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Abstract

Convolutional neural networks (CNNs) have recently been used in biomedical imaging 

applications with great success. In this paper, we investigated the classification performance of 

CNN models on diffusion weighted imaging (DWI) streamlines defined by functional MRI (fMRI) 

and electrical stimulation mapping (ESM). To learn a set of discriminative and interpretable 

features from the extremely unbalanced dataset, we evaluated different CNN architectures with 

multiple loss functions (e.g., focal loss and center loss) and a soft attention mechanism, and 

compared our models with current state-of-the-art methods. Through extensive experiments 

on streamlines collected from 70 healthy children and 70 children with focal epilepsy, we 

demonstrated that our deep CNN model with focal and central losses and soft attention 

outperforms all existing models in the literature and provides clinically acceptable accuracy 

(73−100%) for the objective detection of functionally-important white matter pathways including 

ESM determined eloquent areas such as primary motor, aphasia, speech arrest, auditory, and visual 

functions. The findings of this study encourage further investigations to determine if DWI-CNN 

analysis can serve as a noninvasive diagnostic tool during pediatric presurgical planning by 
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estimating not only the location of essential cortices at the gyral level, but also the underlying 

fibers connecting these cortical areas, to minimize or predict postsurgical functional deficits. This 

study translates an advanced CNN model to clinical practice in the pediatric population where 

currently available approaches (e.g., ESM, fMRI) are suboptimal. The implementation will be 

released at https://github.com/HaotianMXu/Brain-fiber-classification-using-CNNs.

Index Terms—

Convolutional Neural Network; DWI streamline; Eloquent function; Epilepsy surgery

I. Introduction

THE principle of presurgical evaluation in epilepsy is to determine the relationships 

between the epileptogenic zone and the surrounding functionally important cortex, such 

as primary motor, language, auditory, and visual areas (“eloquent cortex”) [1]. Without 

accurate localization of such brain regions, one cannot achieve the ultimate goal of 

epilepsy surgery, which is to eliminate epileptic seizures without creating new functional 

deficits. The current gold standard method to identify eloquent cortex is direct electrical 

stimulation mapping (ESM) of brain function [2]. However, ESM is not an ideal method, 

since it requires implantation of invasive intracranial electrodes, carries the inherent risk of 

electrically-induced seizures, and sometimes fails to identify eloquent cortex, especially in 

children. For instance, our previous study [3] reported that a contralateral hand movement 

was not elicited by electrical stimulation in 15 of 65 children. The average age of children 

in this “no motor response group” was 3.4 years old, suggesting that younger patients 

are at risk for ESM failure when identifying motor functions. Also, of the 50 children 

with a contralateral hand movement elicited by electrical stimulation, 24 showed the motor 

hand area in the postcentral gyrus, and 17 children showed the hand area in both pre- 

and postcentral gyri, indicating that a substantial proportion of young patients with focal 

epilepsy had a prominent variation in the hand motor area between these two regions. Such 

variations are more prominent in lesional cases.

An alternative approach to ESM is functional MRI (fMRI) [4], [5], which is non-invasive 

but highly susceptible to movement artifacts and demands cooperative behavior during 

scanning. Thus, it is challenging to perform fMRI studies in young patients with epilepsy 

(success rate < 60% at age 4–6 years [6]). Furthermore, the epileptogenic zone frequently 

involves the bottom of a deep sulcus [5], [7], which is in close proximity to adjacent axonal 

pathways. Both ESM via subdural electrodes and fMRI are inherently unable to localize 

crucial subcortical white matter structures, which may therefore be at risk for damage during 

surgery. Thus, there is an urgent need in presurgical planning to accurately identify eloquent 

regions of interest including both cortical areas and white matter pathways to prevent 

postoperative deficits in children with intractable epilepsy.

The present study proposes a critical translational application of a diffusion weighted 

imaging (DWI) tractography method that may serve as an efficient noninvasive localizing 

tool supplementing, and in some cases replacing, fMRI and ESM in children with intractable 
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epilepsy. In the last decade, DWI tractography has been a powerful technique to visualize 

whole brain white matter tracts with minimal patient cooperation [8], [9]. Many investigators 

have attempted to dissect the complicated tract patterns of DWI whole brain tractography 

by objectively recognizing their shape, length, and anatomical features within multiple 

frameworks, including virtual dissection based on expert knowledge [10], [11], clustering 

using fiber similarity measures [12], [13], [14], [15], atlas-based labeling and annotation 

[16], [17], [18], [19], and machine learning methods [20], [21]. These approaches apply a set 

of target models, including white matter atlases, exemplar streamlines, or other pre-defined 

anatomical information, to extract known pathways from whole brain tractography with 

two common objectives: to remove superficial or spurious tracts and to save effort in 

white matter dissection. All of the reported approaches differ methodologically and mixed 

outcomes have been reported depending on the employed tractography model, features, 

similarity measures, and data acquisition.

In contrast to previous studies, we focus on clinical validation of automatic white 

matter dissection by performing systemic comparisons of DWI tractography to detect 

electrophysiologically-confirmed eloquent white matter pathways in children. Such 

pathways are functionally relevant but challenging to label (or annotate) in the context 

of currently available large-scale white matter atlases. Herein, it should be noted that our 

fiber targets of interest (i.e., classes) are not the entire white matter fasciculi but functionally 

specific-white matter pathways, including (i) primary motor areas supporting movement 

of different body parts: face/finger/hand/leg, (ii) language areas at which stimulation 

elicited different types of symptoms: expressive aphasia/receptive aphasia/speech arrest, (iii) 

primary auditory area associated with stimulation-induced auditory hallucination, and (iv) 

visual areas associated with phosphene or perception of visual distortion. These individual 

pathways share similar tract shapes but have different locations of cortical terminals. For 

instance, fiber trajectories associated with each category of primary motor, language, and 

visual functions are very similar in pattern and geometry, making classification by current 

clustering methods difficult (e.g., see similar patterns of streamline exemplars (or centroids) 

presented in Fig. 1).

