
Abstract. Background/Aim: Methionine addiction is a
fundamental and general hallmark of cancer cells, which require
exogenous methionine, despite large amounts of methionine
synthesized endogenously. 5-Methylthioadenosine phospho-
rylase (MTAP) plays a principal role as an enzyme in the
methionine-salvage pathway, which produces methionine and
adenine from methylthioadenosine and is deleted in 27.5% to
37.5% of osteosarcoma patients. Materials and Methods:
Human osteosarcoma cell lines U2OS, SaOS2, MNNG/HOS
(HOS) and 143B, were used. The MTAP gene was knocked out
in U2OS with CRISPR/Cas9. 143B and HOS have an MTAP
deletion and SaOS2 is positive for MTAP. MTAP was determined
by western blotting. The four cell lines were compared for
sensitivity to recombinant methioninase (rMETase). Results:
MTAP-deleted osteosarcoma cell lines MNNG/HOS and 143B
were significantly more sensitive to rMETase than MTAP-
positive osteosarcoma cell lines U2OS and SaOS2. In addition,
MTAP knock-out U2OS cells were more sensitive to rMETase
than the parental MTAP-positive U2OS cells. Conclusion: The
present results demonstrated that the absence of MTAP sensitizes
osteosarcoma cells to methionine restriction by rMETase, a
promising clinical strategy. 

Methionine addiction, discovered by one of us (RMH) in
1976 (1), is a general and fundamental hallmark of cancer
cells and is termed the Hoffman effect. Methionine addiction
occurs because cancer cells have highly overactive
transmethylation reactions (1-5). 

Cancer cells under methionine restriction arrest in S/G2
phase in contrast to normal cells, which arrest in G0 phase (6).

5-Methylthioadenosine phosphorylase (MTAP) is a rate-
limiting enzyme in the methionine salvage pathway. This
pathway produces methionine and adenine from 5'-
methylthioadenosine (MTA) (7, 8). Between 27.5% to 37.5%
of patients with osteosarcoma have a homozygous MTAP
deletion (9, 10).

Cancer cells with MTAP deletion are sensitive to
methionine restriction (11-19) but have not been tested with
recombinant methioninase (rMETase), the most efficient
means of methionine restriction, which is the topic of the
present report.

Materials and Methods

Cell culture. U2OS, SaOS2, MNNG/HOS (HOS), 143B human
osteosarcoma cell lines were obtained from the American Type
Culture Collection (Manassas, VA, USA). Cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) (10-013-CV;
Corning, Corning, NY, USA) with 10% fetal bovine serum (FBS)
and 1 IU/ml penicillin/streptomycin.

Recombinant methioninase. rMETase is a homotetrameric enzyme,
with a 172-kDa molecular mass. Production of rMETase was as
previously reported, using fermentation, a heat step, polyethylene-
glycol precipitation and gel filtration (20).

MTAP gene-knockout. U2OS cells were transfected using
CRISPR/Cas9 (Santa Cruz Biotechnology, Santa Cruz, CA, USA)
according to the protocol provided by the company. Briefly, cells
were cultured in six-well plates (2.5×105 cells/well) in DMEM (1
ml/well) and incubated overnight. After cells grew to
approximately 60% confluence, DMEM was aspirated and DMEM
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containing 10% FBS, but no antibiotics, were added and cells were
incubated for 1 h. MTAP was knocked out in U2OS cells using
CRISPR/Cas9 with the following materials and methods: MTAP
Double Nickase plasmid (2 μg/20 μl) (sc-406223-NIC; Santa Cruz
Biotechnology) or Control Double Nickase Plasmid (2 μg/20 μl)
(sc-437281; Santa Cruz Biotechnology) were added to 130 μl
Plasmid Transfection Medium (sc-108062; Santa Cruz
Biotechnology), bringing the final volume to 150 μl (solution A).
UltraCruz Transfection Reagent (sc-395739, 10 μl; Santa Cruz
Biotechnology) was added to 140 μl Plasmid Transfection Medium
(sc-108062; Santa Cruz Biotechnology), bringing the final volume
to 150 μl (solution B). Solution A was added dropwise to solution
B, bringing the total volume to 300 μl, immediately vortexed, and
incubated at room temperature for 20 min (solution C). DMEM,
which contains 10% FBS but no antibiotics, was aspirated from the
wells and a total of 300 μl of solution C was added to the wells
and the plates were incubated for 72 h at 37˚C with 5% CO2. After
incubation, solution C was aspirated, 2 ml of DMEM containing
10% FBS and 5 μg/ml puromycin dihydrochloride (sc-108071;
Santa Cruz Biotechnology) was added and plates were then
incubated for 7 days at 37˚C with 5% CO2, at which time MTAP
gene knocked-out cells were selected by resistance to puromycin
(see below). During the incubation, the medium was changed once. 

