronectin and vinculin in aglycemic astrocytes, while lactate-fueled astrocytes

had reduction of fibronectin, indicating that these treatments may result in decrease of cell
adhesion. Expression of other cell adhesion proteins such as cadherin 2 and intercellular
adhesion molecule 1, were unaffected.

Levels of acting-binding (actin-related protein 2/3 complex subunits 1A and 2) and ATP-
binding (actin-related proteins 2 and 3) components of the Arp2/3 complex, which mediates
actin polymerization, were unaltered by treatments of astrocytes, and so were the levels of
Ca?*-independent (F-actin-capping protein, subunits a-1, a-2 and B) and Ca2*-dependent
(gelsolin) actin-capping proteins, that bind to the plus/barbed end of F-actin. Similarly,
levels of profillin-1, a concentration-dependent modulator of actin polymerization, were not
affected by treatments. Detected septins 2, 7, 8, 9 and 11, filament-forming cytoskeletal
GTPases necessary for normal organization of the actin cytoskeleton, were also unaffected
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by treatments. It should be noted that septin 8 can interact with vesicular SNARE
synaptobrevin 2/VAMP2 [77].

Tubulins a-1A, a-1B and a-4A, which are major components of the microtubule a-

chain containing a non-exchangeable GTP site, were significantly decreased in aglycemic
astrocytes. However, levels of tubulins §-2B, p-4B and B-5, major components of the
microtubule B-chain containing an exchangeable GTP site, were unaffected by any of

the treatments. Level of microtubule-actin cross-linking factor, a protein with namesake
function, was unaffected by treatments (in hybrid fueled astrocytes, however, it was only
detected in one preparation prohibiting statistical testing), as were levels of microtubule-
associated protein 1A, involved in cross-bridging microtubules and other skeletal elements,
and of a.-centractin, which is associated with the centrosome and plays a role in
microtubule-based vesicle maotility.

Movement, i.e. trafficking, of secretory organelle/vesicle along cytoskeletal tracks (made of
actin, intermediary filaments and microtubules as discussed above) is powered by a variety
of directional motors. Indeed, we have detected the presence of unconventional myosin-

Ic, an actin-based motor, the level of which was reduced when astrocytes were solely

fueled by lactate; the levels of unconventional myosin-Id and -le were unaltered, however
(with the caveat that in lactate fueled astrocytes, myosin-ld was only detected in one
preparation ruling out statistical testing). In hybrid-fueled astrocytes, we found significantly
reduced levels of cytoplasmic dynein 1 heavy chain 1, which serves as a motor for the
retrograde motility of vesicles and organelles along microtubules. Levels of cytoplasmic
dynein 1 intermediate (in lactate fueled astrocytes, it was detected in one preparation,

thus preventing statistical testing) and light intermediate chains type 2 were unaffected by
various treatments. We also found no change in levels of kinesin-1 (heavy chain and light
chain 1), microtubule-dependent motor required for normal distribution of mitochondria and
lysosomes, and of Rab7a, a key regulator of endosomal-lysosomal trafficking. Similarly,
levels of Rab31, which is necessary for mannose 6-phosphate receptors trafficking from the
trans-Golgi network to endosomes in oligodendrocytes, were unaffected by the treatments
[78].

Astrocyte release a variety of gliotransmitters, which fall into two main categories, small
molecules, like amino acids and ATP, loaded locally by endomembrane transporters, and
peptides which enter vesicles via the synthetic secretory pathway [2]. The latter pathway

is also utilized to traffic plasma membrane proteins made in the ER and transiting Golgi
compartments where they are sorted into organelles. At any juncture there is also retrograde
transport/recycling of secretory organelles/vesicles. As already motioned, levels of pan-
astrocytic marker Rab6a, a regulator of retrograde transport from the Golgi apparatus to the
ER, was unaltered by the treatments, so were the levels of SEC22b involved in bidirectional
ER-Golgi traffic and of general vesicular transport factor p115 required for intercisternal
transport in the Golgi stack, for transcytotic fusion and/or subsequent binding of the
vesicles to the target membrane. Similarly, levels of Rab11b that plays a role in endocytic
recycling and of endosomal t-SNARE syntaxin 12 were unaffected by the treatments. The
presence of the latter two endosomal SNARE proteins is well aligned with findings of
relatively large, ~ 300 nm in diameter, synaptobrevin 2/VVAMP2-laden secretory vesicles in
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astrocytes [34, 79]. Indeed, we detected by the proteomics assay secretory vesicle SNARE
proteins synaptobrevin 2/VAMP2 and cellubrevin/VAMP3, which were some of the first
v-SNAREs described in astrocytes [22], and appear to be functionally interchangeable in
Ca?*-dependent exocytosis [80-82]. There was a lack of detection of synaptobrevin 2 in
astrocyte fueled by lactate alone, a finding that should be cautiously interpreted as variable
expression of this SNARE did not grant us statistical analysis. However, this variability
piqued an assessment of the detection limit for our protein analysis method (see Discussion).
Levels of cellubrevin were statistically unaffected by any of the treatments. We detected
VAMP7, the vesicular SNARE which mediates secretory lysosome exocytosis of ATP

and cathepsin B from astrocytes [83], only in aglycemic astrocytes; lysosome-associated
membrane glycoprotein 1 (LAMPL), a late-endosomal/lysosomal marker, was similarly
present in all the conditions. We found the levels of brain isoform of non-catalytic subunit
B of the peripheral V1 complex of vacuolar-type proton ATPase (V-ATPase) unaffected

by treatments, implying that acidification of secretory organelles/vesicles necessary for
uptake of amino acid transmitters, including glutamate, into the vesicular lumen was

also unaffected. We have not detected presence of vesicular glutamate transporters 1, 2

and 3 in any preparation, likely due to their low expression in these glial cells as we
originally reported [10]. Expression of secernin-1, which increases extent of Ca2*-dependent
secretion from peritoneal mast cells [84], was unaffected by treatments, so was the

level of a-soluble NSF attachment protein, an adaptor protein that sustains membrane
trafficking by disassembling SNARE complexes that form during membrane fusion [85].