Motivated by this limitation, our previous studies (DWI-MAP) [22], [23] proposed a 

Bayesian inference-based tract detection paradigm which can effectively discriminate subtle 

differences in tract location with minimal effort towards feature design. A major advantage 

of DWI-MAP is the simultaneous localization of functionally-important white matter 

and grey matter without using any supplementary acquisitions like fMRI and ESM. In 

addition, it does not require the patient to cooperate with a task, and can ultimately be 

extended to localize other important pathways of infants and young patients, in whom 

functional localization cannot be done using either fMRI or ESM (about 30% of surgical 

cases). However, DWI-MAP was designed to classify a given streamline into one of a 

limited number of target classes (i.e., six primary motor pathways including face, finger, 

and leg fibers in both hemispheres and five language pathways in left hemisphere), by 

computing the maximum posteriori probability of individual fiber streamlines with fMRI-

derived white matter probability maps and equal class priori assumptions. In this paper, we 

investigate whether an end-to-end deep learning framework of DWI tractography without 
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any priori information can effectively classify functionally-important white matter pathways 

for successful epilepsy surgery.

As one of the most powerful deep learning frameworks, convolutional neural networks 

(CNNs) have been widely used in biomedical imaging tasks with unknown priori 

distribution [20], [24], [21]. In this work, an off-line, retrospective IRB-approved study 

was conducted to investigate the detection capability of CNNs for 64 functionally-important 

white matter pathways that should be preserved in epilepsy surgery, including primary 

motor, language, auditory, and visual pathways. Compared to previous approaches, our key 

insight is that rather than first building a tract atlas based on priori information and then 

feeding the input into a statistical model, we can instead utilize CNNs to provide an end-to-

end learning which integrates white matter pathway classification with direct representation 

learning without any priori distribution information [25]. From a computing perspective, the 

novelty of present work is as follows:

• Two CNN architectures with different depths were investigated in this study. 

The first is a shallow CNN model with 3 layers from our previous work [26]. 

Inspired by the success of very deep CNNs [27], we also adapted the shallow 

CNN into a deep model with 21 layers. The proposed CNN models generate 

different feature maps of the input data (i.e., 3D spatial coordinates of individual 

fiber streamlines) by using a sequence of convolutional and pooling layers before 

classifying input data using fully connected layers.

• Multiple CNN loss functions [28], [29] were employed for white matter pathway 

classification. First, since our dataset is highly unbalanced and cannot be handled 

well by CNNs with conventional cross-entropy loss, we applied focal loss [29] 

to train the proposed CNN models. Focal loss applies a modulating term to 

the cross-entropy loss to help focus on hard examples and down-weight the 

numerous easy ones. Second, to further improve the classification performance 

and generalization of the proposed CNN models, center loss [28] was employed, 

which adds a cluster-based loss term to the cross-entropy loss ensuring that 

the learned representations have both compact intra-class variations and large 

inter-class margins. That is, the learned fiber representation is not only separable 

but also discriminative.

• Although CNNs have led to breakthroughs in many applications, the end-to-end 

learning strategy makes the entire CNN model a “black box.” This weakness is 

particularly prominent in biomedical imaging: if we do not know how the trained 

CNNs classify each fiber, we cannot fully trust the classification results provided 

by the CNN models. In this study, we applied a soft attention mechanism [30] in 

the proposed CNNs, which highlights the most useful segments of a fiber for its 

classification. We demonstrated that the attention provides perspectives on how 

our CNNs classify white matter pathways.

A goal of the present study is to identify and evaluate a novel deep learning approach that 

achieves the highest accuracy and best interpretability in detecting eloquent white matter 

pathways of interest. This is a critical step toward minimizing postoperative deficits in 

pediatric epilepsy surgery. By intensive in vivo comparisons with current gold standard 
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ESM, this study demonstrates that CNNs have high translational value, and that the concepts 

derived from them might increase localization accuracy of functionally important brain 

tissue and minimize risk of postoperative deficit.

The rest of the paper is organized as follows: Section II describes the details of our 

CNN models: the architecture, the loss functions for training, and the soft attention 

mechanism. Section III describes the setup and results of our CNN-based fiber classification 

experiments. Lastly, Section IV presents discussion, conclusion, and future applications of 

our models.

II. Methodology

A. Subjects

To construct training and test datasets of the proposed CNN-based fiber classification, 70 

healthy children (age: 12.01 ± 4.80, 36 boys) were recruited for the present study. Also, 

70 children with drug-resistant epilepsy who underwent presurgical workup for epilepsy 

between 2009 and 2017 were retrospectively selected for the validation dataset (age: 

11.60±4.80 years, 36 males). Inclusion criteria were 1) drug-resistant epilepsy requiring 

two-stage epilepsy surgery with chronic subdural ESM mapping at the Children’s Hospital 

of Michigan or Harper University Hospital, 2) no motor and/or language impairment, and 

3) MRI abnormalities, except massive brain malformation and other extensive lesions that 

likely destroyed the ipsilateral tracts and led to reorganization. Exclusion criteria were 1) 

history of prematurity or perinatal hypoxic-ischemic event, 2) hemiplegia on preoperative 

examination by pediatric neurologists, and 3) dysmorphic features suggestive of a clinical 

syndrome.

B. Data acquisition

All participants underwent DWI using a GE Signa 3T scanner with eight channel head coil 

at TR = 12500 ms, TE = 88.7 ms, FOV = 24 cm, 128 × 128 acquisition matrix (nominal 

resolution = 1.89 mm), contiguous 3 mm thickness in order to cover entire axial slices 

of whole brain using 55 isotropic gradient directions with b = 1000 s/mm2, number of 

excitations = 1, and single b = 0 image. For anatomical reference, a three-dimensional 

fast spoiled gradient echo sequence (FSPGR) was applied to acquire T1-weighted image at 

TR/TE/TI of 9.12/3.66/400 ms, slice thickness of 1.2 mm, and planar resolution of 0.94 × 

0.94 mm2.

