Skip to main content
. 2022 Apr 19;355:131781. doi: 10.1016/j.jclepro.2022.131781

Table 3.

Estimation results of the ordinal logit models.

Variable Model A Model B Model C
Measures −0.2077 ***
[0.0721]
Disclosure 0.0444
[0.0800]
Measures-Only −0.2233 ***
[0.0740]
Disclosure-Only −0.0821
[0.3437]
Disclosure & Measures −0.1387
[0.1013]
Sales −0.1124 *** −0.1194 *** −0.1151 ***
[0.0216] [0.0218] [0.0218]
Labor 0.0151 0.0061 0.0164
[0.1345] [0.1345] [0.1348]
Credit-Constrained 0.1794 * 0.1871 * 0.1785 *
[0.0971] [0.0970] [0.0973]
SME −0.1739 ** −0.1704 * −0.1686 *
[0.0881] [0.0883] [0.0883]
Age 0.0964 ** 0.0927 ** 0.0951 **
[0.0427] [0.0427] [0.0427]
Cases 0.0007 * 0.0007 * 0.0007 *
[0.0004] [0.0004] [0.0004]
Location-Small −0.1948 * −0.1963 * −0.1974 *
[0.1163] [0.1163] [0.1164]
Location-Medium 0.0465 0.043 0.0431
[0.1156] [0.1157] [0.1157]
Location-Large −0.0645 −0.0509 −0.0669
[0.1301] [0.1300] [0.1303]
No impact | Minor −2.4261 *** −2.373 *** −2.4619 ***
[0.4118] [0.4122] [0.4135]
Minor | Moderate −1.0552 ** −1.004 ** −1.0909 ***
[0.4107] [0.4112] [0.4124]
Moderate | Severe 0.2208 0.2704 0.1853
[0.4112] [0.4117] [0.4129]



Country effects Yes Yes Yes
Sector effects Yes Yes Yes
Pseudo R2 0.056 0.0554 0.0561
Observations 4,888 4,888 4,888

Notes: *** p < 0.01, ** p < 0.05, and * p < 0.1. Standard errors are in brackets. Dependent variable refers to the ordinal impacts of COVID-19 with 4 categories: ‘No impact’, ‘Minor’, ‘Moderate’, and ‘Severe’.