Table 3.
Estimation results of the ordinal logit models.
Variable | Model A | Model B | Model C | |||
---|---|---|---|---|---|---|
Measures | −0.2077 | *** | ||||
[0.0721] | ||||||
Disclosure | 0.0444 | |||||
[0.0800] | ||||||
Measures-Only | −0.2233 | *** | ||||
[0.0740] | ||||||
Disclosure-Only | −0.0821 | |||||
[0.3437] | ||||||
Disclosure & Measures | −0.1387 | |||||
[0.1013] | ||||||
Sales | −0.1124 | *** | −0.1194 | *** | −0.1151 | *** |
[0.0216] | [0.0218] | [0.0218] | ||||
Labor | 0.0151 | 0.0061 | 0.0164 | |||
[0.1345] | [0.1345] | [0.1348] | ||||
Credit-Constrained | 0.1794 | * | 0.1871 | * | 0.1785 | * |
[0.0971] | [0.0970] | [0.0973] | ||||
SME | −0.1739 | ** | −0.1704 | * | −0.1686 | * |
[0.0881] | [0.0883] | [0.0883] | ||||
Age | 0.0964 | ** | 0.0927 | ** | 0.0951 | ** |
[0.0427] | [0.0427] | [0.0427] | ||||
Cases | 0.0007 | * | 0.0007 | * | 0.0007 | * |
[0.0004] | [0.0004] | [0.0004] | ||||
Location-Small | −0.1948 | * | −0.1963 | * | −0.1974 | * |
[0.1163] | [0.1163] | [0.1164] | ||||
Location-Medium | 0.0465 | 0.043 | 0.0431 | |||
[0.1156] | [0.1157] | [0.1157] | ||||
Location-Large | −0.0645 | −0.0509 | −0.0669 | |||
[0.1301] | [0.1300] | [0.1303] | ||||
No impact | Minor | −2.4261 | *** | −2.373 | *** | −2.4619 | *** |
[0.4118] | [0.4122] | [0.4135] | ||||
Minor | Moderate | −1.0552 | ** | −1.004 | ** | −1.0909 | *** |
[0.4107] | [0.4112] | [0.4124] | ||||
Moderate | Severe | 0.2208 | 0.2704 | 0.1853 | |||
[0.4112] | [0.4117] | [0.4129] | ||||
Country effects | Yes | Yes | Yes | |||
Sector effects | Yes | Yes | Yes | |||
Pseudo R2 | 0.056 | 0.0554 | 0.0561 | |||
Observations | 4,888 | 4,888 | 4,888 |
Notes: *** p < 0.01, ** p < 0.05, and * p < 0.1. Standard errors are in brackets. Dependent variable refers to the ordinal impacts of COVID-19 with 4 categories: ‘No impact’, ‘Minor’, ‘Moderate’, and ‘Severe’.