Healthy children underwent two fMRI studies at TR = 2000 ms, TE = 30 ms, FOV = 24 

cm, 64 × 64 acquisition matrix, 4 mm thickness in order to localize 4 primary motor areas 

(face, fingers, arm, leg), 10 language regions: inferior frontal operculum (ifop), inferior 

frontal triangularis (iftr), middle frontal gyrus (mdfg), inferior precentral gyrus (prec), 

superior temporal gyrus (stg), middle temporal gyrus (mtg), inferior temporal gyrus (itg), 

supplementary motor area (sma), angular gyrus (ang), supramarginal gyrus (spm), 2 auditory 

regions: stg, mtg, and 7 visual regions: inferior occipital gyrus (iocc), middle occipital 

gyrus (mocc), superior occipital gyrus (socc), calcarine (calc), lingual (ling), fusiform (fusi), 

cuneous (cune). Briefly, for mapping primary motor areas, event-related tasks triggering a 
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single movement of the face, fingers, arm, and leg to each side (left/right) were presented 

every five seconds in a 15-second block. The block was repeated 10 times for each side, 

resulting in total 20 sequential movements of face, fingers, arm and leg in a 5-minute 

session. BOLD activation was recorded for each primary motor area of each hemisphere 

and utilized as a binary mask to distinguish relative primary motor tracts to posterior 

limb of internal capsule (PLIC). To map semantic language, auditory, and visual areas, 

three different patterns (square, triangle, and circle) were randomly displayed every five 

seconds in a 30-second block. Subjects were instructed to press one of two buttons (yes, 

no) in response to an audio question (ON 30-second block) or visual pattern comparison 

(OFF 30-second block). These ON-OFF blocks were repeated four times, resulting in a 

4-minute session. BOLD activation was recorded for each functional area and utilized 

as a binary mask to distinguish relative pathways from the inferior colliculus geniculate 

(icg, hearing) and lateral geniculate nucleus (lgn, vision). SPM 12 software package (https://

www.fil.ion.ucl.ac.uk/spm/) was used to process all fMRI data, including motion correction, 

general linear modeling, and statistical analysis, to identify the locations of brain activation 

in response to functional tasks at uncorrected p-value < 0.05 [31].

Epilepsy patients underwent subdural electrode placement as a part of their clinical 

management for medically-uncontrolled seizures. ESM, using the method previously 

established [32], [33], was performed as part of clinical care during extraoperative 

electrocorticography recordings. Briefly, subdural electrode pairs were stimulated by an 

electrical pulse-train of 5-second maximum duration using pulses of 300 μsec duration 

and 50 Hz frequency. Initially, stimulus intensity was set to 3 mA. Stimulus intensity was 

increased from 3 to 9 mA in a stepwise manner by 3 mA increments until a clinical response 

or an after-discharge on electrocorticography was observed. When after-discharge without 

an observed clinical response occurred, or when neither clinical response nor after-discharge 

was induced by the maximally-intense stimuli, the site was declared “not proven eloquent.” 

When both clinical response and after-discharges occur, another pulse-train of the same or 

1 mA smaller intensity was used until either clinical response or after-discharge failed to 

develop. Finally, a site with a contralateral movement induced by stimulation, without after-

discharges, was defined as the “primary motor area” for the associated body part. Likewise, 

a site with speech arrest, expressive aphasia, receptive aphasia, auditory hallucination, or 

visual perception was classified as an essential eloquent area for comparison with the 

proposed CNN-based fiber classification (Table I). Using the landmark based registration 

procedure [34], those electrodes were spatially registered to native brain space (i.e. T1-

weighted and DWI b = 0 image) and used as the ground truth of the CNN-based fiber 

classification.

C. DWI tractography analysis

NIH TORTOISE [35] and FSL eddy package [36] were used to correct motion, noise, 

physiological artifacts, susceptibility-induced distortion, and eddy current-induced distortion 

in the DWI data. Whole brain streamline tractography was reconstructed using probabilistic 

tractography with second-order integration over fiber orientation distributions (iFOD2) to 

sample the FOD at three equi-distant sample points along each candidate path segment for 

the next step [37]. Spherical-deconvolution informed filtering of tractograms (SIFT) [38] 
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was applied to the resulting whole brain tractography in order to make streamline densities 

proportional to the fiber densities as estimated by spherical deconvolution throughout 

the white matter. At every voxel of grey/white matter boundary identified by the FSL 

FAST package [39], 100 dynamically randomized seeding points were applied in the 

framework of anatomically constrained tractography [40] to reconstruct biologically realistic 

streamlines. Then, the binary masks from fMRI activation were applied as an inclusion 

mask to sort out class relative streamline pathways from whole brain tractography (Table 

II). The resulting streamline pathways were spatially normalized to FreeSurfer average 

template space with Advanced Normalization Tools [41], sampled into 100 equal-distance 

segmentation points (sk=1–100), and finally 3D coordinates of these 100 segmentation points 

were used to represent each fiber for subsequent CNN classification. Fig. 1 presents 64 

centroid streamlines of Ci obtained by applying the QuickBundles algorithm [13] to Ci of 

the 70 healthy children, which illustrates the most representative streamline trajectories of Ci 

in the FreeSurfer average template.

D. Shallow CNN model for DWI streamline classification

Fig. 2 presents our shallow CNN model which has one input layer, one convolution layer, 

one sub-sampling layer and one fully connected layer with the softmax function. The details 

of each layer are described as follows.

1. Input layer: Formally, we denote xl ∈ ℝk as the k-dimensional point 

representation for the lth point in a fiber. A fiber of length L is denoted as

X1:L = x1 ⊕ x2 ⊕ ⋯ ⊕ xL, (1)

where ⊕ is the concatenation operator. By this, each input fiber is represented 

as a L × k matrix. In practice, we sample 100 points for each fiber and utilize 

coordinates of each point as its representation. Thus, each matrix has the same 

size, 100 × 3.

2. Convolution layer: A convolution filter w ∈ ℝℎ × k is applied to a window of h 
points of k-dimensional embedding in the convolution layer to produce a feature 

map. For instance, given a window of points Xl:l+h−1 and a bias term b ∈ ℝ, a 

feature gi is generated by

gi = f w ⋅ Xl: l + h − 1 + b , (2)

where f is a non-linear function. In our case, we apply ReLU to the input 

matrices which sets negative elements in gi as 0. A feature map g = [g1, g2, ⋯, 

gL−h+1] is obtained from all the possible windows of a fiber of length L. In our 

system, multiple filters of various sizes are applied in the convolution layer to 

produce multi-scale feature maps.

3. Sub-sampling layer: In the sub-sampling layer, we apply max pooling over each 

feature map produced in the convolution layer and output the maximum element 

g = max g . We denote features generated by the max pooling layer as
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G = g1 ⊕ g2 ⊕ ⋯ ⊕ gM, (3)

where M is the number of feature maps.