In stark contrast to caveolin-1 expression, reporting on receptor-independent endocytosis,
which was unaffected by the treatments, expression of clathrin heavy chain 1, reporting

on receptor-dependent endocytosis, was statistically increased in aglycemic astrocytes as
well as lactate- and hybrid-fueled astrocytes when compared to normoglycemic astrocytes.
Linking clathrin scaffold to the vesicular membrane and mediating vesicle endocytosis from
the plasmalemma requires adaptor protein complex 2 (AP2) [86, 87], the subunit u of which
was detected in our preparations and was unaffected by the treatments. Similarly unaffected
were levels of dynamin-2, a large GTPase that plays a role in constitutive endocytosis

[88]. However, there was reduction of annexin Al expression in aglycemic astrocytes. This
protein inhibits vesicular release of adrenocorticotropin from a neuroendocrine cell line
through ROCK activation and downstream augmentation of actin polymerization, likely
resulting in a filamentous actin mesh which serves a barrier for vesicular access to the
plasma membrane [89]. Other annexins detected (A2, A4, and A6) in our preparations, that
play role in exocytosis [90-92], were unaffected.

As exocytotic release of glutamate is a Ca2*-dependent process, we appraised the protein
components known to support Ca2* flux and transport across the plasmalemma and
endomembranes of astrocytes (reviewed in e.g., [93, 94]). In all the conditions, we detected
similar levels of the ER Ca2* ATPase of the SERCA type 2, which is responsible for

(re) filling the ER store with Ca2*. Expression of inositol 1,4,5 tris-phosphate (IP3R)

and ryanodine (Ryr2) receptors, both sourcing Ca?* for triggering astrocytic glutamate
release [35], was variable and prohibited statistical testing. Ryr2 was only detected in the
normoglycemic condition, while IP3R in aglycemic and lactate-fueled astrocytes.
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Ca?* necessary for the store replenishment for vesicular glutamate release is ultimately
drawn from the extracellular Ca%* via the store-operated Ca%* entry [36, 58] and Na*/Ca2*
exchanger [95] at the plasma membrane of astrocytes. At the molecular level the store-
operated plasmalemmal channels may involve formation of Orai/Stim1 protein complexes
and/or some types of Transient Receptor Potential (TRP) proteins, in particular TRPC1
protein containing channels [93, 94]. We have not detected the presence of TRPC1 and Orai
in any preparations/conditions, while Na*/Ca%* exchanger 1 and STIM1 were only detected
in a single preparation obtained from aglycemic astrocytes. Similarly, we have not detected
the presence TRPAL in any of the conditions/preparations, the channel activity of which
contributed to setting the resting [Ca2*]; in hippocampal astrocytes. [96]. The release of
Ca?* from the ER in astrocytes occurs within structural sub-plasmalemmal microdomains
correlated to vesicular fusion events [97]. The extended synaptotagmin 1 (Esyt-1) is an ER
protein that functions as a Ca2*-dependent tether between the ER and the plasmalemma
[98]. We found Esyt-1 expression at similar levels in all the conditions, implicating that the
ER-plasmalemmal tethering is unaffected by glucose and/or lactate, or absence thereof.

Another organelle, the mitochondrion, participates in buffering cytosolic Ca2* transients,
which drive vesicular glutamate release [27]. At high cytosolic levels, mitochondrial Ca2*
uptake is mediated by the CaZ* uniporter complex, containing voltage-dependent anion-
selective channel protein (VDAC), that has considerable Ca2* permeability, on the outer
mitochondrial membrane and the highly selective mitochondrial CaZ* uniporter complex
(composed of mitochondrial Ca2* uniporter MCU1/2, mitochondrial EF hand Ca2* uniporter
regulator MICU1/2, essential MCU regulator EMRE, and mitochondrial Ca2* uniporter
regulator MCUR1) on the inner membrane; see reviewed in [99]. While we detected VDAC
1, 2 and 3 at similar levels in all preparations, respectively, we have not detected any of

the inner membrane components of this complex. At low cytosolic levels, free Ca2* exits
the mitochondrial matrix through the mitochondrial Na*/Ca2* exchanger (NCLX), and via
the formation of the mitochondrial permeability transition pore (MPTP) [27, 100]. We have
detected the presence of NCLX only in a single preparation from aglycemic astrocytes.

The molecular identity of MPTP remains elusive, however; mitochondrial phosphate carrier
protein (SLC25a3) has been put forward as the main candidate for the transmembrane

pore component, while adenine nucleotide translocase (SLC25a5) likely serves a regulatory
role of MPTP [28, 101, 102]. These proteins were similarly present in astrocytes in all
conditions.

There are structural-functional interactions between the ER and mitochondria [103]. For
instance, the above reported IP3Rs of the ER and VDACs of the outer mitochondrial
membrane interact to form a functional ER-mitochondria CaZ* conduit [104]. Similar

to variable expression of IP3Rs, we also detected variable expression (which did not
allow statistical testing) of several other ER-mitochondria linkers, e.g., ATPase family
AAA domain-containing protein 3, mitochondrial fission 1 protein and vesicle-associated
membrane protein-associated protein B (see Supplementary Table S1).

