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Introduction

The advent of immune checkpoint inhibitors (ICIs) as first- 
and second-line of treatments for advanced non–small cell 
lung cancer (NSCLC) has resulted in improved survival and 
anti-tumor response in selected patients [1-4]. Unfortunate-
ly, nearly 60% patients with advanced NSCLC do not ben-
efit from anti–programmed death-1 (PD-1) or programmed 
death-ligand-1 (PD-L1) agents, which are commonly used in 
immunotherapy. Therefore, besides tumor PD-L1 expression, 
more reliable markers that can predict responses to immuno-
therapy are required to guide individualized treatment.

Recently, several biomarkers involved in the interplay  
between the tumor and host genomics, tumor microenviron-
ment, and immune functions have been identified. One of 
them is tumor mutational burden (TMB), which has been 

suggested to be a potent predictor of response to ICIs in 
metastatic NSCLC in multiple studies [5-7]. However, some 
studies have regarded it as an inconsistent predictor of  
response to treatment with single or multiple ICIs [8,9].  
Another biomarker that can be used is the gene signature  
associated with immune cells. Especially, the CD8+ T cell– 
related genes and interferon-γ (IFN-γ) signatures are predic-
tive of the effectiveness of ICI therapies [10,11]. As these bio-
markers interact closely with each other at different stages of 
the complex process of cancer immunity, the use of a com-
bination of multiple biomarkers can increase the positive or 
negative predictive value of response to ICI treatment.

Recent studies support the notion that combined use of 
these biomarkers enhances their ability to predict the thera-
peutic response and prognosis compared to their individual 
use [12,13]. Additionally, a pan-cancer meta-analysis revea-
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led that multiparametric biomarker strategies are associated 
with improved performance for predicting ICI therapeutic 
response compared to PD-L1 immunohistochemistry (IHC), 
TMB, or transcriptional signatures alone [14]. In this study, 
we aimed to verify whether multimodal biomarker testing 
improves the predictiveness of the immunotherapy response 
in real-world NSCLC patients. 

Materials and Methods
 
1. Study population 

Thirty patients with NSCLC who were treated with ICIs 
between May 2016 and March 2019 at Seoul National Uni-
versity Bundang Hospital were selected. Inclusion criteria 
included histologically diagnosed and surgically resected 
NSCLC with sufficient pretreatment tumor samples and 
complete progression-free survival (PFS) and overall surviv-
al (≥ 1 month) data. Additionally, we collected data on their 
smoking status, genetic alterations, and tumor staging from 
medical records. Patients were characterized as having either 
durable clinical benefit (DCB) or no durable benefit (NDB), 
in addition to complete/partial response (CR/PR), stable 
disease (SD), or progressive disease (PD) as the best response 
(Response Evaluation Criteria in Solid Tumor ver. 1.1) [15]. 
DCB was defined as CR/PR or SD for at least 6 months, 
whereas NDB was defined as progression within 6 months 
from the start of ICI treatment [5]. 

2. Targeted sequencing and TMB calculation
DNA isolated from formalin-fixed, paraffin-embedded 

(FFPE) tumor sections were subjected to hybridization cap-
ture-based next generation sequencing to detect somatic  
alterations in 377 genes with a 1.67-Mbp custom capture 
probe (SureSelect DNA Advanced Design Wizard, Agilent, 
Santa Clara, CA). A total of 359 genes were designed to con-
tain whole exons, 18 hotspot regions, and 17 rearranged 
regions. In addition, 16 loci of microsatellite instability  
regions were also included in the panel. The gene list of the 
custom-designed panel is presented in S1 Table. Paired-end 
sequencing was performed on a HiSeq platform (Illumina, 
San Diego, CA). Reads were aligned to the genome build 
GRCH19 using BWA, followed by the removal of duplicates 
using Picard Tools, indel realignment, and base recalibration 
using the Genome Analysis Toolkit (GATK, Broad Institute). 
Somatic mutation, single-nucleotide variant/indel, copy 
number variation (CNV), and translocation calling were per-
formed using MuTect2, Vardict, CNVkit, and Lumpy, respec-
tively. The mean on-target depth was 355×. TMB, defined as 
the number of nonsynonymous and in-frame shift mutations 
per megabase (Mb), was calculated. To determine whether 

our panel could accurately quantitate TMB, we simulated 
TMB measurements in the Cancer Genome Atlas pan-cancer 
cohort of 10,182 tumors and compared it with whole exome 
sequencing (WES) data.