4. Dropout: Dropout is a technique to reduce the chance of overfitting for neural 

networks [42]. Given feature map G, we generate a dropout mask vector r ∈ ℝm

of Bernoulli variables with probability pd of being set as 0 and 1 − pd of being set 

as 1. The output of dropout is

Gd = G ∘ r, (4)

where ∘ denotes the element-wise multiplication operator. Empirically, we chose 

pd = 0.5 in this study.

5. Fully connected layer: Given Gd as the input, fully connected layers generate 

output

Gfc = ReLU w ⋅ Gd + b . (5)

6. Output layer: On the output layer, we apply softmax function instead of ReLU to 

get the final classification probabilities

pi = sofmax Gfc , (6)

where pi denotes prediction probabilities of the ith fiber belonging to each class. 

The class with highest probability is chosen as the final classification result for 

the corresponding fiber.

7. Optimization: Cross-entropy loss is selected as the training objective to 

minimize. The cross-entropy loss for the ith fiber is defined as

LCE
i = − log pci, (7)

Where pci is the prediction probability of the ith fiber in the dataset belonging to 

the ground truth class c.

E. Deep CNN model for DWI streamline classification

Fig. 3 shows the proposed deep network consisting of a series of stages. The first stage 

is composed of two types of layers: convolution layers and pooling layers. The input 

fibers are passed through a set of filters followed by non-linear transformations. Then, the 

maximum of local patches are extracted. Second, four blocks of convolution, pooling, and 

concatenation layers are applied to learn high-level fine features from the brain fibers. For 

each residual unit, its input is added to the output before the ReLU layer. The basic idea 

is that, rather than expecting blocks to approximate the fiber classification function, we 

explicitly let these layers approximate a residual function, which is easier to be optimized. 
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Third, fully connected and softmax layers are induced to get the final prediction which 

contains the probabilities of the input fiber belonging to each class. The class with the 

highest probability is taken as the final prediction. The dropout units are also applied to help 

prevent overfitting.

For optimization, the cross-entropy loss is applied to compare the shallow and deep CNN 

models. To further improve the classification performance, we also applied and evaluated 

two novel loss functions:

1. Focal loss: In general, the large class unbalance encountered during training 

overwhelms the cross-entropy loss. Easily classified fibers comprise most of 

the loss and dominate the gradient. In this work, we replace the conventional 

cross-entropy loss in CNN with focal loss [29] in order to reduce the loss for 

well-classified fibers and focus on harder, misclassified ones. We define the focal 

loss for the ith fiber as

LF
i = − 1 − pci

γ log pci, (8)

where γ is the focusing parameter. Empirically, we choose γ = 2. The 

modulating factor 1 − pci
γ reduces the loss contribution from easy examples: a 

fiber classified with pci ≥ 0.9 contributes at least 100× lower focal loss compared 

to cross-entropy loss; while hard examples with pci ≤ 0.5 would only be scaled 

down at most 4×.

2. Center loss: The conventional cross-entropy loss only encourages the separability 

of features. To further improve the performance and generalization ability of the 

proposed CNN classifier, the learned fiber representation needs to be not only 

separable but also discriminative. We added an item, i.e., center loss [28], to 

the classification loss, which simultaneously learns a center for deep features 

of each class and penalizes the distances between the deep features and their 

corresponding class centers. Formally, we denote the center loss of the ith fiber 

as

LC
i = ∥ fc

i − ec ∥2 , (9)

where fc
i ∈ Rd denotes the deep feature vector of the ith fiber in class c, and ec 

∈ Rd denotes the current centroid of class c. Note that the centroid updates itself 

during the mini batch training of our model [28]. Thus, the overall loss to be 

optimized is

Li = Lclass
i + λLC

i , (10)

where Lclass
i  denotes the classification loss, and LC

i  is the center loss. 

Empirically, we choose λ = 1 in this study. As defined in Eq. (6), the class 

with highest probability, pci is taken as the final prediction of the ith fiber.
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F. Learning interpretable fiber representation

CNNs have achieved great success in many tasks. However, the end-to-end learning strategy 

makes the CNN model a “black box.” This weakness is particularly prominent in biomedical 

imaging: if we do not know how the trained CNN classifies each fiber, we cannot fully trust 

the classification results provided by this model. By incorporating an attention mechanism 

[30] into our CNN fiber classifiers, we are able to highlight the attention of our CNN model 

and understand how it makes predictions.

As shown in Fig. 4, each soft attention unit returns a continuous, weighted average over 

different locations on all the feature channels. We denote the location variable as s where the 

model decides to focus, the attention weight as α, and the feature of the ith fiber as fi. The 

expectation of the attention-weighted output feature map zi is then given as follows,

Ep(s) zi = αfi . (11)

In practice, we insert one attention unit to the end of each residual block as shown in Fig. 

5. Since the soft attention is smooth and differentiable, it is straightforward to update the 

attention weights by using standard backpropagation during the training of CNNs.

III. Experimental Results

A. Experiment setup

We performed thorough ablation study of our CNN models and compared ours with the 

current state-of-the-art models in brain fiber classification. Specifically, based on the same 

training and testing splits, we evaluated and compared the following models:

• Baseline: linear SVM (LSVM) and Logistic Regression (LR). Since our dataset 

is large, the implementation was approximated using PyTorch 0.2 [43].

• State-of-the-art models: RecoBundles [15], a clustering method based on fiber 

similarity, and FiberNet [20], which has an architecture similar to our shallow 

CNN model.

• CNN models with different loss functions including shallow CNN with cross-

entropy loss (SCNN-CE), deep CNN with cross-entropy loss (DCNN-CE), deep 

CNN with focal loss (DCNN-FL), and deep CNN with both focal loss and center 

loss (DCNN-CL).

• Deep CNN models with attention mechanism combined with DCNN-CL 

(DCNN-CL-ATT).

• Fiber shapes, i.e., curvature and torsion, were also computed using an open 

resource code provided by [21] and then concatenated with spatial coordinates of 

a fiber as the input to our DCNN-CL-ATT (DCNN-CL-ATT-TC).

