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Abstract

Craniofacial tissue injuries, diseases, and defects, including those within bone, dental, and 

periodontal tissues and salivary glands, impact an estimated 1 billion patients globally. 

Craniofacial tissue dysfunction significantly reduces quality of life, and successful repair of 

damaged tissues remains a significant challenge. Blood vessels and nerves are colocalized within 

craniofacial tissues and act synergistically during tissue regeneration. Therefore, the success of 

craniofacial regenerative approaches is predicated on successful recruitment, regeneration, or 

integration of both vascularization and innervation. Tissue engineering strategies have been widely 

used to encourage vascularization and, more recently, to improve innervation through host tissue 

recruitment or prevascularization/innervation of engineered tissues. However, current scaffold 

designs and cell or growth factor delivery approaches often fail to synergistically coordinate both 

vascularization and innervation to orchestrate successful tissue regeneration. Additionally, tissue 

engineering approaches are typically investigated separately for vascularization and innervation. 

Since both tissues act in concert to improve craniofacial tissue regeneration outcomes, a revised 

approach for development of engineered materials is required. This review aims to provide an 

overview of neurovascularization in craniofacial tissues and strategies to target either process thus 

far. Finally, key design principles are described for engineering approaches that will support both 

vascularization and innervation for successful craniofacial tissue regeneration.
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1. INTRODUCTION

The craniofacial complex is composed of various tissues including cranial, maxillary, and 

mandibular bones, dental and periodontal tissues, and salivary glands.1,2 These structures 

provide critical functions including protection of the brain and oral cavity, mastication, 

defense against bacteria, and assisting in digestion.3 Destruction or loss of craniofacial 

tissues has many underlying causes. Craniofacial bone defects can occur following injury, 

tumor resection, or as a result of dysfunctional development.4 Dental pulp and periodontal 

tissues can be damaged by dental caries and periodontitis.5,6 Xerostomia, or chronic dry 

mouth, occurs due to bystander damage of salivary glands during radiation treatments 

or destruction due to Sjögren’s Syndrome.7-9 Craniofacial tissue dysfunction significantly 

reduces quality of life, and successful repair of damaged tissues remains a significant 

challenge.10 The current lack of approaches to restore function to cranial and oral tissues 

demands innovative tissue engineering and regenerative medicine approaches.
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While the field of tissue engineering has made remarkable progress, vascularization 

remains a significant and long-standing hurdle for engineered scaffolds including those 

for craniofacial tissues.11 Additionally, craniofacial tissues are highly innervated. Nerves 

are found in close proximity to blood vessels and are increasingly recognized as critical 

coregulators of tissue regeneration.12-14 While vascularization has been targeted with tissue 

engineering approaches in cranial and alveolar bone defect healing15,16 and dental tissue 

regeneration,17,18 innervation has received much less attention, and coordinated innervation 

and vascularization has not been directly investigated for craniofacial tissue regeneration.

Here, we review the biological processes underpinning both vascularization and innervation 

and their crosstalk in craniofacial tissues. We then describe methods employed to date to 

promote angiogenesis and innervation, either directly in the context of craniofacial tissue 

regeneration or in general for tissue engineering. Finally, we discuss the microenvironmental 

cues that may pave the way for successful neurovascular tissue engineering strategies for 

craniofacial tissues.

2. INNERVATION AND ANGIOGENESIS IN CRANIOFACIAL TISSUE 

REGENERATION

2.1. Innervation and Angiogenesis after Injury.

Peripheral nerves can regenerate after injury. Over the first 24 h following axotomy, 

nerve stumps retract due to dissolution of the cell membranes adjacent to the injury, and 

macrophages are recruited to the injury site. Distal axons undergo Wallerian degeneration 

(Figure 1), which is the coordinated removal of the axon and tissue debris by Schwann 

cells and macrophages. Schwann cells (SCs) proliferate in response to myelin debris 

and macrophage-secreted cytokines, then align in tubes known as Bungner bands, which 

express chemotactic cues including nerve growth factor (NGF) to attract and guide 

proximal axon reinnervation, resulting in functional recovery of their tissue targets (Figure 

1).19-22 Schwann cell proliferation can also be stimulated by target organ-derived trophic 

factors such as glial derived growth factor (GDGF) and brain-derived neurotrophic factor 

(BDNF).22

Angiogenesis occurs in response to tissue hypoxia, or low oxygen tension, following injury-

mediated disruption of vascularization. A representation of this process is shown in Figure 

2, which includes a summary of key cells and growth factors. First, cells in ischemic tissue 

increase production of hypoxia inducible factor 1α (HIF-1α), which induces production of 

vascular endothelial growth factor (VEGF) that diffuses into the nearby tissue. These factors 

signal to pericytes and endothelial cells (ECs) of nearby vasculature, causing detachment 

of pericytes and sprouting of endothelial tip cells toward the signal gradient. Tip cells then 

migrate in the direction of the gradient, degrading the local extracellular matrix to enable 

stalk cells to proliferate and form vessels. Stalk cells align in tube-like luminal structures, 

forming an immature vascular network. Pericytes are then recruited to the newly formed 

vasculature, stabilizing the immature vessels, and participating in vessel remodeling.
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Vascularization and innervation share many developmental and anatomical similarities 

including reciprocal signals that influence their development. To establish proper 

connections within the vasculature and nervous system, chemotaxis of axons or blood 

vessels is orchestrated by similar structures: the growth cone in axons or tip cells in 

vessels.19,23,24 Endothelial and nerve cells can both secrete angiogenic and neurogenic 

factors during vessels and nerve regeneration. Recent studies suggest that endothelial 

cell paracrine factors provide critical cues for recruiting and controlling innervation.25,26 

Specifically, endothelial cells secrete artemin and neurotrophin 3 that recruit axons to track 

alongside vessels.27,28 In turn, nerves secrete VEGF in a spatiotemporally controlled manner 

to coordinate vessel growth.29 Further, stimulation of neuronal activity can also trigger 

angiogenesis.30,31

2.2. Coupled Innervation and Angiogenesis in Craniofacial Tissue Regeneration.

2.2.1. Craniofacial Tissues Are Vascularized and Innervated.—Craniofacial 

tissues, including cranial and mandibular bone, dental tissue, and salivary glands, are highly 

vascularized and innervated with blood vessels and nerves in close juxtaposition (Figure 3). 