3. Gene expression profiling
Total RNA was isolated from FFPE sections using a Qiagen 

RNeasy FFPE kit (Qiagen, Hilden, Germany). Gene expres-
sion was determined using NanoString nCounter analysis 
for the PanCancer IO360 panel (NanoString Technologies, 
Seattle, WA) to evaluate 770 genes that cover the key path-
ways at the interface of the tumor, tumor microenvironment, 
and immune response. The samples were tested according 
to the manufacturer’s recommendations [16]. The nSolver 
v4.0 and the nSolver Advanced Analysis v2.0.115 were used 
to normalize gene expression using the geNorm algorithm, 
and differentially expressed gene (DEG) tests were also con-
ducted. Analysis was performed using R v3.6.3. DEGs are  
defined as having p ≤ 0.05 and |fold-change| ≥ 2. Single-
sample gene set enrichment analysis (ssGSEA) was per-
formed using ssGSEA v10.0.6 module in GenePattern [17]. 
ssGSEA caslculated separate enrichment score (ES) for each 
pairing of a sample and gene set. Each ES represents the  
degree to which the genes in a particular gene set are coordi-
nately up- or downregulated within a sample [17].

4. PD-L1 IHC
PD-L1 IHC was performed using the 22C3 PharmDx assay 

as previously described [18]. PD-L1 expression was evaluat-
ed in tumor cells and reported as the tumor proportion score. 
Tumors were grouped according to PD-L1 expression: < 1% 
(negative), 1%-49% (intermediate), or ≥ 50% (high).

5. Statistical analysis
Student’s t test, chi-square test, and Wilcoxon rank-sum 

test were used to compare variables between patient sub-
groups. The receiver operating characteristic (ROC) curves 
and the resultant area under the curve (AUC) were used to 
measure the association between the different assay modali-
ties. The cutoff values providing the best separation between 
responders and non-responders to PD-1 blockade were 
also determined using ROC curves. For survival analysis,  
Kaplan-Meier curves were used to estimate time-to-event 
outcome parameters, and multiple groups were compared 
using the log-rank test. All tests were two-sided, and statisti-
cal significance was set at p < 0.05. Data were analyzed using 
R v3.6.3. and SPSS ver. 21 (IBM Corp., Armonk, NY).
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Results

1. Demographics and genetic characteristics
The baseline characteristics of the 30 enrolled patients with 

NSCLC treated with ICI are summarized in Table 1. In brief, 
67% were ever-smokers and 77% had non-squamous histol-
ogy. PD-L1 expression was positive in 83% of the patients. 

Most of the patients (20/30, 66.7%) were initial stage II/
III (3 for IIA, 5 for IIB, 10 for IIIA, 2 for IIIB, 3 for IIA, and 
5 for IIB) and they relapsed after adjuvant treatment and  
received immunotherapy. Eight out of 30 patients (26.7%) 
were in initial stage IV, and after chemotherapy/radiother-
apy, if the tumor size decreased or there was a resistant nod-
ule, surgery was performed for palliative purposes. One of 
the two stage IA patients was a solid predominant adeno-
carcinoma and relapsed 18 months after surgery. The other 

had squamous cell carcinoma (SqCC) and received photo-
dynamic therapy after surgery, but relapsed after 8 months. 
The majority of patients received PD-1/PD-L1 blockade 
therapy as second-line treatment, and only two received it 
as first-line therapy. Eleven patients (36.7%) were placed in 
the DCB group, while the remaining 19 were assigned to the 
NDB group. The number of non-SqCC in the DCB group 
was higher than that in the NDB group, but the difference 
was not statistically significant. In addition, there was no sig-
nificant difference in the clinicopathological characteristics  
between the two groups (Table 1).