All the proposed CNN models were implemented using PyTorch 0.2. Adam [44], an 

adaptive learning rate approach for Stochastic Gradient Descent, was utilized to minimize 

the selected loss functions. The learning rate was empirically set at 0.0001 for all CNNs.
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In our study, we first evaluated the impact of training sample size on network convergence. 

Fig. 6 shows training and testing losses of DCNN-CL-ATT obtained by varying sample size 

of training subject (i.e., 14, 28, 42, and 56). Red curves represent the training and testing 

losses with 14 training subjects. Clearly, this convergence is the slowest, and stability is 

lower when compared to the training losses with a larger number of subjects. Also, it is 

notable that the training and testing losses of 56 training subjects were slightly reduced 

compared with ones of 42 subjects. Thus, we decided to utilize streamline fibers from 

56 randomly chosen healthy subjects as our training Ci set. Streamline fibers from the 

remaining 14 healthy subjects were used as the testing Ci set in our experiments.

The number of fiber streamlines for each class Ci in the training set is presented in Fig. 7. 

Clearly, the distribution is highly unbalanced: the most frequent classes have 40× to 220× 

more fibers than the least frequent classes. To evaluate the performance of each model over 

the highly unbalanced dataset we assessed F1 score, which is calculated as follows:

F1 = 2 ⋅ precision⋅recall
precision+recall . (12)

The corresponding macro-averaged F1 scores with different numbers of training subjects are 

reported in Table III for DCNN-CL-ATT, which confirms that 56 subjects are sufficient for 

training a deep CNN.

B. Fiber classification results

Average classification performance over all classes is listed in Table IV for each of the 

aforementioned methods. For the baselines, LR performed better than LSVM, demonstrating 

the advantage of non-linear models over linear models in brain fiber classification. Also, 

RecoBundles outperformed LR (12.30%) when thresholding to a 15 mm pruning distance 

from the 64 QuickBundles centroids presented in Fig. 1. 15 mm pruning distance threshold 

was selected because it provided the best macro-averaged F1 score in our training set (i.e., 

0.368 ± 0.182 and 0.327 ± 0.182 for 10 mm and 20 mm threshold, respectively).

The CNN models significantly outperformed RecoBundles by 127.34% or more, which 

indicates the strong classification ability of deep learning models. Since the architecture of 

FiberNet is similar to our shallow CNN but with one more convolution layer and one more 

fully-connected layer, it was found that FiberNet performed better than the proposed shallow 

CNN but worse than the other deep CNN models. In addition, DCNN-CE outperformed 

SCNN-CE by 6.71%, which shows the advantage of deep learning in CNN architecture. It 

is worth pointing out that introducing focal loss to deep CNN improved the performance by 

1.64% comparing to deep CNN with conventional cross-entropy loss. This demonstrates that 

the focal loss function is better suited for the classification of our highly unbalanced dataset. 

Moreover, DCNN-CL achieved better performance than DCNN-FL by 1.41%, indicating the 

advantage of discriminative representation learning using the center loss.

Our experiments showed that the best results could be obtained by DCNN-CL-ATT, with 

a macro-averaged score of 0.9525. It also showed that adding curvature and torsion to 

the spatial coordinates (DCNN-CL-ATT-CT) would negatively impact the classification 
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performance (0.9337). This is likely because fibers from different classes often share 

highly similar shapes (i.e., curvature and torsion values), causing the learned features to 

be less discriminative. Thus, we used DCNN-CL-ATT-derived white matter pathways in the 

validation and visualization studies subsequently presented.

To demonstrate high sensitivity and specificity of DCNN based fiber classification, Fig. 8 

presents confusion matrices of the top four DCNN models (i.e., DCNN-CE, DCNN-FL, 

DCNN-CL and DCNN-CL-ATT), which show actual F1 scores obtained from training Ci 

set. The detailed F1 scores of all models reported in Table IV are also available in the 

supplementary material.

C. Validation results

An illustrative example of white matter tracts associated with finger movement, C5, detected 

by DCNN-CL-ATT, is presented in Fig. 9. This example shows the clinical case where 

right hand finger movement was successfully induced during the ESM procedure of an 8 

year old patient. DCNN-CL-ATT successfully localized the individual streamlines that have 

high prediction probability of pci for class C5 (Eq. (6), greater than specific threshold β) 

and also terminate in ESM-defined finger areas of the precentral gyrus (two black-colored 

boxes). Our experiments show that false detections localized outside the electrodes were 

significantly reduced at β = 0.95 without reducing true positives, suggesting high specificity 

of the proposed DCNN-CL-ATT method to delineate functionally eloquent areas and 

pathways from individual patients. Thus, in the following validation study, we decided β 
= 0.95 as the threshold value to distinguish true positive fibers belong to each class Ci.

To assess the ability of DCNN-CL-ATT to detect eloquent areas of interest determined by 

ESM, we performed receiver operating characteristic (ROC) curve analysis at the group 

level (n = 70 children with a diagnosis of focal epilepsy, Fig. 10 and 11). For each of four 

functional categories (primary motor, language, auditory, and visual function), voxel-wise 

overlap count of the ESM electrodes (Dj) was measured in FreeSurfer average template 

surfaces (i.e., lh.inflated, rh.inflated) by spatially transforming individual electrodes from 

native T1 space to FreeSurfer average T1 space (Fig.10, left column). The resulting count 

was scaled by its maximum value in the template space in order to estimate overlap 

probability across subjects. Moreover, the voxel-wise overlap count of DCNN-CL-ATT 

classifications corresponding to the same function was measured in the template and scaled 

by its maximum value to estimate overlap probability across subjects (Fig.10, right column). 

Since both probability measurements were obtained from different numbers of observations 

(651 electrodes vs. >106 streamlines at β = 0.95), we applied Gaussian surface smoothing 

to both measurements at full width at half maximum (FWHM) = 5 mm (i.e. half of ESM 

resolution). Finally, to assess area under curve (AUC), sensitivity, and specificity of the 

classification, we first thresholded the overlap probability map of ESM at 0.01 to define 

the “target area” and then sequentially thresholded the overlap probability map of DCNN-

CL-ATT to define the “classification area” as a function of overlap probability(streamline). 