For example, the calvarial periosteum and diploë, the cancellous bone separating the inner 

and outer layers of the cortical bone of the skull, are innervated by peripheral nerve fibers, 

including both sensory and sympathetic fibers.33,34 Some small sensory nerve fibers depart 

blood vessels and wind through the periosteum, while the main sensory nerves follow blood 

vessels, terminating in the lining layer of periosteum or continuing along vessels into bone 

via Volkmann’s canals.35 Sympathetic fibers often wrap around blood vessels penetrating 

from the periosteum into the diploë.35

Dental vessels and nerves course from the inferior alveolar nerve and vessels in the mandible 

(Figure 3Bi) and from branches of the maxillary artery and nerve in the maxilla, entering 

the dental pulp primarily through the apical foramen at the tooth root end (apex) (Figure 

3Bii). Arterioles in the central pulp region supply a peripheral capillary network adjacent 

to dentin walls.36 Autonomic nerve fibers are found primarily in association with the 

vasculature, while sensory nerve fibers form a network around the pulp periphery and can 

enter dentin tubules in close relationship to odontoblasts.37 Additionally, the periodontal 

ligament (PDL) surrounding the cementum lining the tooth root and connecting alveolar 

bone, is vascularized and innervated.38 Conversely, cementum is avascular and contains no 

nerves.39 Progenitor and stem cell populations in both dental pulp and PDL are closely 

associated with the neurovasculature40,41 and sensory denervation can inhibit stem cell 

proliferation and differentiation.42

Vessels and nerves are also colocalized within the salivary gland (Figure 3C). Vessels enter 

the salivary gland from the external carotid artery and closely associate with the duct 

network of the salivary tissue together with nerves43 (Figure 3C). These vessels form dense 

capillary networks around the terminal ends of the secretory acinar units, which are also 

enveloped by nerves.44 Salivary gland innervation, similar to the pulp and PDL, is required 

for gland function and repair, controlling salivary secretion, and possibly maintaining 

salivary epithelial progenitor cell populations.45-47 Thus, vessels and nerves colocalize and 

play important roles in tissue homeostasis in craniofacial tissues.
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2.2.2. Innervation and Angiogenesis Coordinate Craniofacial Tissue 
Regeneration.—Blood vessels and nerves synergistically coordinate tissue 

regeneration.48-54 In bone, healing is initiated by hematoma and inflammation, which 

leads to cytokine release from inflammatory cells, followed by increased blood flow and 

cell migration to the injured site.55 Mesenchymal stem cells (MSCs) and osteoprogenitors 

migrate to the defect area and differentiate into osteoblasts to form the ossification center.56 

Within the hypoxic wound, osteoblasts synthesize and secrete VEGF in response to 

elevated levels of HIF-1α, which then stimulates angiogenesis. Blood vessels sprouting 

from preexisting vessels to the defect center can be observed within the first week after 

injury in mouse cranial defect models57,58 (Figure 4A). Inflammatory cytokines, such as 

interleukin-1 (IL-1) and tumor necrosis factor (TNF)-α, directly induce NGF expression 

and downstream nuclear factor kappa B (NF-kB) signaling in calvarial osteoblasts to 

stimulate nerve recruitment.59 Reinnervation, which is associated with blood vessels, can 

be observed as early as 3 days postinjury in mouse cranial defects (Figure 4B).60 Nerves 

play diverse roles during osteogenesis, regulating the canonical/ß-catenin Wnt signaling 

pathway and expression of Connexin 43 (Cx43) and N-cadherin in MSCs61 as well as 

secreting vasculogenic neuropeptides, including neuropeptide Y (NPY), calcitonin gene-

related peptide (CGRP), and substance P (SP), to stimulate angiogenesis.62,63 Increased 

angiogenesis recruits additional osteoprogenitors to the repair site, along with nutrients, 

oxygen, and minerals necessary for mineralization. Concomitantly, endothelial cells 

produce osteogenic factors, such as transforming growth factor beta (TGF-β) and bone 

morphogenetic protein-2 (BMP2), to further promote osteogenic differentiation and bone 

mineralization.64,65

Dental and periodontal tissue repair also requires the orchestrated effort of vessels 

and nerves. Dental pulp has an inherent, albeit limited, regenerative capacity, which 

requires mesenchymal cell infiltration, innervation, and angiogenesis from adjacent healthy 

tissues into the pulp space.66 Dental pulp injuries result in hypoxia where pulp cells 

respond by secreting HIF-1α to drive downstream expression of VEGF, platelet derived 

growth factor (PDGF), fibroblast growth factor (FGF)-2, and angiopoietins to promote 

angiogenesis.67 Additionally, pulpal nerves respond to injury with sympathetic nerves 

releasing NPY and norepinephrine leading to vasoconstriction, while sensory neurons 

release neuropeptides such as SP and CGRP, which promote vasodilation and recruit 

immune cells.68 Neuropeptides induce nerve sprouting adjacent to the pulpal injury, with 

further neuropeptides released from these sprouting fibers leading to additional immune 

cell recruitment, vasodilation, and continued healing.37 The pulp chamber of mature teeth 

presents a particularly challenging space for tissue regeneration: new nerves and vessels 

must sprout from existing vessels and nerve trunks up to 15 mm away and enter through a 

narrow apical foramen 0.2 to 0.4 mm in diameter.69,70

Similar to bone, initial healing of the periodontium is characterized by the release 