Fig. 1 shows the clinicopathological and molecular char-
acteristics of each patient. Mutations in TP53 were the most 
common, and its mutation rate between DCB and NDB 
groups was similar (22.2% vs. 36.8%). The KRAS mutation 
was more frequent in the DCB group (36.4% vs. 10.5%), 

Table 1.  Patient demographics 

Characteristic	 Total	 DCB group	 NDB group	 p-value

Sex			 
    Men	 23 (76.7) 	 9 (81.8)	 14 (73.7)	 > 0.05
    Women	 7 (23.3) 	 2 (18.2)	 5 (26.3)	
Age (yr)				  
    ≥ 65	 17 (56.7)	 4 (36.4)	 13 (68.4)	 > 0.05
    < 65	 13 (43.3)	 7 (63.6)	 6 (31.6)	
Smoking status				  
    Ever	 20 (66.7)	 7 (63.6)	 13 (68.4)	 > 0.05
    Never	 10 (33.3)	 4 (36.4)	 6 (31.6)	
Histology				  
    SqCC	 7 (23.3) 	 1 (9.1)	 6 (31.6)	 > 0.05
    Non-SqCC	 23 (76.7) 	 10 (90.9)	 13 (68.4)	
Agent				  
    Nivolumab	 17 (56.7)	 4 (36.4)	 13 (68.4)	 > 0.05
    Pembrolizumab	 9 (30.0)	 5 (45.5)	 4 (21.1)	
    Others	 4 (13.3)	 2 (18.2)	 2 (10.5)	
IO agent cycle	 7.9 (2-36)	 15.4 (4-36)	 3.5 (2-8)	 0.001*
PD-L1 IHC (%)				  
    < 1	 8 (26.7)	 4 (36.4)	 4 (21.1)	 > 0.05
    1-49	 6 (20.0)	 3 (27.3)	 3 (15.8)	
    ≥ 50	 16 (53.3)	 4 (36.4)	 12 (63.2)	
Genetic alteration				  
    TP53 mutant	 9 (30.0)	 2 (22.2)	 7 (36.8)	 > 0.05
    KRAS mutant	 6 (20.0)	 4 (36.4)	 2 (10.5)	 > 0.05
    EGFR mutant	 7 (23.3) 	 1 (9.1)	 6 (31.6)	 > 0.05
TMB (mutation/Mb)	 7.9 (1.76 to 31.72)	 11.2 (2.64 to 31.72)	 6.0 (1.76 to 15.86)	 0.042*
Enrichment scorea) (log2FC)	 −1.409 (–0.907 to 2.496)	 −0.636 (–0.196 to 0.946)	 0.337 (–0.907 to 2.496)	 0.017*
Total 	 30 (100)	 11 (36.7)	 19 (63.3)	
Values are presented as number (%) or mean (range). DCB, durable clinical benefit; IHC, immunohistochemistry; IO, immuno-oncology; 
NDB, no durable benefit; PD-L1, programmed cell death-ligand-1; SqCC, squamous cell carcinoma; TMB, tumor mutational burden. *p < 
0.05. a)Evaluated in only 26 of total 30 specimens due to insufficient RNA quality. 
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whereas epidermal growth factor receptor (EGFR) was more 
frequent in the NDB group (9.1% vs. 31.6%); however, these 
differences were not statistically significant.

2. Comparison of each biomarker according to anti–PD-1/
PD-L1 response

1) Tumor mutational burden
Strong correlation (R2=0.884) between panel sequencing 

and WES was observed (S2 Fig.). In our cohort, the median 
TMB was 5.29 var/Mb (range, 1.76 to 31.72 var/Mb). TMB 
was greater in the DCB group than in the NDB group (mean, 
11.21 vs. 5.98; p=0.044) and in patients showing best response 
with CR/PR than in those showing SD or PD (mean 16.7 vs. 
7.7 vs. 5.8, respectively) (Fig. 2). In particular, the mean TMB 

was greater in patients with CR/PR than in those with SD or 
PD (p=0.061 and p=0.035, respectively), and the TMB distri-
bution between the SD and PD groups was similar (p=0.355) 
(Fig. 2).

2) Gene set enrichment analysis and ES
Among the 30 RNA samples, 26 passed quality control. 