We next analyzed metabolic pathways of glucose, lactate and glutamate. We detected
plasmalemmal transporters for both metabolic fuels, glucose (solute carrier family 2,
facilitated glucose transporter member 1, GLUT1) and lactate (monocarboxylate transporter
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1), along with plasmalemmal glutamate transporter EAAT1/GLAST, the latter already
disclosed above. The expression of these transporters, respectively, was statistically
indiscriminate in all the treatments. The sole exception was GLUT1, the expression of
which in aglycemic astrocytes was detected in one preparation and could not be statistically
scrutinized (Table 1). We did not find expression of plasmalemmal lactate-responsive
G-protein-coupled receptor (GPCR), i.e., hydroxycarboxylic acid receptor 1 (HCAR1)
formerly known as GPR81, detected in the mouse cortex and expressed in astrocytes

[105]. Similarly, we have not found expression of OR51E2, lactate-activated GPCR, and a
proton-sensitive GPCR GPR4, to which lactate seems to be a negative allosteric modulator;
based on RNA sequencing, GPR4 but not OR51E2 was found in astrocytes of the rat locus
coeruleus [106]. As we reported above, glutamine synthetase was detected at similar levels
in all conditions, so was mitochondrial glutamate dehydrogenase 1.

In agreement with previous reports [107, 108], we detected other enzymes crucial

for metabolism of glucose, lactate and glutamate. These enzymes, classified by their
contribution to processes of glucose phosphorylation, glycolysis, pyruvate conversion, the
TCA cycle, the malate shuttle, glycogenesis, glycogenolysis and the pentose phosphate
pathway, were generally expressed in astrocytes at levels statistically indiscriminate

across all conditions. The exceptions were glycogen synthase and cytoplasmic aspartate
aminotransferase, the (lack of) detection of which did not permit statistical testing. As
pertains to fatty acid metabolism, we found expression of fatty acid synthase elevated in
lactate-fueled astrocytes when compared to normoglycemic astrocytes, while aglycemia or
exposure to the hybrid glucose-lactate fuel has not affected the expression of this enzyme in
astrocytes.

Two proteins classified into the transcription/transcriptional modification pathway had
significant changes. Staphylococcal nuclease domain-containing protein 1, an endonuclease
that mediates microRNA decay and regulates mRNASs involved in G1-to-S phase transition,
has been described elevated in several cancers and malignant astrocytes, i.e., glioma/
astrocytoma cells [109]. The levels of this nuclease was reduced in astrocytes using the
hybrid glucose-lactate fuel. U5 small nuclear ribonucleoprotein 200 kDa helicase as a key
component of spliceosomes complexes plays a dual role in pre-mRNA splicing and cell
cycle regulation, the later by promoting exit from the G2/M phase and advancing S phase
[110]. The levels of this helicase was increased in aglycemic astrocytes. As lactate can be
a transcriptional regulator linking cell metabolism and gene transcription through its action
as an endogenous weak inhibitor of histone deacetylases (HDACS) [111], we assessed the
presence of these enzymes, and found expression of HDAC1 at similar levels in all the
conditions.

Taken together, the proteomics data add new dimension for interpretation of the Ca* and
glutamate imaging data. Our working hypothesis prior to proteomics was that lactate does
not readily serve as a precursor for de novo glutamate synthesis in astrocytes by “shunting”
the TCA cycle prior to the production of a-ketoglutarate, presumably at level of citrate;
this seems to be supported by proteomics data showing increased levels of fatty acid
synthase in lactate-fueled astrocytes. However, this was not the case in the data set from
astrocytes exposed to the hybrid glucose-lactate fuel. It appears that changes underlying
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altered exocytotic glutamate release from astrocytes utilizing different energy sources for
their metabolism are much more complex than the sole change in metabolism. Indeed,
proteomics brings to the limelight the disbalance between endocytosis and exocytosis as
the common, but partial, explanation for the reduced amount of glutamate release in all
treatments (aglycemia, lactate or glucose-lactate exposure of astrocytes) when compared

to the control/normoglycemic condition; it is likely that is caused by increased clathrin-
mediated endocytosis. Proteomics analysis paints a picture of condition-dependent changes
in protein profiles encompassing proteins of the cytoskeleton, secretory organelle/vesicle
traffic and recycling at the plasma membrane. These findings may have translational impact
as, for example, glucose and lactate consumptions vary during the sleep—wake cycle related
to lactate clearance via the glymphatic system [112].

Discussion

Glutamate has emerged as a versatile molecule used in the brain cellular metabolism and
intercellular, both homotypic and heterotypic, communication. Its metabolic and signaling
pathways are interlaced, which is the subject of our present work. Experimental set-ups

to study metabolic regulation of signaling in the brain face many obstacles, as glutamate

is abundant and omnipresent in all the cell types. A cell culture system can provide an
opportunity to study this process in an experimentally well-controlled environment. Thus,
we used purified cultures of astrocytes to observe astrocytes independently from other
brain cells, and we focused on metabolic regulation of exocytotic glutamate release. To
that end, cells were acutely (1 h) offered metabolic substrates, glucose and/or lactate,

in the bath solution to drive de novo synthesis of glutamate in astrocytes. We recorded
mechanically-induced exocytotic glutamate release from individual astrocytes, while, in
parallel experiments, the same stimulus induced Ca2* elevations in astrocytes. Our data
imply a major role of glucose contribution in generating vesicular glutamate release, while
the presence of lactate revealed a significant reduction in the release of glutamate. This
unexpected discovery suggested that astrocytes utilizing extracellular lactate might undergo
a metabolic shift and/ or changes in secretory organelle/vesicle trafficking and/or recycling.
The complexity of proteins governing these pathways required us to use tandem mass
spectrometry with an in-depth protein expression analysis. We showed specific changes in
protein profiles in aglycemic astrocyte as well as those fueld by lactate alone or by the
hybrid glucose-lactate fuel when compared to normoglycemic astrocytes.