of cytokines such as PDGF, TGF-β, VEGF, and bFGF from platelets and infiltrating 

immune cells, which then stimulates angiogenesis and recruitment of host cells from 

adjacent periodontal tissues.71 Recombinant PDGF-BB and autologous platelet-derived 

factors promote periodontal wound healing and tissue regeneration72,73 and likely stimulate 
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angiogenesis during this process. PDL nerves produce low levels of neuropeptides during 

tissue homeostasis74 yet retain the ability to remodel and regenerate in response to 

external stimuli.75,76 The PDL responds to orthodontic force with nerve fiber sprouting, 

increased production of both sensory (SP, CGRP) and sympathetic (NPY, tyrosine 

hydroxylase) neuropeptides, and increased capillary density together with transient local 

bone resorption.77-79 PDL nerves also express the high affinity neurotrophin receptor 

tropomyosin receptor kinase B (TrkB)80 and high levels of NGF receptor p75-NGFR 

and growth associated protein-43 (GAP-43), factors associated with neuroplasticity.81 

Neurotrophins and neurotrophin receptors are also expressed by periodontal ligament 

cells,82 and cells within healing periodontal defects, including infiltrating endothelial cells, 

express TrkB.83 The epithelial rests of Malassez (ERM) and associated nerves may also play 

a key role in periodontal wound healing,84 as sensory denervation results in a reduction in 

the size and number of ERM85 and ankylosis of tooth to bone.86

There are few studies examining the role of vessels and nerves in salivary gland 

regeneration, despite studies indicating their importance in secretory acinar cells 

regeneration. During gland development, signaling from CD31+ endothelial cells via 

vascular endothelial growth factor receptor 2 (VEGFR2) is required for proper 

tissue patterning by helping maintain Kit+ progenitor cells and promoting branching 

morphogenesis.43 Additionally, secretion of vasoactive intestinal peptide (VIP) by 

innervating ganglia is necessary for duct growth and lumen formation during branching 

morphogenesis,87 and parasympathetic innervation promotes SRY-Box transcription factor 

2 (SOX2) expression by progenitor cells in the developing gland.88 Expression of SOX2 is 

essential for the production of secretory acinar cells, but not duct cells, and is maintained 

in a subset of cells in adult gland,89 which has been shown to replace acinar cells under 

homeostatic conditions.89,90

2.3. Failures in Angiogenesis or Innervation Result in Deficient Craniofacial Tissue 
Regeneration.

Innervation and vascularization are both necessary for successful craniofacial tissue 

regeneration. For example, a significant decrease in ossification of calvaria has been 

observed in conditional VEGF knockout mice or those with impaired FGF signaling due 

to inadequate angiogenesis.91,92 Inhibition of VEGFR2 or depletion of endothelial cells 

embryonically leads to loss of secretory acinar cells.43 Additionally, deletion of NGF 

leads to dramatic reductions in nerve sprouts, angiogenesis, and delayed regeneration 

of cranial defects.60 Sensory denervation also leads to alterations in osteoclasts, which 

subsequently delay cranial bone defect healing,93 bone formation during mandibular 

repair,94 orthodontic tooth movement,95 and mineralization of new bone within the 

periodontium.96,97 Denervation also leads to decreases in pulp cell proliferation98 and 

increased susceptibility to pulpal necrosis after bacterial exposure.99 Sympathectomy or 

treatment with sympathetic antagonists during tooth movement suppresses osteoclast activity 

but not bone formation79 and also leads to periodontal bone loss via increased production 

of inflammatory cytokines in the periodontal tissues and subsequent osteoclast activity.100 

Moreover, denervation90 or disruption of innervation prevents salivary gland regeneration in 
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ductal ligation models, despite progenitor cell maintenance,101-103 suggesting a critical role 

for innervation.

Altogether, these studies emphasize the necessity of both angiogenesis and innervation for 

successful craniofacial tissue regeneration and point to the possibility of superior integration 

with the host tissue and minimum long-term complications for regenerative approaches that 

target both processes.

3. CURRENT CRANIOFACIAL TISSUE REGENERATIVE APPROACHES 

THAT TARGET INNERVATION OR VASCULARIZATION

3.1. Growth Factor Delivery.

3.1.1. Growth Factor Delivery to Stimulate Reinnervation.—The growing 

appreciation of the role of reinnervation in tissue regeneration has resulted in several 

studies exploiting delivery of neuronal growth factors and neuropeptides to promote 

craniofacial tissue regeneration. These growth factors include NGF, BDNF, SP, galanin, 

and neurturin (NTRN). For example, NGF has been incorporated into bone scaffolds 

to treat rat cranial defects, showing an increase in innervation but limited new bone 

formation.104,105 NGF delivery via alginate hydrogels has also been used to increase bone 

and cementum formation in periodontal defects.106 Local injection of SP promoted bone 

formation during mandibular distraction osteogenesis in rats,94 and BDNF delivery from 

collagen sponges107,108 or using hyaluronic acid hydrogels83,109-111 led to increased bone, 

PDL, and cementum formation compared to scaffold controls. Galanin-loaded collagen 

sponges promoted bone formation in inflammatory periodontal defects.112 Overexpression 

of NTRN prior to irradiation was protective of salivary gland innervation and function,113 

and laminin matrices with entrapped NTRN promoted neurite outgrowth from isolated 

parasympathetic submandibular ganglia (PSG), reduced neuronal apoptosis, and increased 

the number of end buds, progenitor cells, and innervation in mouse submandibular glands 

exposed to irradiation.101 Additionally, salivary gland cell sphere cultures combined with 

mesenchyme and PSG in matrices containing NRTN became innervated and underwent 

branching similar to development.114

3.1.2. Growth Factor Delivery to Promote Vascularization.—A common 

approach to achieve vascularization is delivery of angiogenic proteins including VEGF, 