Singular enrichment analysis showed that the immune 
system-related pathways in the gene ontology biological 
process was highly enriched in the DCB group (Fig. 3A). A 
total of 111 upregulated and six downregulated DEGs were 
identified between the DCB and NDB groups. The key iden-
tified genes are linked to activated T cells, B cells, and natural 
killer cells (such as IL1A, TNFRSF8, BTLA, GZMM, NCR1,  

Fig. 1.  Summary of the clinical and molecular features associated with response to anti–PD-1/PD-L1 therapy in non-small cell lung cancer 
patients. Individual patients are represented in each column and sorted according to treatment response (DCB vs. NDB). Tumor histol-
ogy and smoking status are characterized. PD-L1 expression is stratified as < 1%, 1%-49%, and ≥ 50%. The frequency of a selected gene 
mutation and tumor mutational burden (mutations/megabase) are sequentially displayed on the histogram. DCB, durable clinical benefit; 
NDB, no durable benefit; PD-1, programmed death-1; PD-L1, programmed cell death-ligand-1; TMB, tumor mutational burden; VUS, 
variant of uncertain significance.
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and FOXP3) and IFN-γ signaling (such as DNMT1, PDCD1, 
TIGIT, CXCR6, and IFNGR1) in the DCB group. Representa-
tive genes are shown in Fig. 3B. The DCB group was signifi-
cantly enriched in GSE37605 (regulatory T cell [Treg] and 
Tconv Cells) (Familywise-error rate [FWER] p=0.466, nomi-
nal p < 0.001) and GSE20366 (TregLP vs. TconvLP up) (FWER 
p=0.768, nominal p=0.008) (Fig. 3C). ssGSEA was performed 
using a customized gene set with 117 DEGs to obtain an 
ES. ES was lower in the DCB group than in the NDB group 
(−0.636 vs. 0.337, p=0.017) and in patients showing the best 
response with CR/PR than in those with SD or PD (−0.858 
vs. 0.098 vs. 0.226, respectively). In particular, the mean ES 
was lower in patients with CR/PR than in those with SD or 
PD (p=0.093, p=0.012), and the ES between the SD and PD 
groups was similar (p=0.782).

3) PD-L1 expression 
The percentages of tumors that showed high, intermedi-

ate, and negative PD-L1 expression were approximately 50% 
(15/30), 23.3% (7/30), and 26.7% (8/30), respectively. There 
was no significant difference in PD-L1 expression between 
the DCB and NDB groups and among the groups, according 
to the best response. 

3. Predictive power of biomarkers to anti–PD-1/PD-L1 ther-
apy 

Considering all three biomarkers as continuous variables, 
no correlation was found between PD-L1 expression and 
TMB (Spearman r=0.096, p=0.612), PD-L1 and ES (Spearman 
r=0.162, p=0.429), and TMB and ES (Spearman r=–0.081, 
p=0.693). The best single biomarker for predicting DCB was 
ES, with AUC=0.794 (Fig. 4A). TMB and PD-L1 had a similar 
predictive effect on the likelihood of DCB (0.679 vs. 0.622, 
respectively). The combination of TMB and ES showed a 
greater AUC (0.8373) than other combinations (TMB and PD-
L1, 0.7775; PD-L1 and ES, 0.7632) (Fig. 4B). Interestingly, the 
AUC of the combination of TMB and ES was similar to that 
of the combination of all three biomarkers (0.8325) (Fig. 4B).

4. Survival analysis
Survival analysis was performed after dichotomizing  

using the cutoff. When TMB was divided based on the medi-
an value (5.29/Mb), the high TMB group showed better PFS 
than the low TMB group (p=0.043) (Fig. 5A). ES was divided 
by 0.042, which was the cutoff for predicting the DCB group. 
The low ES group showed better PFS than the high ES group 
(p=0.023) (Fig. 5B). PD-L1 expression was not related to sur-
vival, and no statistical significance in OS was observed in 
any of the three biomarkers.