As stated above, we used purified astrocytes in culture, which offered us spatiotemporal
control of stimulation for cytosolic Ca2* and extracellular glutamate imaging, and ensured
cell-specify for biochemical, mass spectrometry analysis. These astrocytes appear as flat
polygonal cells having less complex processes/morphological appearance than astrocytes
in situ [10, 35, 58] (also see Figs. 2 and 3). Our culture system yields GFAP-positive
astrocytes arrested in their developmental stage at the time of harvest from the brain [10,
58] as witnessed, in the present work (Table 1), by expression of connexin 43 (but not other
connexins) and EAAT1 (but not EAAT?2). Here, we further characterized these astrocytes
showing that they express other astrocytic markers, glutamine synthetase, Aldhlal, NDRG2
and Rab6a. As seen in human fetal astrocytes [64], our astrocytes also express nestin,
B-111-tubulin and vimentin. The expression of B-111-tubulin has been generally used as a
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neuron-specific marker in developmental neurobiology and stem cell research. However, in
our own previous work we used immunocytochemistry to report on abundant p-111-tubulin
stains of cultured hippocampal neurons as well on a faint fluorescence emission from nearby
astrocytes [113]. As we routinely check culture purity by the absence of neuronal marker
SNAP25 by RT-PCR, and by antibodies used in immunocytochemistry and Western blotting
[10, 34], we side with conclusion reached elsewhere [64], that p-111-tubulin cannot be
considered neuron-specific label in all conditions.

Mechanical stimulation offers direct stimulation of astrocytes without receptor activation
and mimics the action of endogenous ligands [114]. Visually, deformation of mechanically
stimulated astrocytes appears to be far less than deformation seen in astrocytes at the
interface with blood vessel that undergo diameter change [115, 116]. Thus, this stimulus
may have physiological relevance, which we, ourselves, previously disregarded.

There are over 24000 different protein-coding genes in rat [117], although it is likely that
individual cells express only a subset of such protein-coding genes at a given time. For
example, the results of comprehensive, MS-based analyses suggest that cultured human cells
express ~ 10000 proteins [118] or ~ 50% of the protein-coding genes in the human genome.
In the present work, our proteomics profiling study identified 1319 proteins, and, thus, we
estimate that we sampled ~ 10% of the proteome from our astrocyte cultures. This limitation
was expected as our proteomics workflow was primarily intended to characterize enzymes
involved in metabolism, which are generally among the most abundant—and, thus, easiest
to detect—proteins present in a cell. Nonetheless, given that the sensitivity of our MS-based
workflow precluded deeper sampling of the astrocyte proteome, we attempt here to provide
an estimate of this limit. We deemed synaptobrevin 2 levels at the cusp of detection as we
reported the dichotomous finding of its presence in some and absence in other samples.

We estimate that: (a) an individual astrocyte likely contains around 350 secretory vesicles
(probably an underestimate as 23 astrocytes contained 8042 synaptobrevin 2-laden vesicles
within the sub-plasmalemmal space where cells adhered to coverslips, but not the entire
cells [34]); and (b) there are ~ 25 synaptobrevin 2 molecules per astrocytic secretory vesicle
[79]. Thus, protein detection limit in our proteomics approach is at ~ 8750 synaptobrevin

2 molecules per individual astrocyte. Therefore, the sensitivity of our proteomics approach
cannot allow us to detect, for example, vesicular glutamate transporters (VGLUTS) that we
and others readily detected in a variety of astrocytes and conditions (in vitro, freshly-isolated
and in vivo) using immunocytochemistry and Western blots (reviewed in [4]), albeit at levels
~ 2-3 orders of magnitude lesser than in neurons [10]. This is likely due to much higher
number of vesicles present in neurons, estimated at 70000-188000 (reviewed in [119]),

and higher density of vesicular proteins in neuronal vesicles. For example, each neuronal
secretory vesicle contains 70 molecules of synaptobrevin-2, about 3-times higher than that in
astrocytic vesicle [120]. Consequently, it should come as no surprise that we did not detect
the presence of VGLUTS in astrocytes using proteomics. The focus, however, should be on
the differences we observed, and some caution is warranted when interpreting the absence of
proteins.

Further, aside from the impact of protein abundance on the limit of detection, it is also
recognized that certain proteins may be more difficult to detect by certain MS approaches
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based on other properties, such as the length and composition of their amino acid sequence.
These properties may work alone or in concert to make detection by MS more difficult.
First, the sequences of some proteins may not contain a suitable number or location of
tryptic cleavage sites. This property can decrease the total number of peptides available

for MS detection and/or result in the generation of short or long peptides that are more
difficult to detect [121]. Second, the capability to detect peptides from membrane proteins
using standard MS-based workflows has proved challenging because these proteins exhibit
different inherent properties as compared to soluble proteins. For example, in addition to
being relatively low in abundance, membrane proteins may be more difficult to detect
using standard workflows because of their limited solubility and, relatedly, their constituent
hydrophobic, transmembrane domains which can restrict protease accessibility and also
result in a lack of suitable tryptic cleavage sites [122]. Thus, we suspect that our failure to
detect certain proteins in the current proteomic study most likely results from a combination
of factors, including their relatively low abundance and their inherent properties derived
from their amino acid sequence.