Fig. 11 presents the results of the ROC curve analysis. At group level, it was found that 

DCNN-CL-ATT classification provides excellent prediction for primary motor/language/

auditory/visual function, AUC=0.972/0.954/0.904/0.965 yielding outstanding sensitivity, 
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0.930/0.909/0.842/0.906 and specificity, 0.929/0.910/0.841/0.906 at the threshold of overlap 

probability(streamline) = 0.147/0.126/0.011/0.011.

Finally, fiber streamlines classified by DCNN-CL-ATT, Ci, were compared with the gold 

standard ESM, Dj, for validation (Table. V). Cortical terminals of the selected Ci were 

spatially matched with their gold standard ESM electrode locations Dj, where a match 

was considered to occur if the DCNN area contacted and overlapped the area of the gold 

standard. The percentage of matching was assessed as a function of Euclidean distance 

between the center point of each ESM electrode and the cortical terminal point of an 

individual DCNN-driven fiber streamline. For this validation, cortical terminals of class 

fibers Ci whose pci values were thresholded at β = 0.95 were spatially matched with the 

locations of ESM results, Dj, in 70 children with focal epilepsy. The overlap match was 

counted if any of the fiber terminals included the measured ESM electrode within each of 

four Euclidean distances, contact (<1 cm, within a diameter of individual electrode), 1 cm, 

1.5 cm, and 2 cm. The detection probability gradually increased according to this distance. 

For instance, the average values of detection probability were 0.72/0.83/0.90/0.90 (contact/1 

cm/1.5 cm/2 cm) for primary motor areas, 0.74/0.81/0.87/0.93 (contact/1 cm/1.5 cm/2 cm) 

for language areas, 0.4/0.8/0.8/0.9 (contact/1 cm/1.5 cm/2 cm) for auditory areas, and 

0.57/0.85/0.87/0.88 (contact/1 cm/1.5 cm/2 cm) for visual areas, respectively. We found that 

compared with our previous DWI-MAP analysis of primary motor and language function 

[22], [23], the proposed DCNN-CL-ATT method improved about 9–14% of the detection 

probability by classifying more true positive streamlines (e.g., association fibers) into the 

correct ESM localizations.

Representative examples of DCNN-CL-ATT-derived white matter fibers Ci at β = 0.95 are 

presented in Fig. 12 and compared with eloquent areas determined by ESM. These areas 

were obtained from four different test subjects: D2,8 from an 8 year old boy, D3,5 from a 12 

year old girl, D9,11 from another 8 year old boy, and D13,15,17,19 from a 14 year old girl. It is 

notable that all predictions given by DCNN-CL-ATT (i.e., RGB-colored fibers) are spatially 

well matched to the gold standard ESM electrodes, which highlights the translational value 

of this approach: if an imaging tool can suggest likely eloquent areas, clinical ESM may 

more accurately place electrodes there for useful mapping. In contrast, Fig. 13 shows two 

cases where DCNN-CL-ATT-derived white matter fibers, C25 and C39 at β = 0.95, did not 

match with their corresponding ESM classes, D17 and D22, representing left auditory and 

right visual pathways, respectively. This is reflected by the poor contact probability (0.2 and 

0.33) reported in Table V.

With regard to the computation time, the proposed CNN framework is implemented with 

PyTorch 0.2 and trained on a NVidia GeForce GTX 1080 Ti graphic card. It takes about 6 

hours to train DCNN-CL-ATT. Given whole brain tractography consisted of about 1 million 

streamlines, DCNN-CL-ATT took about 15 minutes to classify them into 64 classes. As a 

comparison, our prior work (DWI-MAP) took about 20 minutes to classify 11 classes of 

primary motor and language related fiber streamlines.
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D. Discriminative fiber representation

Center loss helps us learn a discriminative fiber representation. We extracted the output 

from the penultimate layer in DCNN-FL and DCNN-CL models as the representations of 

corresponding brain fibers. Then, we performed a quantitative analysis by computing the 

intra- and inter-class distances of representation vectors learned by DCNN-FL and DCNN-

CL. To make the distances comparable, the average intra-class distances were normalized 

to 1. The normalized average distances over all fiber classes are reported in Table VI. The 

inter/intra distance ratio of fiber representations learned with DCNN-CL is 32.55 times 

greater than that of the representations learned with DCNN-FL, indicating that center loss 

results in more discriminative fiber representation, better intra-class compactness, and higher 

inter-class variations.

E. Visualization of interpretable fiber representation

To illustrate how our DCNN models classify streamlines, we visualized the attention 

maps for brain fibers in several representative classes. First, we selected fibers with high 

classification confidence (pci > 0.85). Next, the corresponding attention maps over 100 points 

of the selected fibers were extracted from the trained DCNN-CL-ATT model. Finally, we 

computed the average attention weights for fibers belonging to the same class and took that 

as the attention map of the class.

Fig. 14 provides a clue on how the DCNN model makes predictions for brain fiber 

streamlines. Primary motor streamlines C1,4,5,16 showed noticeable changes in attention 

weight only at both s1(prec) and s100(PLIC). These changes directly support the traditional 

homunculus representation of the human brain’s precentral gyrus and posterior limb of 

internal capsule [45], [46]: specific cortico-spinal tracts connect unique segments of prec 

and PLIC, resulting in multiple classes of prec and PLIC associated with the unique motor 

functions of C1,4,5,16. Meanwhile, other language and auditory tracts of C11,21,24,32, whose 

anatomical trajectories terminate at different cortices (s1, s100), show different patterns of 

attention weights widely spread through the entire range of spatial coordinates s1–100. This 

example demonstrates the potential of this attention map to identify the most important 

segments of a streamline, providing a supplementary marker which can be used to identify 

incorrectly tracked outliers (i.e. false positives).