Discussion

A combination of biomarkers could provide complemen-
tary information, thus yielding greater accuracy in the pre-
diction of immunotherapeutic benefit. Recently, the combi-
nation of TMB with GEP, a T-cell–inflamed gene expression 
profile, jointly predicted the clinical response to pembroli-
zumab in pan-tumor types and identified the patterns of 
underlying, targetable biology related to these groups [19]. 
In this study, we analyzed TMB, GEP, and PD-L1 expression 
in FFPE NSCLC specimens and determined their correlation 
with ICI therapeutic response. We identified that the com-
bination of at least two markers showed greater predictive 
power than a single biomarker. In particular, the combina-
tion of TMB and ES showed the best predictive potency on 
ICI therapeutic response.

TMB is an emerging predictive biomarker based on the 
hypothesis that neoantigen formation contributes to the  
intrinsic immunogenicity of a tumor [6]. The most accurate 
approach to determine TMB is the WES of paired tumor and 
normal tissues, although this approach is costly and time-
intensive to implement in the clinical setting. To address this 
issue, targeted sequencing assays, which are enriched for 
known cancer-driving gene mutations, (including the F1CDx 

Fig. 2.  Tumor mutational burden (TMB) according to response 
to anti–PD-1/PD-L1 therapy. TMB was greater in patients with 
DCB than in those with NDB and was significantly different 
among those with CR/PR vs. SD vs. progressive disease. Box 
plots represent medians and interquartile ranges. Vertical lines 
extend to the 95th percentiles. CR, complete response; DCB,  
durable clinical benefit; NDB, no durable benefit; PD, progres-
sive disease; PD-1, programmed death-1; PD-L1, programmed 
cell death-ligand-1; PR, partial response; SD, stable disease; 
TMB, tumor mutational burden. *p < 0.05.
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Fig. 3.  (A) Top ten pathways with gene ontology molecular function, as identified by singular enrichment analysis. (B) Representative 
differentially expressed genes in the DCB and NDB groups. (Continued to the next page)
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assays), have been recently approved as a companion diag-
nostic tool by the Food and Drug Administration for solid 
tumors to assess TMB. However, it is not clear which specific 
neoantigens drive this host immune response [20]. Preclini-
cal data of patients with melanoma and NSCLC indicate that 
both the quantity and the quality of mutations are decisive 
in generating immunogenic neoantigens [21]. Furthermore, 
TMB alone may not be sufficient to best predict the response 
to ICI. A recent study has demonstrated that cancer types 
that show no correlation between neoantigen load and CD8 
T-cell infiltration fail to achieve a 20% response rate to ICB in 
TMB-high tumors and that TMB-high tumors may exhibit a 
worse response rate to ICB than TMB-low tumors [22]. This 
suggests that as a host response to the neoantigen generated 

by mutations, the tumor microenvironment should be con-
sidered in the prediction of ICI treatment outcomes.

In our study, the DCB group was particularly enriched in 
the gene set associated with the regulation of FOXP3 and 
CD103-positive Treg cells. This is in line with the results 
of our previous study in which we demonstrated that the 
CD8+/FOXP3+ tumor-infiltrating lymphocyte (TIL) ratio 
could predict the ICI therapeutic response in NSCLC [18]. 
Especially, FoxP3 is the master regulator of Treg develop-
ment and function and has emerged as an attractive target 
for specific Treg depletion in cancer [23]. Tregs are attract-
ed to the tumor microenvironment through engagement of 
chemokine receptors with cognate chemokines, which are 
abundant in the surrounding microenvironment [24]. Tregs 

Fig. 3.  (Continued from the previous page) (C) Gene set enrichment analysis showed that the DCB group was significantly enriched in the 
GSE37605 (Treg and Tconv Cells) and GSE20366 (TregLP vs. TconvLP up).  DCB, durable clinical benefit; NDB, no durable benefit. 
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Fig. 4.  Receiver operating characteristic curve of sensitivity vs. 1-specificity of durable clinical benefit for TMB, ES, PD-L1, and the combi-
nation of two or more biomarkers. ES, enrichment score; PD-L1, programmed cell death-ligand-1; TMB, tumor mutational burden.
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that migrate to the tumor microenvironment (TME) become 
strongly and preferentially activated by tumor-associated 
antigens, since Tregs are endowed with high affinity T-cell 
receptors. Compared to Tregs in the peripheral blood, int-
ratumoral Tregs exhibit a more proliferative and immuno-
suppressive phenotype and are characterized by elevated 
expression of cytotoxic T-lymphocyte–associated protein 4, 
CD25, GITR, 4-1BB, OX40, ICOS, LAG-3, TIM3, TIGIT, and 
PD-1 [24]. In our study, the function of Treg cells, along with 
CD8+ TIL in the previous study was identified as an impor-
tant factor in the immunotherapeutic response, suggesting 
that it is necessary to predict the ICI response to confirm the 
presence or absence of Tregs along with the CD8+ TIL and 
IFN-signaling pathway. 