We reported the presence of porcine trypsin fragments in all of our protein extracts (Table
1). As our culture procedure used for obtaining protein extracts did not utilized trypsin to
detach cells, the source of tryptic fragments must come from autolysis of a modified trypsin
intended to minimize autolysis. The amount of fragments was used for statistical analysis
indicating that we similarly treated protein extracts obtained in various conditions. In terms
of further assessing the activity of trypsin for quality control purposes, a typical approach

is to look at missed cleavages, i.e., the number of peptides generated that have a trypsin
cleavage site that was not cut by the enzyme. The samples used in this study all looked
favorable in this respect, both in terms of absolute trypsin activity as well as consistency
across the samples.

We ran additional searches for external/non-rat proteins in our preparations and found two
contaminant protein groups, one sourced from fetal bovine serum used in our cell culture
and the other sourced from human skin (Supplementary Table S2, also see raw data in
Supplementary Table S1). These are expected contaminates for the proteomic approach
used; the fragments/peptides of these contaminates are easily discernable from rat proteins
and therefore do not obstruct our analysis.

Our data using aglycemia should be of interest for management of De Vivo disease,

a rare autosomal dominant, genetic metabolic disorder associated with a deficiency of
GLUT1. Astrocyte with their gliotransmission and metabolic-signaling networks may
as well contribute to the phenotypic spectrum of this disease, in particular to seizures

[123-125].

Astrocytes exhibit higher glycolytic rate when compared to neurons [126], but they also
have a rather active TCA cycle. The critical finding that astrocytes, in contrast to neurons,
express pyruvate carboxylase [14, 15] meant that astrocytes can have a dual entry of
pyruvate into the TCA cycle granting them capability to synthesize de novo glutamate

as the sole cell type in the brain. Both glucose and lactate can provide for generation of
pyruvate and contribute to de novo glutamate synthesis [18]. However, our data implicates
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that glucose, external or internally recruited from glycogen (Fig. 2) provide much better
for exocytotic glutamate release from astrocytes than lactate (Fig. 4). Additionally, lactate
hampers glucose ability to provide for exocytotic glutamate release from astrocytes.

Thus, it appears that there might be separate pools of pyruvate generated from various
metabolic fuels and utilized in discriminate manner for glutamate release. This is an area
of metabolomics that needs to be studied, especially that release of glutamate and/or lactate
from astrocytes plays a role in modulation of synaptic transmission [75] and plasticity [20,
127] and in learning and memory [20, 75].

Brain lactate concentration varies during the sleep—wake cycle and is further increased
during sleep deprivation [105]. Its parenchymal concentration is inversely correlated to its
clearance via the glymphatic system, the operation of which critically depends on astrocytes
and their aquaporin 4 [105]. Whether changes we observed in astrocytes utilizing lactate as
fuel may undergo cyclical fluctuations, it represents another issue that should be studied in
future.

Our finding that lactate hampers glutamate release could be at display: (a) in cases of
lacticemia (and presumably increased lactate in the brain), which occurs during muscle
damage/exercise [128] or can be associated with an acute overdose of metformin mainly in
adults and as an adverse effect of this drug in diabetic patients with comorbidities [129];

or (b) in the perinatal brain development, when lactate is used as an energy source [130].
This finding may also be relevant in the context of metabolic interventions such as ketogenic
diets and fasting which are reported to result in elevated concentrations of both brain lactate
and ketone bodies (e.g., p-hydroxybutyrate)[131]. While it has been generally accepted

that the liver, hepatocytes in particular, supplies/supply other organs with ketone bodies,

it appears that astrocytes are also ketogenic cells [132]. Interestingly, the ketone body beta-
hydroxybutyrate has also been demonstrated to inhibit glucose consumption in astrocytes
[133]. The contribution of gliotransmission to these events, however, is presently unknown
and warrants further investigation. Furthermore, a number of pathological conditions are
associated with increased lactate in the brain. Lactate provides protection during ischemia
[134-136]. Perhaps this might be by hampering de novo synthesis of glutamate, which
could be a mechanism to prevent excitotoxicity. Astrocytes and their glutamate and energy
metabolism are involved in epileptiform activity [137, 138]. Interestingly, blockade of LDH
in neurons and astrocytes [139] has been proposed for treatment of epilepsy. Thus, the
present work may provide a fertile ground for management of seizures. In addition, lactate
is glycolytically produced (so called the Warburg effect) and released in large quantities by
primary brain tumors [140, 141]; whether this lactate can affect nearby healthy astrocytes to
affect gliotransmission is yet to be determined.

The finding that astrocytes fueled by lactate alone have increased level of fatty acid
synthase has several implications. Expected augmented fatty acid synthesis would result

in rapid formation of abundant lipids droplets (LDs), dynamic organelles that not only
store/liberate lipids, but also contribute to membrane trafficking and cellular/lipid signaling
[142]. These lipid- enriched organelles also contain a variety of proteins [143-145]. This
protein repertoire includes: (i) small GTPases Rab18 and ADP-ribosylation factor 1, which
warrant trafficking of LDs and are detected in our proteomics approach (former with a
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variable expression not allowing for statistical testing, while the latter at statistically similar
levels in all conditions tested; see Supplementary Table S1); (ii) as well as caveolins,

which are predominately associated with caveolae [146], but also bind to fatty acids

in LDs [147, 148]. Thus, we suspect that lactate fueled astrocytes (which presumably
accumulate fatty acids in LDs, while displaying similar levels of caveolin-1 as astrocytes

in other conditions tested) would showed differential partitioning of caveolin-1 in LDs as
compared to aglycemic, normoglycemic or hybrid-fueled astrocytes. This LD partitioning
likely is not a simple redistribution of caveolin-1 into formed LDs, but also involves
trafficking at the plasma membrane [147]. As caveolin-1 can bind to cholesterol and