Limiting-dilution cloning of MTAP gene-knockout cells. After cell
selection with puromycin for 7 days, the puromycin-containing
medium was aspirated, and cells were cultured with DMEM
containing 10% FBS and 1 IU/ml penicillin/streptomycin. At the
end of the 10-day culture period, cells were harvested with trypsin
and suspended at a density of 10 cells/ml in DMEM. The cells were
then added to 96-well plates (1 cell/well, 100 μl) and incubated at
37˚C with 5% CO2. Wells containing a single-cell colony were
marked and were allowed to incubate for 2 more weeks to expand
the colony. The individual colonies were then cultured in T25 cell-
culture flasks for 7 days. The cells were harvested with trypsin and
proteins were extracted. Immunoblotting for MTAP was performed
to confirm complete knock-out of the MTAP gene.

Immunoblotting. Cells with and without the MTAP gene were
cultured in T25 cell-culture flasks. They were then lysed, and protein
was extracted using RIPA Lysis and Extraction buffer (Thermo
Fisher Scientific, Waltham, MA, USA) with 1% Halt Protease
Inhibitor Cocktail (Thermo Fisher Scientific). Protein extract samples
were loaded onto 10% sodium dodecyl sulfate–polyacrylamide gel
electrophoresis gels and transferred to 0.45 μm polyvinylidene
difluoride membranes (GE10600023; GE Healthcare, Chicago, IL,
USA) after electrophoresis. The membranes were blocked using
Bullet Blocking One for Western Blotting (Nakalai Tesque Inc.,
Kyoto, Japan). Antibody to MTAP (ab126770, 1:10,000; Abcam,
Cambridge, UK) and anti-β actin (20536-1-AP, 1:1,500; Proteintech,
Rosemont, IL, USA) were used. β-Actin was used as a loading
control. As a second antibody, horseradish-peroxidase-conjugated
anti-rabbit IgG (SA00001-2, 1:20,000; Proteintech, Rosemont, IL,
USA) was used. The signals were detected with a UVP ChemStudio
(Analytik Jena, Upland, CA, USA) using a Clarity Western ECL
Substrate (Bio-Rad Laboratories, Hercules, CA, USA) to
qualitatively visualize immunoreactivity.

rMETase sensitivity assay. Sensitivity to rMETase of osteosarcoma
cell lines was assessed using the WST-8 reagent (Dojindo

Laboratory, Kumamoto, Japan). The cells were cultured in 96-well
plates at the following densities for each cell line: U2OS: 1.5×103
cells/well; SaOS2: 2.5×103 cells/well; HOS: 1.0×103 cells/well; and
143B: 7.5×102 cells/well; in DMEM (100 μl/well) and incubated
overnight at 37˚C with 5% CO2. Cells were treated with rMETase
at different concentrations, between 0.25 U/ml and 4.0 U/ml, for 96
h at 37˚C with 5% CO2. After rMETase treatment, 10 μl WST-8
solution was added to each well and the cells were incubated for an
additional 1 h under the same conditions. Absorbance was then
measured with a microplate reader (Sunrise; Tecan, Männedorf,
Switzerland), at a wavelength of 450 nm. Drug-sensitivity curves
were constructed using Microsoft Excel for Mac 2016 ver. 15.52
(Microsoft, Redmond, WA, USA) and half-maximal inhibitory-
concentration (IC50) values were calculated with ImageJ ver. 1.53k
(National Institutes of Health, Bethesda, MD, USA). Experiments
were repeated twice for each cell line, each in triplicate. 

Statistical analysis. All statistical analyses were performed with
JMP pro ver. 15.0.0 (SAS Institute, Cary, NC, USA). Tukey-Kramer
analysis was performed to compare each group separately for a
significant difference. The Dunnett test was performed to compare
each of the means with the control. Bar graphs show the mean and
error bars show standard deviation of the mean. A probability value
of ≤0.05 was defined as statistically significant.

Results

The MTAP gene is expressed in U2OS and SaOS2 but not in
HOS and 143B osteosarcoma cell lines. MTAP gene
expression was evaluated by immunoblotting in osteosarcoma
cell lines. MTAP expression in U2OS and SaOS2, but not in
HOS and 143B observed in the present report, is consistent
with previous reports (9, 10) (Figure 1).

Osteosarcoma cell lines with an MTAP deletion are more
sensitive to rMETase than MTAP-positive cells. rMETase
inhibited the proliferation of MTAP-positive osteosarcoma
cell lines with the following IC50 values: U2OS: 0.74 U/ml
and SaOS2: 0.72 U/ml. In contrast, rMETase inhibited
MTAP-negative cells with the following IC50 values: HOS:
0.22 U/ml and 143B: 0.24 U/ml, demonstrating that MTAP-
negative cancer cells were much more sensitive to rMETase
than MTAP-positive cells (p<0.001) (Figure 2). 
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Figure 1. Immunoblotting of 5-methylthioadenosine phosphorylase (MTAP)
and β-actin in osteosarcoma cell lines U2OS, SaOS2, HOS and 143B.