We did not find any correlation between PD-L1, TMB, and 
ES, which is consistent with previous reports that revealed 
TMB and PD-L1 as independent factors [25], and confirmed 
that they are indeed independent factors in immunotherapy 
response. In this study, there was no significant difference in 
PD-L1 expression according to ICI response. Despite the limi-
tations of PD-L1 as a biomarker, still PD-L1 is regarded as the 
most commonly used predictive marker for ICI therapy. For 
this discrepancy, we considered the following reasons. First, 
since the patients in our cohort were heavily treated patients, 
treatment before resection may have affected the expression 
of PD-L1. In addition, it is difficult to guarantee that PD-L1 in 
the resected specimen is the same as the tumor PD-L1 status 
at the time of using immunotherapy because relatively long 
periods exist at the time of specimen acquisition and use of 
immunotherapy. Secondly, we used the 22C3 PharmDx assay 
approved as companion diagnostic test for pembrolizumab, 
but the prescribed PD-1/PD-L1 blockade varied including 
nivolumab and atezolizumab. Although several PD-L1 Abs 
have been proven to be equivalent through harmonization 
studies, IHC platforms and cutoff predicting response were 

different depending on the drug in clinical trials. Finally, as 
patients who received immunotherapy were enrolled, there 
were few PD-L1–negative patients, so it was difficult to con-
firm the response according to PD-L1 expression.

Here, the genes identified to be related to ICI responses 
were largely consistent with previous reports. For instance, 
EGFR mutation predicted poor ICI response [26]. Converse-
ly, mutations in KRAS and PIK3CA, which have been report-
ed as favorable factors in response to ICIs, were frequently  
observed in the DCB group. Patients with TP53/KRAS  
co-mutations are responsive to ICI treatments, suggesting 
the need for the implementation of a model that combine 
multiple genes [27]. Recently, a STK11/LKB1 co-mutation 
correlated with significantly shorter PFS after ICI treat-
ment compared with KRAS alteration alone or KRAS/TP53  
co-alteration [28]. Another study reported that KRAS/KEAP1 
co-alteration as an independent prognostic factor for predict-
ing inferior OS from the start of immunotherapy [29]. In this 
study, as the number of SKT11 and KEAP1 mutations was 
small, it was difficult to evaluate the predictive power of ICI 
response for the combination of genetic mutations.

This study had several limitations. First, we only analyzed 
a small number of samples. Thus, the correlation between 
a specific gene mutation and immunotherapy response may 
not be definitive. Second, we could not propose a gene set 
for predicting the immunotherapy response because there 
was no validation in an independent cohort. Nevertheless, 
our results showed that methods such as targeted panel  
sequencing and RNA panel analysis of FFPE specimens can 
be applied in the clinical setting. Studies with lager cohort 
should be conducted to determine the accurate nature of 
these relationships and assess the potential clinical utility of 
developing cutoffs for such biomarkers in patient selection 
for anti–PD-1 therapy. 

In conclusion, TMB and GEP may serve as potential bio-

Fig. 5.  Kaplan-Meier survival curves showing progression-free survival according to TMB (A) and ES (B). ES, enrichment score; TMB, 
tumor mutational burden.
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markers to identify patients with NSCLC who are likely to 
benefit from anti–PD-1/PD-L1 therapy. The assessment of 
these biomarkers in a randomized, comparative setting is 
required to provide a better understanding of the predictive 
versus prognostic elements of these relationships. Further 
studies on how the different components of the TME and 
the mutational status may be used to predict outcomes with 
anti–PD-1/PD-L1 monotherapy and combination therapies 
relative to standard-of-care treatment should be explored.
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