they can together get internalized from the plasma membrane, the associated cell-surface
signaling via cholesterol-rich lipid-raft domains would likely be affected as well (reviewed
in [142]). Through their role in the lipid synthesis, metabolism and signaling, LDs are
closely associated with inflammatory responses, diabetes mellitus, obesity, atherosclerosis
and cancer [149-151]. Moreover, microbial pathogens such as Mycobacterium tuberculosis,
Mycobacterium laepre, the hepatitis C virus and the dengue virus all use LD components to
advance their survival proliferation [152-154]. Whether glutamatergic gliotransmission plays
a role in manifestations of these conditions/diseases in the brain remains to be elucidated.
Finally, the increased cytosolic fatty acid synthesis in lactate-fueled astrocytes could be
advantageous in stress when cells use fatty acids as an energetic substrate, a strategy
successfully implemented by glioma cells for their survival [155]. Fatty acid/beta-oxidation
in mitochondria requires the activity of carnitine palmitoylotransferases 1 and 2, both found
at similar levels in all the conditions we tested (Supplementary Table S1).

L-lactate, long considered a waste product of glucose degradation, is emerging as an
important metabolite in brain activity, not only as an energy substrate, but also as a
signaling molecule (reviewed in [156]), referred to as “lactormone” [128]. Its signaling

can occur through HCARL1 [105], expressed in cortical astrocytes, and the activation

of which inhibits adenylyl-cyclase (AC) resulting in decreased intercellular 3’-5"-cyclic
adenosine monophosphate (CAMP) levels. In our culture system, this second messenger
causes maturation of astrocytes seen as an increase of GFAP levels and also as change in
morphology, i.e. stellation [157]. In the present work, we have not detected the presence

of this receptor (and other lactate receptors, OR51E2 and GPR4, which could be under

our proteomics detection limit, however, as discussed above), but more importantly we
have not detected changes in GFAP levels in lactate or hybrid-fueled astrocytes. The caveat
here is that previous cAMP-dependent maturation/stellation changes occurred during the
time course of 3 days, while a possible opposing effect (rounder cells with a decrease in
GFAP associated with the dedifferentiation of astrocytes [158]) here would be of an acute
nature (within 1 h). Thus, it is still possible, if our astrocyte express HCAR1, that some

of the effects we have seen might be related to activity of this receptor; concentration of
lactate used here (2.5 mM) would cause partial activation of HCARL, given its half maximal
effective concentration (EC50) for lactate at 4.2 mM in cortical neurons [159], Shall our
astrocyte express GPR4, lactate effects should be similar to those in above scenario with
HCAR (rounder cells), as lactate is a negative allosteric modulator of GPR4-mediated cCAMP
production [106]. If, however, our astrocytes would express OR51E2, which promotes

AC resulting in increased intracellular cAMP [106], than the effect would be maturation/
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stellation of astrocytes. Interestingly, via the activation of a non-HCARL receptor, perhaps
ORS51E2, extracellular lactate caused an increase in cytosolic CAMP, which led to the
enhancement of aerobic glycolysis in cultured astrocytes [160]. This signaling pathway was
augmented in astrocytes lacking aGDI, a protein controlling the cycling of small GTPases
[161]. Mutations of the human aGDI represent one of the many genetic alterations that
cause X-linked intellectual disability (XLID) clinically characterized by cognitive deficits
[162, 163]. Thus, our data is also relevant to this intellectual disability.

In our proteomic study, out of 1319 detected proteins in preparation from astrocytes,

17 proteins showed alteration, four up and 13 down regulated, in their levels in

all the treatments combined when compared to normoglycemic astrocytes. The most
diverse changes occurred in the cytoskeletal protein group as 10 of the above proteins

were classified in this group. Remaining proteins (numbers in each group disclosed
parenthetically) belonged to secretory organelle/vesicle trafficking (2), secretory organelle/
vesicle recycling (2), metabolism (1) and transcription (2) groups. There was a total of

22 changes, as some proteins varied their expression upon more than one treatment. Only
one protein, clathrin heavy chain 1, classified into the secretory organelle/vesicle recycling
proteins category, showed ubiquitous change, i.e., increase in its level in all the three
treatments when compared to the control/normoglycemic condition, indicating that likely
enhanced receptor-mediated endocytosis plays a role in reduction of exocytosis glutamate
release in aglycemic astrocytes and those fueled by lactate or the hybrid glucose-lactate fuel.
The most diverse changes occurred in the group of cytoskeletal proteins. Aglycemia caused
most changes in protein expression followed by lactate treatment, while the least changes
were seen in hybrid-fueled astrocytes.

Aglycemic astrocytes showed changes in expression of 11 proteins as follows: decrease in 8
cytoskeletal proteins (cytoplasmic 2/y-actin, a-actinin-1, a-actinin-4, fibronectin, vinculin,
tubulin a-1A chain, tubulin a-1B chain, and tubulin a-4A chain), ambivalent change

in secretory vesicle recycling proteins (beside increase in clathrin heavy chain 1, there

was decrease in annexin Al expression), and an increase in level of U5 small nuclear
ribonucleoprotein 200 kDa helicase, a translational protein.

Lactate-fueled astrocytes show changes in expression of seven proteins. There was

decrease in expression of three cytoskeletal proteins: cytoplasmic 2/y-actin, y-actinin-4 and
fibronectin; however, there was the sole exception of an increase in level of vimentin. These
lactate-fueled astrocytes also showed decrease in unconventional myosin-Ic (a secretory
vesicle trafficking protein), and increases in already mentioned clathrin heavy chain 1 (a
secretory vesicle recycling protein), as well as in fatty acid synthase (a metabolic protein).