FGFs, and PDGF.115,116 For example, VEGF,117,118 FGF-2,15 and PDGF16 delivery 

enhanced local angiogenesis and osteogenesis in some cranial defect models. However, 

another study showed vascularization and new bone regeneration after scaffold-mediated 

VEGF led to similar results as a control group, with only 26% of the defect covered 

by newly formed bone 12 weeks after injury,117 suggesting that VEGF-mediated 

vascularization alone is insufficient to support a robust regenerative response. Previous 

studies have also demonstrated the ability of VEGF and FGF-2 to promote dental pulp 

angiogenesis.119-121 The delivery of VEGF (together with dental pulp stem cells (DPSCs)) 

from heparin-conjugated gelatin microspheres in tooth roots also supported formation of 

vascularized pulp tissue.122
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3.1.3. Delivery of Multiple Growth Factors to Stimulate Innervation or 
Vascularization.—Combinatorial approaches of neurogenic and angiogenic and, in some 

cases, osteogenic growth factors have also shown promise. Recent studies suggest delivery 

of multiple pro-angiogenic proteins can result in therapeutically relevant and long-lasting 

vascularization, which is necessary for regeneration.123-126 For example, combined delivery 

of VEGF and BMP-2 promoted osteogenesis and angiogenesis in cranial defects.127,128 

Additionally, the combined delivery of VEGF or FGF2 with NGF and BMP-7 to dental pulp 

chambers led to angiogenesis, recellularization, and new dentin formation.129 NGF has also 

been delivered by alginate hydrogels together with BMP-2, resulting in synergistic effects 

on periodontal bone and cementum formation.106 Additionally, fibrin hydrogel-mediated 

delivery of pro-angiogenic VEGF and FGF9, which recruits vessel stabilizing mural 

cells and maintains neuronal cell viability and function,130,131 enhanced salivary gland 

regeneration and saliva production in a gland injury model.132

3.1.4. Peptides as Alternatives to Growth Factors for Vascularization.—Protein 

delivery approaches can suffer from poor long-term outcomes due to insufficient protein 

stability and rapid clearance133-135 as well as challenges associated with precise control 

over growth factor release kinetics.11,136 Therefore, therapeutic peptides have recently 

gained interest as an alternative to proteins. Their smaller size137 gives them more 

versatile synthetic schemes than proteins and allows peptides to be delivered at higher 

concentrations to target tissues when applied locally. Additionally, peptides often do not 

require complex tertiary structures for bioactivity, increasing in vivo stability.138 For 

example, VIP-conjugated hydrogels have been reported to enhance cranial bone defect 

repair, 139 where VIP not only stimulated tube formation and VEGF expression but 

also promoted bone marrow stem cell (BMSC) differentiation by activating the Wnt-

β-catenin signaling pathway. Self-assembling peptide hydrogels for pulpal regeneration 

were synthesized to contain a pro-angiogenic peptide sequence, QK, derived from VEGF 

or dentonin, an odontogenic peptide.140 Roots treated with hydrogels without bioactive 

peptides or containing only the odontogenic peptide formed disorganized connective tissue, 

while hydrogels containing QK showed formation of pulpal tissues with new odontoblast-

like cells, blood vessels, and nerves. A recent study delivered dimethyloxalylglycine, a 

glycine derivative that inhibits prolyl hydroxylase to activate HIF-1α, via nanosilicates 

entrapped within poly(L-lactide-co-glycolide) (PLGA) scaffolds, to promote angiogenesis 

and tissue regeneration in periodontal defects.141

3.2. Implantation of Prevascularized or Innervated Scaffolds.

Several techniques have been employed to develop prevascularized constructs.142-150 These 

approaches exploit both fully differentiated as well as progenitor cell types. For example, 

DPSCs were precultured in endothelial differentiation media to form Von Willebrand factor 

(vWF) and CD31-positive reticular structures, which supported formation of vascularized 

pulp tissue and differentiated odontoblasts.151 Additionally, a preformed endothelial network 

was incorporated into bone scaffolds to promote vascularization and osteogenesis in a rat 

cranial defect model.152 However, only 25% of increased bone volume was observed despite 

increased blood vessel volume after 8 weeks, a result that may be due to no or poor 

innervation.152 Prevascularization strategies face challenges to ensure stable tissue formation 
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and anastomosis within host tissues. EC-only derived vasculature is commonly unstable, 

lasting only a few days in vitro. Cocultures of ECs and vessel-stabilizing MSCs or other 

pericyte-like cells can extend vascular network stability for >60 days in vitro in engineered 

extracellular matrices and facilitate tissue integration in vivo.153,154 As an example, 

spheroids composed of BMSCs and human umbilical vein endothelial cells (HUVECs) were 

encapsulated in fibrin scaffolds to form vascular networks prior to implanting the scaffolds 

in rat cranial defects.155 The preformed vascular networks survived and anastomosed with 

host tissue within 1 week of implantation but ultimately did not significantly enhance bone 

regeneration compared to controls.155

Innervated tissue engineering approaches have been utilized in a few applications to 

recapitulate Wallerian degeneration to guide nerve integration and promote healing. Though 

not specific to craniofacial tissues, preinnervated tissue engineered muscle was formed using 

a coculture of myocytes and motor neurons on aligned nanofibrous scaffolds. The presence 

of neurons enhanced the differentiation and maturation of skeletal myocytes in vitro and 

significantly increased satellite cell migration, microvessel formation and revascularization, 

and neuromuscular junction density in vivo.156 Though not a direct preinnervation approach, 

incorporating sensory nerve tracts in bioceramic-based scaffolds has been reported to 

enhance both neurogenesis and bone formation.157

4. DEVELOPMENT OF TISSUE ENGINEERING APPROACHES FOR 

NEUROVASCULARIZATION

Tissue engineering approaches that address both innervation and vascularization hold 

great potential to promote craniofacial tissue regeneration158 as opposed to targeting 

only vascularization159-161 or innervation.162-165 These approaches can be adopted from 

traditional tissue engineering approaches and include cells,166,167 synthetic168-170 and 

natural166,171,172 scaffolds, growth factors,173,174 and combinations therein,127,175 which 

are detailed in the following sections.