IV. Discussion

The present study demonstrated that our deep CNN model with focal and center losses 

and soft attention mechanism can effectively learn discriminative and interpretable feature 

representations of in-vivo DWI streamline trajectories, and accurately detect eloquent 

functional areas determined by gold standard ESM data. Actual streamline coordinates 

outperformed shape features such as curvature and torsion in training the DCNN-CL-ATT 

model, providing better anatomical characteristics of individual fiber classes in most white 

matter trajectories. The higher reliability of streamline coordinates might be partially 

explained by taking into consideration that malformation of cortical development (MCD) 

is by far the most common epileptogenic pathology in pediatric epilepsy surgery cohorts, 

accounting for up to 50% of the cases (or even higher in some reports) [47], [48]. A 
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diagnosis of MCD includes a variety of pathologies, most commonly focal cortical dysplasia 

type I/II, in which MRI can detect cortical thinning/thickening, hypointense/hyperintense 

signals, abnormal gyrification, and enlargement of the lateral ventricles [49], [50]. Thus, the 

proposed DCNN method utilizing spatial coordinates of entire white matter trajectories may 

better minimize the effect of cortical malformations on tract classification, where cortical-

atlas-based tract clustering would likely be limited by malformed gyrification, especially 

near the cortical mantle. In contrast to parametric Gaussian approaches, the proposed DCNN 

method makes no assumption regarding a priori probabilistic distribution of individual 

streamlines.

In vivo visualization of white matter connections using DWI tractography is a promising 

but challenging task in clinical applications, which relies on a complex model characterizing 

diffusion signals of water displacement on either multi shells or Cartesian grids in the 

diffusion-encoding q-space [51], [52], [53], [54]. The present study aimed to generalize 

the application of a state-of-the-art DCNN classification to clinical DWI data, which is 

typically limited by low angular resolution and diffusion weighting [55], [56]. Importantly, 

the accuracy of this DCNN model is highly dependent on DWI model and the reconstruction 

algorithm used to generate training data for the DWI streamlines. Given these dependencies 

and the controversial limitations of DWI reconstruction (i.e. crossing fiber problem), we 

elected to use an open source pipeline (MRtrix3: www.mrtix.org) based on the principle 

of spherical deconvolution reconstruction, which provides promising reproducibility [37]. 

Although this reconstruction provided clinically acceptable accuracy of 73–100% to detect 

eloquent functions within the spatial resolution of ESM (1cm), future implementation 

of advanced methods that overcome the previously mentioned limitations may create a 

significantly better training set, which is essential to improve the accuracy of this and 

alternative methods.

In this study, we mainly attempted to detect white matter pathways with sufficient size and 

high coherence, since smaller tracts like the association fibers or less coherent connections 

are not reliably assessable in our current DWI data. Higher resolution imaging that employs 

greater field strength, stronger diffusion gradients, and high angular resolution DWI (i.e., 

human connectome data available at http://www.humanconnectomeproject.org) could enable 

the delineation of such structures in the proposed DCNN-CL-ATT model. Our target classes 

were also constructed using fMRI, inevitably limited by ill-posed neurovascular coupling 

[57]. More importantly, fundamental ambiguities in current DWI tractography models have 

been reported, limiting continuous tracking of valid long-range fiber bundles in-vivo and 

generating a large amount of false-positive bundles near the cortical mantle [58], [59]. Thus, 

the detection of eloquent areas using the proposed DCNN-CL-ATT model may only be 

naturally effective and valid on the gyral level and within relatively short range, rather than 

at the nominal voxel resolution.

From a technical point of view, the proposed DCNN-CL-ATT model requires a large amount 

of training data. In the future, we plan to investigate how transfer learning techniques 

[60] can help alleviate this limitation. Moreover, we will further investigate the proposed 

attention map to see if it can be used to detect malformed or incorrectly tracked white matter 

trajectories (e.g., “wiggly tracked” fibers [61]) by systematically labeling a specific range of 
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a given input tract with significantly altered attention weights. It would also be interesting 

to investigate whether the total number of individual streamline coordinates in sk may affect 

overall performance in relatively longer (or shorter) pathways by disturbing the proposed 

DCNN-CL-ATT model at the prefixed learning parameters.

In conclusion, the benefits of the proposed DCNN-CL-ATT method in presurgical planning 

for epileptic resection candidates include: 1) no added risk or cost to identify functionally 

important areas, including both cortex and subcortical pathways, 2) no need for patient task 

cooperation, which is particularly important in young children, and 3) easy applicability to 

other types of neurosurgical procedures (e.g., brain tumor resection). This study translates 

advanced deep learning techniques to clinical practice in the pediatric population, where 

currently available approaches are suboptimal; ESM often provides low sensitivity to 

localize eloquent areas in young children, and fMRI suffers from motion artifact and 

poor cooperation to map eloquent areas in children with cognitive deficits. Systematic 

investigation of the proposed DCNN-CL-ATT method will further improve presurgical 

planning and provide a unique opportunity to minimize or predict postsurgical functional 

deficits in the future.
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Fig. 1. 
QuickBundles centroid streamlines of 64 functionally important white matter pathways of 

interest, Ci, are obtained from the healthy children group. QuickBundles distance threshold 

[13], [15] was set at 20 mm for each of 64 group-streamline clusters, Ci (n = 70).
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Fig. 2. 
Shallow CNN (SCNN) architecture for DWI streamline classification.
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Fig. 3. 
Deep CNN (DCNN) architecture for DWI streamline classification.
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Fig. 4. 
An example of the attention map of feature maps (with width W and height H) in different 

channels.
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Fig. 5. 
Soft attention unit in CNN models.
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Fig. 6. 
Convergence of training (a) and testing (b) losses in DCNN-CL-ATT obtained from different 

sample sizes of (training/testing) subjects.
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Fig. 7. 
Histogram of fiber streamlines in training set, Ci.
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Fig. 8. 
Confusion matrices of the top four DCNNs which present actual F1 scores in training data. 