Lactate- and glucose-, i.e., hybrid-fueled astrocytes showed changes in four proteins.
Besides ubiquitous increase in clathrin heavy chain 1, there was decrease in expression

of plectin (a cytoskeletal protein), cytoplasmic dynein 1 heavy chain 1 (a secretory

vesicle trafficking) and staphylococcal nuclease domain-containing protein 1 (a transcription
protein).
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Overall, acute changes in metabolic fuel or lack thereof can lead to condition-dependent
protein profile changes with the common denominator being altered levels of cytoskeletal
proteins and those of secretory vesicles trafficking and recycling.

We found changes in levels of two proteins that can affect transcription; staphylococcal
nuclease domain-containing protein was reduced in astrocytes using the hybrid glucose-
lactate fuel, while U5 small nuclear ribonucleoprotein 200 kDa helicase was increased

in aglycemic astrocytes. Other detected proteins in that group were rather unaffected (for
example UniProt ID: SYDC_RAT, SYVC_RAT, SYSC_RAT, SYYC_RAT, SYTC_RAT,
SYFA_RAT, SYG_RAT, SYAC_RAT, SYRC_RAT and RTCB_RAT; as disclosed in
Supplementary Table S1). Also, we detected HDACL in all preparations, the activity of
which lactate inhibits to promote expression of HDAC-associated genes; however, lactate
EC50 of 40 mM in this action [111] is not within the realm of physiological event. Thus,

it is more likely that significant changes in protein levels are rather a result of changes in
the rate of protein degradation/turnover. Indeed, we previously described significant GFAP
level dynamics in astrocyte residing in the supraoptic nucleus at even shorter timelines, with
just 5 min [164]. However, we see no changes in expression levels of detected proteasome
components in our present work (for example, UniProt ID: UFL1_RAT, NEDD4_RAT,
UBE2N_RAT, PSME2_RAT, UB2V2_RAT, UCHL1_RAT, UBA1_RAT, RL40_RAT (+
3), UCHL1_RAT, PRS6B_RAT, PSD13_RAT, PRS4_RAT, PRS6A_RAT, PSMD1_RAT,
PSMD2_RAT, PRS7_RAT, PSD11 RAT and PRS8_RAT; as disclosed in Supplementary
Table S1). It is still possible there could be some proteins that escaped our detection, albeit
a more plausible action underlying changes in protein levels is an alteration in the activity
of various degradation enzymes, Such possibility can be studied in future using a variety of
functional assays available [165, 166].

In conclusion, we suggest that the availability of different energy sources and metabolic
milieu play a significant role in exocytotic glutamate release from astrocytes and that
changes in metabolic and protein profiles endow astrocytes with a modifiable signaling
output via gliotransmission. Furthermore, our findings should be of importance in
understanding the role of astrocytes in physiological (e.g., development, sleep—wake cycle,
and learning and memory) and pathophysiological (e.g., metabolic disorders, ischemia,
epilepsy and primary brain tumors) conditions.
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Fig. 1.

Metabolic sources for de novo synthesis of glutamate in astrocytes. Glucose can be used as a
carbon source for de novo synthesis of glutamate in astrocytes. This sugar is taken-up from
the extracellular space via the plasmalemmal glucose transporter GLUT1 into the cytosol
and then either stored in the polymeric from as glycogen from which can be retrieved

on demand, or consumed in glycolysis to pyruvate and further to lactate to recuperate
NAD™; the latter reaction is bidirectional, so that lactate can be converted to pyruvate.
Lactate can be bidirectionally transported down its concentration gradient out/in astrocytes
by the plasmalemmal proton-linked mono-carboxylate transporter MCT1. Pyruvate can be
transported into mitochondria where it dually enters the citric/tricarboxylic acid (TCA)
cycle via: (1) astrocyte-specific pyruvate carboxylase (PC), which converts pyruvate to
oxaloacetate (OAA), and (2) pyruvate dehydrogenase (PDH), the first component enzyme of
pyruvate dehydrogenase complex, transforming pyruvate into acetyl-coenzyme A (Ac-CoA).
In turn, OAA and Ac-CoA, are condensed to citrate by citrate synthase (CS). Citrate can
exit mitochondria into the cytosol where it is utilized in fatty acid synthesis, or feeds

into the TCA cycle, which generates ATP and glutamate, the latter by transamination of
a-ketoglutarate (a-KG) mainly by aspartate amino transferase (AAT). Glutamate that leaves
mitochondria into the cytosol can be converted to glutamine due to the activity of glutamine
synthetase (GS) and can be transported to glutamatergic secretory organelles/vesicles via
proton-dependent vesicular glutamate transporters, VGLUTSs. Glutamate can be taken up
from the extracellular space by the plasmalemmal excitatory amino acids transporter 1
(EAAT1), which for each glutamate molecule also transports 3Na* and 1 proton in, while 1
K* out of cell); the reversal operation of this transporter is not in the realm of physiology.
As extracellular glutamate concentration increases (to ~ 0.5 mM) in the extracellular space,
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a higher proportion of cytosolic glutamate is converted to a—KG and oxidized in the TCA
cycle for energy. This conversion is primarily, but not exclusively, done via mitochondrial
glutamate dehydrogenase (GDH). Some of OAA is also used in the malate shuttle, which
involves: A mitochondrial dicarboxylate carrier (MDC) which transports malate (Mal) from
the cytosol to the mitochondrion, while OAA in the opposite direction, and B two forms of
malate dehydrogenases, mitochondrial (MDHm) and cytosolic (MDHCc), differentiated not
only by their location, but also in structure and catalysis reactions in opposite directions in
this process. Malic enzyme (ME) in the cytosol can convert malate to pyruvate. Additional
details on NAD*/NADH ratio related to glycolysis and the malate shuttle are available in
Results
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Glucose availability promotes exocytotic glutamate release from astrocytes. Mechanical
stimulation induces glutamate release from (A—-C), and underlying cytosolic Ca2* elevations
in (D-F), individual solitary astrocytes. A Images (raw data) of NADH signal before