4.1. Cells for Neurovascular Tissue Regeneration.

A variety of cell types have been used to promote neurovascularization for craniofacial 

tissue regeneration. These include stem cells, such as MSCs, DPSCs, and induced 

pluripotent stem cells (iPSCs), SCs, and ECs. Cells participate in regeneration via many 

mechanisms, including tissue-specific matrix deposition as well as secretion of growth 

factors, to facilitate tissue recruitment and neurovascular tissue development. For example, 

SCs can direct axon migration and regulate their proliferation via neurotrophic factor 

expression (Figure 4);176 ECs can mediate angiogenesis and osteogenesis by producing 

paracrine factors177 and proliferation, migration, and assembly into tubular structures178 

(Figure 2). Therefore, SCs166,179-181 and ECs167,182-184 have been incorporated in tissue 

engineering constructs to promote peripheral nerve regeneration and angiogenesis during 

bone repair, respectively. Other systems have utilized cocultured stem cells/SCs175,185,186 

and stem cells/ECs.187-192 MSCs have been shown to differentiate into osteoprogenitors 

as well as Schwann-like cells193,194 and may give rise to neurons186 and enhance axonal 

regeneration.185 Though controversial, some studies have also reported that MSCs can 
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differentiate into endothelial cells.195,196 Additionally, MSCs cocultured with ECs have 

been reported to act as pericytes during angiogenesis in vitro197 and in vivo,198 where 

MSCs localize along the endothelial tubes and encourage vascular network formation by 

secreting angiogenic growth factors such as VEGF and bFGF.199,200 Human DPSCs have 

been reported to enhance HUVEC migration and VEGF secretion as well as promote ECM 

deposition and mineralization during dental pulp regeneration.201 Hence, the integration 

of cocultured SCs/ECs or SCs/ECs/stem cells into cellular approaches may improve 

neurovascularization for craniofacial tissue regeneration. However, the clinical application 

of many cell types has been limited by source of human cells and lack of in vitro 
expansion capacity.202,203 In this regard, iPSCs, which can be reproducibly differentiated 

into myriad cell types including ECs204 and neurons,205 are promising alternatives. Previous 

studies have demonstrated that iPSC-derived ECs significantly increase vascularization in 
vivo.206,207 Moreover, iPSC-derived neural crest stem cells (NCSCs) and NCSC-SCs have 

been reported to encourage nerve regeneration in vivo, where they interacted with host 

axons and produce neurogenic factors (NGF and BDNF).208 Though the application of 

iPSCs for craniofacial neurovascularization has not been reported, its potential has been 

discussed.209-211

4.2. Design of Biomaterials for Neurovascularization.

Biomaterials used in craniofacial tissue engineering must be designed to support 

peripheral nerves and vessels. Biomaterial design, therefore, must take into account 

many complex design requirements including biophysical and biochemical cues.212,213 

Moreover, biomaterials should be biodegradable and may also need to provide control 

over release of therapeutic factors to encourage cell migration, axonal growth, and vessel 

infiltration.214-216 In the following sections, we summarize various biomaterials classes and 

design criteria enabled by new chemistries and fabrication techniques for the regeneration of 

neurovascularized tissues.

4.2.1. Biomaterial Classes for Neurovascularization.—Because of excellent 

biocompatibility, natural polymers, such as collagen,171,217-219 chitosan,172,220-222 and 

silk,166 have been utilized to promote neurovascularization in vivo. For example, chitosan 

has been reported to support ~50% regeneration and tissue reinnervation in a rat critical 

nerve gap model.222 Neovascularization has also been observed in chitosan scaffolds after 

12-weeks of implantation in vivo.223 Additionally, cell/growth factor-loaded collagen-based 

scaffolds have been reported to promote nerve regeneration224 and vascularization225 in 
vivo. However, the use of natural polymers is hindered by their complex chemical structures, 

uncontrolled degradation, and thermal sensitivity.226 Alternatively, synthetic polymers can 

be tailored to match biophysical and biochemical properties demanded by vascularization 

and innervation and enable delivery of cells and bioactive factors. Previous studies have 

demonstrated that polymers such as poly(glycolic acid) (PGA),227,228 poly(lactic acid) 

(PLA),229-231 PLGA,232-235 and poly(caprolactone) (PCL),236-238 combined with cells168 

and growth factors,169 can encourage peripheral nerve regeneration in vivo. However, 

application of synthetic polymers in nerve repair still remains a clinical challenge.239,240 

Even biomaterials approved by the FDA for specific applications, such as NeuraGen,241 

Neuromaix,242 and NEUROLAC,243 provide only limited repair for nerve defects longer 
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than 3 cm. Synthetic polymers, such as PGA,244,245 PLA, and PLGA,161,246,247 have 

also been developed as delivery vehicles of angiogenic growth factors to promote 

neovascularization in vivo. Nevertheless, the effects of these scaffolds on angiogenesis 

can be hindered because release profiles of the incorporated growth factors are difficult to 

control and often do not match what is required to achieve regeneration.248

Various hydrogel biomaterials have also been explored in neural and vascular tissue 

engineering. Hydrogels have great utility in tissue engineering in general due to high 

water content, ability to be tailored via functionalization by exogenous biochemical cues, 

incorporation of cross-linkers degradable by various modes and rates, and incorporation 

and control over growth factor release.32,249-254 Poly(ethylene glycol) (PEG)255 and 

gelatin-based hydrogels256 promoted the regeneration of rat sciatic nerves, as evidenced 

by increased axon number and diameter. Gelatin hydrogels have been used in multiple 

studies to promote angiogenesis during bone repair through the delivery of various growth 

factors.248,257-259 PEG-based hydrogels have also been used to deliver growth factors159 

