Skip to main content
. 2022 Apr 1;5(2):e35373. doi: 10.2196/35373

Table 1.

Performance metrics and 95% confidence intervals (CIs) of the gradient-boosted decision trees model (Extreme Gradient Boosting) with the top 68 features, the Juniper fall risk assessment score, and other machine learning models (logistic regression and multilayered perceptron) for the 3-month prediction of fall.

Variable Extreme Gradient Boosting Logistic regression Multilayered perceptron Juniper fall risk
Area under the receiver operating characteristic curve (95% CI) 0.846 (0.794-0.894) 0.711 (0.645-0.773) 0.697 (0.624-0.765) 0.621 (0.547-0.693)
Sensitivity (95% CI) 0.706 (0.577-0.833) 0.706 (0.553-0.859) 0.706 (0.571-0.833) 0.351 (0.217-0.485)
Specificity (95% CI) 0.848 (0.809-0.888) 0.614 (0.560-0.668) 0.612 (0.566-0.657) 0.883 (0.854-0.911)
Positive likelihood ratio 4.647 1.828 1.813 3.014
Negative likelihood ratio 0.346 0.479 0.481 0.733
Diagnostic odds ratio (95% CI) 13.400 (6.026-29.796) 3.816 (1.764-8.256) 3.766 (1.741-8.147) 4.113 (1.881-8.995)
True positive 24 24 24 12
True negative 268 194 193 279
False positive 48 122 123 37
False negative 10 10 10 22
F1a 0.393 0.262 0.248 0.289

aF score is defined as the harmonic mean between precision and recall.