(i), at a peak response (ii) and after stimulation (iii). The pseudo color scale is a

linear representation of the NADH fluorescence intensities ranging from 125 to 290
intensity units (i.u.). Scale bar, 20 um. B Time lapse of extracellular NADH fluorescence
dynamics in immediate vicinity of individual astrocytes, reporting on glutamate release
from these glial cells. Changes in NADH fluorescence are shown as dF/Fo (percentage)
after background subtraction and correction for bleaching. Mechanical stimulation of
normoglycemic astrocytes (5 mM Glc) caused glutamate release from these cells. This
release was greatly reduced in aglycemic astrocytes (0 mM Glc). There was a partial
recovery from this reduction observed in astrocytes subjected to the glycogenolysis (GL)
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protocol, which recruited glucose from the intracellular glycogen store. Arrow indicates

the time point when mechanical stimulation was applied, while arrowheads correspond

to acquisition time points of images shown in (A). C Summary of normalized peak

NADH responses shown in B. D In experiments parallel to those in A-C, astrocytes

were mechanically stimulated while measuring cytosolic Ca%* levels using fluo-3. This
stimulation causes increases of cytosolic Ca2* in astrocytes. Images (raw data) of cytosolic
fluo-3 signal before (i), at a peak response (ii) and after stimulation (iii). The pseudo color
scale is a linear representation of the fluo-3 fluorescence intensities in astrocytes ranging
from 89 to 3962 i.u.; scale bar, 20 um. E Time lapse of fluo-3 fluorescence dynamics
reporting on cytosolic Ca2* levels in astrocytes. Changes in fluo-3 fluorescence are shown as
dF/Fo (percentage) after background subtraction. Mechanical stimulation caused an increase
of cytosolic Ca2* levels in normoglycemic astrocytes. This increase was marginally reduced
in aglycemic astrocytes, but not in astrocytes lacking external glucose subjected to the

GL protocol. Other annotations as in B. F Summary of normalized peak fluo-3 responses
shown in B. G The ratio of glutamate release and cytosolic Ca2* responses reveals a
significant decrease in the ratio in aglycemic astrocytes when compared to normoglycemic
controls. This decrease was partially rescued in astrocytes subjected to the GL protocol. All
data points in graphs are shown as medians with interquartile ranges (IQRs). Number of
astrocytes studied in each condition is given in parentheses in B and E. In C, F and G, charts
below graphs indicate the presence (+) or absence (=) of a compound and/or a treatment.
Asterisks indicate a statistical difference compared to the control/normoglycemic group. The
brackets mark other differences. Significance was established using Kruskal-Wallis one-way
ANOVA (KWA) followed by Newman-Keuls post-hoc test for multiple comparisons (NKT)
**p<0.01, *p<0.05
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Fig. 3.

Aglycemia of astrocytes does not significantly affect glutamate oxidation in their
mitochondria. A UV-induced autofluorescence imaging of native NAD(P)H in astrocytes
(raw data) before (/ef?), and after incubation of cells for 60 min (righ?) in 5 mM

glucose (control, normoglycemia). The pseudo color scale is a linear representation of

the fluorescence intensities ranging from 130 to 230 i.u.; scale bar, 20 pm. B Analysis of
intracellular/mitochondrial NAD(P)H signal, reporting on oxidative metabolism, expressed
as percentage of fluorescence retained (F/Fo) after the incubation period, shows no
significant difference between NAD(P)H fluorescence in normoglycemic and aglycemic
astrocytes or astrocytes lacking external glucose subjected to the GL protocol. All data
points in B are shown as medians with IQRs. Number of astrocytes studied in each condition
is given in parentheses in B. Other annotations as in Fig. 2
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Lactate hampers exocytotic glutamate release from astrocytes. A Time lapse of NADH
fluorescence, reporting on glutamate release from astrocytes. Mechanically-induced
glutamate release from normoglycemic astrocytes (5 mM Glc; data replotted from Fig.

1B) is significantly higher than that from astrocytes bathed in alternative fuels, lactate (2.5
mM Lac), or the hybrid lactate-glucose fuel. Pharmacological interference with the malate
shuttle using phenylsuccinate (PS), or manipulation of the plasmalemmal lactate transporter
using its blocker quercetine (Q) resulted in partial rescue of the hampering effect of lactate
on glutamate release from astrocytes bathed in the hybrid fuel. B Summary of normalized
peak NADH responses shown in A and reporting on extracellular glutamate levels. C Time
lapse of fluo-3 fluorescence, reporting on Ca2* levels in astrocytes. Mechanically-induced
Ca?* increase in astrocytes (normoglycemic trace replotted from Fig. 1E) (black circles)
was marginally reduced in PS-treated astrocytes bathed in the hybrid fuel. D Summary of
normalized peak fluo-3 responses shown in C and reporting on cytosolic Ca%* levels. E The
ratio of extracellular glutamate release and cytosolic Ca%* responses reveals a significant
decrease in the ratio obtained from astrocytes using lactate or the hybrid fuel, the latter being
partially rescued when astrocytes additionally received either PS or Q treatment. All data
points in graphs are shown as medians with IQRs. Number of astrocytes studied in each
condition is given in parentheses in A and C. Asterisks indicate a significant change of
measurements assessed using a KWA and NKT, **p< 0.01, *p < 0.05. Other annotations as
in Fig. 2
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