and cells260,261 to improve angiogenesis during bone regeneration in vivo. Despite promise, 

hydrogel-based materials have not yet been effectively used to promote both angiogenesis 

and innervation in the regeneration of craniofacial tissues.262,263

4.2.2. Biomaterial Physical Cues for Neurovascularization.—Biomaterials 

designed for neurovascularization should provide a 3D microenvironment with proper 

biophysical cues, including pore size/porosity, stiffness, and degradation dynamics, to 

support endothelial and nerve cell growth and migration. Previous studies have demonstrated 

that a pore size of 35–100 μm with at least 50% porosity is optimal for blood vessel 

formation.264,265 Cells may rapidly migrate from scaffolds with pore sizes too large, and 

smaller pore size can hinder oxygen and nutrition diffusion and cell migration, resulting 

in unstable vessels.266 The optimal pore size for innervation was reported to be in the 

~5–30 μm range with >80% porosity to enable nutrient and waste exchange and neuron 

infiltration.267-269

The morphology, organization, and function of endothelial270 and nerve tissues271 have also 

been reported to be influenced by substrate stiffness. In 3D culture systems, which have 

greater relevance for tissue engineering than 2D studies, more robust neurite outgrowth 

was observed in softer matrices (0.5 kPa) than stiffer matrices (1.4 kPa,272 2.1 kPa273). 

Encapsulated nerve cells also showed higher gene expression level of neural differentiation 

and neuron maturation markers including Synapsin1, βIII-tubulin (TUBB3), and Neuronal 

nuclear antigen (NeuN) in softer matrices.272 Similarly, greater spreading and branching of 

microvessels formed by ECs were observed with decreased matrix stiffness: from 17 to 7 

kPa274 and from 0.5 Pa to 0.2 kPa.275 Additionally, stiffer matrices (~0.5 kPa) encourage EC 

spreading and branching versus softer matrices (~0.1 kPa).275,276 Though absolute stiffness 

ranges may vary due to divergent design parameters, generally more compliant matrices 

favor vascularization and innervation.

Cell migration and sprouting not only depend on the original matrix stiffness but 

also its degradation mode and rate.277-279 For example, our previous study found 

that matrix metalloproteinase (MMP)-degradable hydrogels better support EC sprouting 
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than hydrolytically degradable hydrogels with a similar initial modulus (~10 kPa).280 

Additionally, endothelial281,282 and nerve 283,284 tissues can sense their surrounding 

mechanical environment and secrete enzymes, such as MMPs, to degrade and remodel ECM 

dynamically. Indeed, softer matrices (~2 kPa) upregulated nerve cell expression of MMP-2 

and MMP-3 compared to stiffer matrices (~3.5 kPa).285

An additional challenge for some craniofacial tissues, including cranial and alveolar 

bones, is the requirement for structural stability during tissue regeneration. Many current 

approaches include a stiff scaffold component that slowly resorbs as new bone is 

deposited and matures.286 For instance, design criteria for periodontal tissue scaffolds often 

include a “bone” component with a distinct design from PDL and cementum portions 

of the scaffold.287 Even if each component of such multiphasic scaffolds is porous and 

interconnected, ingrowth of host neurovasculature may be hindered by complex, slowly 

degrading structures. Thus, composite scaffolds that combine sufficiently porous or soft, 

degradable structures required for optimal neurovascularization together with stiffer, dense 

components that can direct bone growth and stability may be required in certain craniofacial 

locations.

4.2.3. Biomaterial Biochemical Cues for Neurovascularization.—Given the 

critical role of cell-secreted growth factors (GFs) in driving transplanted cell bioactivity, 

therapeutic factors can be used to promote neurovascularization. For example, delivery of 

NGF,288-290 GDNF,291-293 and BDNF294,295 from synthetic nerve conduits improves axon 

regeneration in vivo. Previous studies have also demonstrated enhanced vascularization 

and bone regeneration by singular and dual delivery of VEGF,160,161 PDGF,296 and VEGF/

BMP2.127,297 Furthermore, FGF delivery has been reported to improve neurogenesis,298 

angiogenesis,299 and bone regeneration.300,301 Consequently, therapeutic cues for tissue 

engineered neurovascular approaches will likely include combinations of proangiogenic and 

neural growth factors, which necessitates further investigation to identify the critical growth 

factors and define the appropriate doses and temporal availabilities to achieve regenerative 

success.

While GFs can be physically encapsulated/immobilized into or absorbed on the surface 

of biomaterials, these approaches are susceptible to a fast or burst release of factors 

immediately after contact with physiological fluids.302 For example, burst release of VEGF 

and BMP-2 from poly(L-lactic acid) (PLLA) scaffolds was observed only after 24 h 

postimplantation in vivo, and >80% of these growth factors were released after 14 days 

(Figure 6A).303 This temporal profile is unlikely to match any native GF release patterns, 

and GF bioactivity may be compromised by unstable release profiles.248 For example, in 

cranial defects, angiogenesis and reinnervation do not occur until 3–7 days after injury 

and then continue for up to 6 weeks (Figure 4). Covalent immobilization of GFs to 

biomaterials through carbodiimide, 304,305 thiol–ene, 250,252,253,306,307 and enzymatic307,308 

conjugations can eliminate the possibility of initial burst release and has emerged as a 

promising approach for improved GF delivery kinetics. In this case, GF release depends 

on biomaterial degradation or hydrolytic or enzymatic cleavage of the bond between GFs 

and the biomaterial.32,250 Additionally, inspired by the natural interactions between ECM 

and GFs, bioaffinity tethering approaches have been applied for more controlled delivery 
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systems. For example, due to the interaction between GFs (e.g., BMP2, VEGF, and FGF-2) 

and heparin sulfate of the natural ECM, biomaterials have been decorated with heparin or 

heparin sulfate-mimetic molecules to bind GFs.290,309,310 The higher affinity of heparin-GF 

binding not only contributes to more extended and stable release profiles but also facilitates 

localized and spatially regulated signaling.309,311

During regeneration, integrin transmembrane receptors mediate cell–substrate binding, 

which is critical for adhesion and migration.312,313 Apart from forming focal adhesions, 

binding between integrin subunits (α and β) and ECM ligands alters actin cytoskeleton 

structures and actively transduces biochemical and signaling cascades.314 Therefore, 

biomaterials have been functionalized by ECM protein mimetic peptides specifically to 

encourage neurogenesis and angiogenesis. Laminin mimetic peptides (CDPGYIGSR or 

CSRARKQAA-SIKVAVSAD,315 and YIGSR316) immobilized within chitosan hydrogels 

have been reported to promote nerve regeneration in vivo. Additionally, the peptide, 