(a) DCNN-CE (b) DCNN-FL (c) DCNN-CL (d) DCNN-CL-ATT.
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Fig. 9. 
An example of DCNN-CL-ATT derived-white matter pathway, C5, for cortical area 

associated with finger movement of right hand, D5. Black colored boxes indicate ESM 

electrodes of D5 which are spatially well-matched to cortical terminals of C5 obtained at β = 

0.95
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Fig. 10. 
Comparison of DCNN-CL-ATT derived-white matter pathways Ci with ESM electrode 

classes Dj. For each functional category of 70 children with a diagnosis of focal epilepsy, 

voxel-wise overlap count of the ESM electrodes (Dj) was measured in FreeSurfer average 

template and scaled by its maximum value to estimate overlap probability across subjects 

in whole bran (left). Similarly, voxel-wise overlap count of corresponding DCNN-CL-ATT 

classification (Cj) was measured in FreeSurfer average template and scaled by its maximum 

value to estimate overlap probability across subjects (right).
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Fig. 11. 
Performance of DCNN-CL-ATT derived-white matter pathways, Ci, to detect ESM electrode 

classes, Dj, at the group level (n=70). ROC curve analysis was performed as a function 

of overlap probability (streamline) in Ci in order to evaluate (a) area under curve, (b) 

sensitivity, and (c) specificity overlapping between all surface vertices of Ci and Dj.
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Fig. 12. 
Representative examples of DCNN-CL-ATT derived-white matter pathways Ci of which 

cortical terminals completely overlap Dj. Light green colored clusters indicate ESM class 

electrodes Dj, spatially well-matched to cortical terminals of the obtained Ci.
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Fig. 13. 
Representative examples of DCNN-CL-ATT derived-white matter pathways Ci of which 

cortical terminals incompletely overlap Dj. White dotted circles indicate ESM class 

electrodes, D17 and D22, spatially illmatched to cortical terminals of the obtained C25 and 

C39, yielding their low contact probability reported in Table V.
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Fig. 14. 
Attention maps of representative classes related to primary motor, language, auditory, and 

visual functions. Higher values are more important for classification. Left: Attention maps 

for C1, C4, C5, and C16. Right: Attention maps of C11, C21, C24 and C32.
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Xu et al. Page 34

TABLE I

22 eloquent ESM electrode classes, Dj, are the present targets for detection using the proposed CNN methods.

Eloquent function Class index Description

primary motor processing of the contralateral body D 1,2 left,right arm

D 3,4 left,right face

D 5,6 left,right hand

D 7,8 left,right foot

specific types of language function D 9,10 left,right speech arrest

D 11,12 left,right receptive aphasia

D 13,14 left,right expressive aphasia during naming impairment

D 15,16 left, right expressive aphasia during visual naming

hearing ability D 17,18 left,right hallucination

visual ability D 19,20 left,right phosphene

D 21,22 left,right distortion
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TABLE II

64 functionally important white matter pathways of interest, Ci (left,right hemisphere), are the present targets 

for detection using the proposed CNN methods.

Function Fiber Class Index From To

primary motor C 1,34 arm area PLIC

C 4,37 face area PLIC

C 5,38 finger area PLIC

C 16,49 leg area PLIC

language C 7,40 ifop itg

C 8,41 ifop mtg

C 9,42 ifop sma

C 10,43 ifop spm

C 11,44 ifop stg

C 12,45 iftr itg

C 13,46 iftr mtg

C 14,47 iftr stg

C 18,51 mdfg ang

C 19,52 mdfg itg

C 20,53 mdfg mtg

C 21,54 mdfg sma

C 22,55 mdfg spm

C 23,56 mdfg stg

C 26,59 prec ang

C 27,60 prec itg

C 28,61 prec mtg

C 29,62 prec spm

C 30,63 prec stg

auditory C 25,58 mtg icg

C 32,65 stg icg

visual C 2,35 calc lgn

C 3,36 cune lgn

C 6,39 fusi lgn

C 15,48 iocc lgn

C 17,50 ling lgn

C 24,57 mocc lgn

C 31,64 socc lgn

other C 33 - -
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TABLE III

Mean and standard deviation of the DCNN-CL-ATT macro-averaged F1 scores over all classes at different 

training set size.

Number of Training Subjects Macro-averaged Score

14 0.8689 ± 0.0045

28 0.8970 ± 0.0173

42 0.9437 ± 0.0021

56 0.9525 ± 0.0053
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TABLE IV

Mean and standard deviation of the macro-averaged F1 scores across all classes for each method. Best scores 

in bold.

Method Macro-averaged Score

LSVM 0.2986±0.0021

LR 0.3381±0.0131

RecoBundles 0.3797±0.1818

FiberNet 0.8831±0.0075

SCNN-CE 0.8632±0.0020

DCNN-CE 0.9211±0.0098

DCNN-FL 0.9362±0.0026

DCNN-CL 0.9494±0.0066

DCNN-CL-ATT 0.9525±0.0053

DCNN-CL-ATT-CT 0.9337±0.0015
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TABLE V

Probability of an individual DWI class Ci to match an individual ESM class Ci using DCNN-CL-ATT. Four 

distance thresholds were applied at β = 0.95.

ESM DWI contact 1.0cm 1.5cm 2.0cm

D 1 C 1 0.7857 0.8571 1.0000 1.0000

D 2 C 34 0.6000 0.8000 0.9333 0.9333

D 3 C 4 0.6071 0.8571 0.9286 0.9286

D 4 C 37 0.7879 0.8182 0.8788 0.8788

D 5 C 5 0.7241 0.7931 0.8966 0.9310

D 6 C 38 0.6364 0.7879 0.8182 0.8182

D 7 C 16 0.8574 0.8574 0.8574 0.8574

D 8 C 49 0.7333 0.8667 0.8667 0.8667

D 9 C 29,30 0.7368 0.8947 0.8947 0.8947

D 10 C 62,63 0.9091 0.9091 0.9091 0.9091

D 11 C 8,11,14 0.6923 0.8462 0.8462 0.8462

D 12 N.A N.A N.A N.A N.A

D 13 C 8,13,14 0.6667 0.7222 1.000 1.000

D 14 N.A N.A N.A N.A N.A

D 15 C 7,12,19 0.6667 0.6667 0.6667 1.000

D 16 N.A N.A N.A N.A N.A

D 17 C 25,32 0.2000 0.8000 0.8000 0.8000

D 18 C 58,65 0.6000 0.8000 0.8000 1.0000

D 19 C 2,17,24 0.6333 0.8000 0.8333 0.8333

D 20 C 35,50,57 0.5625 0.7500 0.8125 0.8438

D 21 C 6,7,15 0.7500 1.0000 1.0000 1.0000

D 22 C 39,48 0.3333 0.8333 0.8333 0.8333

N.A indicates no ESM acquired.
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TABLE VI

Normalized mean and standard deviation of intra- and inter-class distances of the representations learned by 

DCNN-FL and DCNN-CL.

Method Intra-class Distance Inter-class Distance

DCNN-FL 1 ± 0.5826 30.9720 ± 1.2217

DCNN-CL 1 ± 0.4958 1007.9916 ± 245.2773
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