MTAP knock-out U2OS cells are more sensitive to rMETase
than parental MTAP-positive cells. The MTAP gene was
knocked out in U2OS cells (Figure 3). Three new independent
MTAP-knockout sublines were designated as U2OS
MTAP−/−#2; U2OS MTAP−/−#7; and U2OS MTAP−/−#9.
U2OS MTAP+/+, which was treated with a control plasmid,
was therefore used as the control (Figure 3). Compared to the
U2OS MTAP+/+ control, all three MTAP knock-out sublines
were more sensitive to rMETase, with the following IC50
values: U2OS MTAP+/+ control: 1.14 U/ml; U2OS
MTAP−/−#2: 0.31 U/ml; U2OS MTAP−/−#7: 0.47 U/ml; and
U2OS MTAP−/−#9: 0.45 U/ml. U2OS MTAP−/−#2 (p<0.001),
U2OS MTAP−/−#7 (p=0.001), U2OS MTAP−/−#9 (p=0.0013)
cells were much more sensitive to rMETase at 0.5 U/ml than
the U2OS MTAP+/+ control (Figure 4).

Discussion

MTAP is the rate-limiting enzyme in the methionine-salvage
pathway and has global effects on cellular methylation due

to the utilization of S-adenosyl methionine in the methionine
salvage pathway (11-19). In addition, the MTAP gene is
adjacent to the tumor suppressor P16 (13, 19) and often both
are deleted together.

The present study showed osteosarcoma cell lines with
MTAP deletion to be significantly more sensitive to rMETase
than MTAP-positive ones. MTAP-knock-out U2OS cells were
more sensitive to rMETase than parental MTAP-positive
U2OS cells, which supports the concept that MTAP deletion
sensitizes osteosarcoma cell lines to rMETase. The present
study is the first to show that the absence of MTAP highly
sensitizes cancer cells to rMETase. This was shown by direct
comparison of sensitivity to rMETase of an MTAP-positive
cell line with its sublines in which MTAP was knocked out;
the MTAP knockout sublines of U2OS cells were
significantly more sensitive to rMETase than the parental
MTAP-positive cells. In addition, when the MTAP-positive
and MTAP-negative cell lines were compared, it was shown
that the MTAP-negative cell lines, HOS and 143B, were
more sensitive to rMETase.
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Figure 2. A: Sensitivity of human osteosarcoma cell line U2OS, SaOS2, HOS and 143B to treatment with various concentrations of recombinant
methioninase (rMETase) (mean±SD, n=3). B: Comparison of the efficacy of rMETase (0.5 U/ml) on the osteosarcoma cell lines. **Significantly
different at p<0.001.

Figure 3. Immunoblotting of 5-methylthioadenosine phosphorylase (MTAP) and β-actin in parent, control, and MTAP knock-out U2OS cell lines.
U2OS sublines numerated in squares have MTAP knocked out.



A previous study by Tang et al. suggested that MTAP is
related to methionine dependence (addiction) in that MTAP-
negative cells were unable to proliferate when homocysteine
replaced methionine in the culture medium, while MTAP-
positive cancer cells were still able to proliferate (12). However,
their studies were defective since the FBS used in the medium
was not dialyzed, and thereby actually contributed significant
amounts of methionine to the ‘methionine-free’ culture medium.
It was previously shown that even a very small amount of
methionine (1 μM) highly stimulated cancer-cell proliferation
in culture medium containing homocysteine instead of
methionine (1). Previous studies also showed that MTAP
replacement in MTAP-negative cancer cells did not revert
methionine dependence to methionine independenc(12).
Although the study of Tang et al. (12) is an old one, it
demonstrates that care must be taken to ensure that medium
termed ‘methionine-free’ is indeed free of methionine. The
present study demonstrates that it is much more straight forward
to determine methionine addiction with rMETase. Methionine
dependence (addiction) is due to excessive transmethylation in
cancer cells and is independent of MTAP (1-5).

Future studies will focus on potential therapy for patients
with tumors with MTAP deletions with rMETase, using
patient-derived orthotopic xenograft mouse models of
osteosarcoma, which we have established to identify potential
effective treatment strategies in our laboratory (21-23).

MTAP-deficient cancer cells are also sensitive to purine
inhibitors, such as 6-mercaptopurine, methotrexate, pemetrexed,
azaserine, azathioprine, L-alanosine and mizoribine (11, 24-28).
Future studies will evaluate the efficacy of rMETase in
combination with inhibitors of purine synthesis, in both MTAP-
positive cancer and MTAP-negative cancer, which may be more

malignant (29) possibly due to co-deletion of P16 with the
MTAP gene (19). Methionine addiction is a fundamental (1-5,
30-37) and general (35-37) hallmark of cancer which is
enhanced as a therapeutic target (38) by MTAP deletion.
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