RGD, which is ubiquitously found within myriad extracellular matrix proteins, has 

been incorporated into poly(caprolactone)-based materials to promote SCs outgrowth in 
vitro317 and axonal regeneration and functional recovery in vivo.318 Laminin (YIGSR,319 

SIKVAV320) and collagen (e.g., GFOGER159 and P15 (PQGIAGQRGVV)321) mimetic 

peptides, along with RGD322 have also been applied to stimulate angiogenesis in vitro and in 
vivo. Additionally, fibronectin-derived peptide REDV (GREDVY),323 osteopontin-derived 

peptide SVVYGLR,324 and VEGF-binding domain-derived peptide PR1P (DRVQRQ-

TTTVVA)325 have been used to functionalize biomaterials to enhance angiogenesis in vivo.

4.2.4. New Approaches to Meet Biomaterials Design Requirements for 
Neurovascularization.—Recently, various techniques have been applied to fabricate 

complex, multicomponent biomaterials to better meet the demands for neurovascularization. 

For example, synthetic polymers, such as poly(caprolactone) (PCL), poly(dimethylsiloxane) 

(PDMS), and hydrogels can be fabricated into vascular326,327 and neuronal328,329 scaffolds 

using three-dimensional (3D) printing techniques. Perfusable 3D-printed vascular networks 

and porous neural scaffolds have been reported to support angiogenesis330-332 and 

neurogenesis,328,333 respectively, in vitro. A 3D printed PCL scaffold doped with tricalcium 

phosphate (TCP) supported vascularized new bone formation in a rat calvarial defect 

model,334 where the microchannels in the scaffold facilitated diffusion of nutrients to 

printed cells, overcoming the diffusion limit of 100–200 μm for cell survival in engineered 

tissues.335 3D printing has also been used to fabricate scaffolds for alveolar bone and 

periodontal tissue regeneration, primarily to localize growth factors and transplanted cells 

and guide cell orientation during healing.336 3D printing technology is also being explored 

for salivary gland regeneration, focusing on secretory and duct cell patterning and organoid 

printing.337-340 The integration of nerves and vasculature is likely to be a key step in the 

full integration and successful regeneration of salivary gland tissue using these methods. 

Therefore, 3D bioprinting has promise for fabricating scaffolds for bone and dental tissues 

regeneration, which provide features targeting vascularization and innervation.

A combination of favorable biochemical and biomechanical cues can be achieved by 

designing materials to support and respond to tissue infiltration as required during 

neurovascularization and tissue regeneration. In particular, MMP-degradable hydrogels 
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are promising materials from which to develop neurovascularization strategies.341 Both 

endothelial cell migration and vessel extension during angiogenesis and axonal outgrowth 

and pathfinding during innervation occur via degradation of the surrounding ECM 

by MMPs.342,343 MMP-degradable hydrogels can be optimized to support host tissue 

recruitment and integration by modifying the degradation kinetics of the MMP-susceptible 

linkages.167,240,344-346 Moreover, the potential of MMP-degradable hydrogels to improve 

both angiogenesis and neurogenesis has been investigated in vitro347,348 and in vivo.349,350 

Indeed, our recent study demonstrated that a tissue engineered periosteum composed of 

MMP-degradable hydrogels improved allograft healing by promoting rapid innervation 

and vascularization (Figure 5).280 We have also found that MMP-degradable hydrogels 

improve the organization, apicobasal polarization, and retention of salivary gland acinar cell 

phenotype in tissue-mimetic culture systems.351,352

As control over growth factor delivery from polymeric scaffolds is still challenging,303 

various fabrication techniques, such as microsphere formation353 and electrospinning,354,355 

have been investigated. The GF release kinetics from microspheres can be adjusted by 

altering the molecular weight and composition of the copolymer.356 A sustained 4-week 

release of NGF357 and up to 80-days of steady release of BDNF and GDNF358 (Figure 

6B) from PLGA microspheres have been reported, where the release of NGF significantly 

enhanced neurite outgrowth in vitro. The in vivo release profile of BMP-2 from PLGA 

microspheres has been shown to be an S-shaped curve over 84 days without any observed 

burst release at early time points (Figure 6C).359 PLGA microspheres were also developed 

to exhibit minimal initial in vitro release of VEGF in the first 7 days after loading and then 

reaching a plateau at day 20.355

Another fabrication method to prolong the release of entrapped GFs is via electrospinning. 

Electrospinning techniques can manufacture scaffolds with ECM-like structure including 

variable degrees of porosity and adjustable mechanical properties.360 Growth factor release 

can be controlled by the extruded materials’ orientation and geometries.361 Electrospun 

PLGA nanofibers have been reported to slow the release of FGF-2354 and VEGF355 in vitro, 

showing a 28-day sustained in vitro release profile of VEGF (Figure 6D).

5. PERSPECTIVES ON NEUROVASCULARIZATION STRATEGIES FOR 

CRANIOFACIAL TISSUE REGENERATION

Despite great progress in the fundamental understanding of neurovascularization during 

development and regeneration and biomaterials design and fabrication, progress in 

implementing these innovations for the repair of craniofacial tissue defects is still in 

its infancy. Given the complex nature of craniofacial tissues, the integration of multiple 

tissues remains a critical barrier. For example, during craniofacial bone regeneration, 

osteogenic, neurogenic, and endothelial cells may require different microenvironments to 

holistically integrate to coordinate healing.158,362 Challenges in manipulating multiple cell 

types, particularly those originating from different tissues, as well as spatial regulation of 

complex cell-cell interactions, remain unaddressed.363 Additionally, the clinical translation 

of cell-based therapies can be hindered by complicated cell isolation processes, long-term 
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loss of viability, regulatory hurdles, and adverse host responses,364 some which may 

be overcome through the use of iPSCs and their offer of nearly infinite patient-specific 

cells and cell types.365 Successful neurovascularization strategies are also likely to require 

spatially and temporally regulated growth factor/bioactive peptide release. Considering the 

multifactorial and differential effects of growth factors on various cell types, a significant 

challenge is determining and delivering optimal combinations and concentrations of 

growth factors with appropriate temporal availabilities to coordinate successful craniofacial 

tissue regeneration.366 Nevertheless, recruitment of host neurovascular tissues can be 

modulated within tissue engineering approaches through careful design of biomaterial 

mechanics, degradation rate and mechanism (hydrolytic or enzymatic), and adhesive ligand 

concentration.148-150,367-370 MMP-degradable hydrogels,341 incorporation of critical growth 

factors or iPSCs-derived target cells, prevascularization, and preinnervation strategies, as 

well as new tissue engineering techniques such as 3D printing, have promise for the 

development of biomaterials that can improve the regeneration of craniofacial tissues by 

promoting neurovascularization.
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Figure 1. 
Depiction of Wallerian degeneration [Reproduced with permission from ref 21. Copyright 

2017 IntechOpen].
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Figure 2. 
Angiogenesis is a tightly controlled process involving numerous cells and factors. (A) 

Ischemic tissue increases production of hypoxia inducible factor 1α (HIF-1α), which 

induces production of vascular endothelial growth factor (VEGF) that (B) signals to 

pericytes (green) and endothelial cells (ECs, blue), resulting in detachment of pericytes 

and sprouting of endothelial tip cells toward the VEGF gradient. (C) Tip cells (blue) 

then migrate, degrade the matrix, and (D) enable stalk cells (blue) to proliferate and form 

vessels via alignment into tube-like luminal structures, followed by (E) pericyte recruitment 

and (F) further remodeling and maturation. HIF-1α, hypoxia inducible factor 1α; VEGF, 

vascular endothelial growth factor; Ang2, angiopoietin 2; PDGF, platelet derived growth 

factor; MMPs, matrix metalloproteinases; PLGF, placenta growth factor; SDF-1, stromal 

cell-derived factor 1; FGF, fibroblast growth factor; Ang1, angiopoietin 1 [Reproduced with 

permission from ref 32. Copyright 2015 Frontiers].
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Figure 3. 
Anatomy of vascularized and innervated craniofacial tissues (A) cranial bone, (B) (i) 

mandibular bone (ii) and tooth, and (C) salivary glands. Part C was created with 

BioRender.com, agreement number: MB22XPLPSX.
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Figure 4. 
(A) Longitudinal tracking of cranial bone defect healing in Col2.3GFP transgenic mice 

over a 6-week period illustrates osteogenesis and angiogenesis. Vessel, red; osteoblasts, 

green [Reproduced with permission from ref 57. Copyright 2018 Springer eBook]. (B) 

Reinnervation during cranial bone defect repair: representative whole-mount tile scans (left) 

and high-magnification images (right) of TUBB3 (beta III tubulin)-stained cranial defects 

(b–e) from days 3 to 28 postinjury compared to uninjured controls (a); TUBB3+ nerve 

fibers appear green; dashed white circles indicates margins of defect; white asterisks indicate 

midline suture and white scale bar, 200 mm [Reproduced with permission from ref 60. 

Copyright 2020 Elsevier].
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Figure 5. 
(A) Representative confocal images of costained of CD31 (blood vessels, red) and β3-

tubulin (nerves, green) on the cross sections of autografts, allografts, allografts modified by 

hydrolytically or MMP degradable tissue engineered periosteum (Hydro-TEP, MMP-TEP) 

at levels proximal (1), medial (2), and distal (3) in relation to the femoral head (scale 

bar = 20 μm) at 3-week postsurgery. (B) Blood vessel density-dependent effects on nerve 

density, where regression analysis demonstrates a linear relationship (R2 = 0.74) between 

revascularization and reinnervation, indicating their synergistic coordination during bone 

defect healing [Reproduced with permission from ref 280. Copyright 2021 Elsevier].
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Figure 6. 
(A) In vivo release profiles of (i) VEGF and (ii) BMP-2 were obtained after implantation of 

scaffold into the subcutaneous tissue mice for 28 days,303 where CSB and CSV represent 

nanocomposite fibrous scaffold (CS) loaded with BMP2 (B) and VEGF (V), respectively 

[Reproduced with permission from ref 303. Copyright 2018 Elsevier]. (B) Release kinetics 

of PLGA microspheres steady release of neurotrophic growth factors was detected for 

at least 60 days (i, BDNF) and 80 days (ii, GDNF) [Reproduced with the permission 

from ref 358. Copyright 2010 Springer Nature]. (C) Normalized in vivo release profile of 

BMP-2 from the four different implants in a rat subcutaneous implantation model, where 

Mps = PLGA microparticles loaded with BMP-2, and PPF = poly(propylene fumarate) 

[Reproduced with the permission from ref 359. Copyright 2008 Elsevier]. (D) Cumulative 

release of VEGF from the biohybrid scaffold with PLGA nanofibers, which displays a 

sustained release of VEGF over 28 days [Reproduced with the permission from ref 355. 

Copyright 2014 Elsevier].
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