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ABSTRACT
◥

There is an unmet need to identify and validate tumor-specific
therapeutic targets to enable more effective treatments for cancer.
Heterogeneity in patient clinical characteristics as well as bio-
logical and genetic features of tumors present major challenges
for the optimization of therapeutic interventions, including the
development of novel and more effective precision medicine. The
expression of keratin 17 (K17) is a hallmark of the most aggres-
sive forms of cancer across a wide range of anatomical sites and

histological types. K17 correlates with shorter patient survival,
predicts resistance to specific chemotherapeutic agents, and
harbors functional domains that suggest it could be therapeuti-
cally targeted. Here, we explore the role of K17 in the hallmarks
of cancer and summarize evidence to date for K17-mediated
mechanisms involved in each hallmark, elucidating functional
roles that warrant further investigation to guide the development
of novel therapeutic strategies.

Introduction
Tumor-specific features present the opportunity to develop preci-

sion medicine approaches by serving as biomarkers and therapeutic
targets. While technologies have advanced the search for specific
druggable candidates or molecular pathways, few have been success-
fully implemented to treat cancer. Ideal therapeutic targets include
those that are specifically expressed in cancer cells or the tumor
microenvironment, such as human epidermal growth factor receptor
2 (HER2) in breast cancer [targeted by Herceptin (trastuzumab)], and
the epidermal growth factor receptor (EGFR) in lung and colorectal
cancers [targeted by Erbitux (cetuximab) among other EGFR inhibi-
tors; refs. 1–3]. Despite this progress, cancer remains the second
leading cause of mortality in the United States (4) and in most
industrialized nations, and other potentially targetable cancer bio-
markers remain widely unexplored. Thus, identifying novel biomar-
kers that can be leveraged for the development of more effective
therapeutic interventions is urgently needed.

Over the past decade, concepts have emerged that histologically
similar cancer cases can be highly diverse at the level of gene expres-
sion, and that these differences are highly significant and prognos-
tically relevant. The classification of molecular subtypes based on gene
expression signatures have been established for a wide range of
cancers, including pancreatic (5), cervical (6), bladder (7), lung (8),
breast (9), and colorectal cancers (10). These studies have suggested
that some tumors that arise at different anatomic sites are highly
similar at the transcriptome level.While the components of prognostic
signatures have limited overlap across studies within a given cancer
type, keratin 17 (K17) has been independently and consistently found
to be a defining feature of the most aggressive subset of cancers across
several anatomic sites. In cancer, K17 is reported to be expressed in at
least 20 anatomic sites and based on the human protein atlas (https://
www.proteinatlas.org), the expression of K17 is characterized as high/
medium in colorectal, head and neck, stomach, pancreatic, urothelial,
breast, cervical, skin, ovarian, lung, endometrial, carcinoid, and thy-
roid cancers. In contrast, the expression of K17 is characterized as low
in prostate, liver, renal, melanoma, testis, glioma, and lymphoma
cancers. The gradient of K17 expression depicts it as a promising and
novel prognostic (11–23), diagnostic (24–33), and predictive bio-
marker (Fig. 1A; and Supplementary Table S1; ref. 34). Notably,
K17 is a signature gene of the most aggressive form of basal-like
subtype in pancreatic cancer (5). Furthermore, K17 has been developed
as a noninvasivediagnostic test (URO17; ref. 35) to enhance the accuracy
of initial diagnosis of urothelial carcinoma and tomonitor for urothelial
carcinoma recurrence following treatment (27). Importantly, the mech-
anistic roles of K17 have been investigated in a diverse range of cancer
models (14, 17, 34, 36–45),whereK17has been found to impactmultiple
hallmarksof cancer (14, 36–38, 40, 44, 46–49). Therefore, uncovering the
mechanisms through which K17 promotes cancer aggression will guide
future studies to explore K17 as a therapeutic target for the most
aggressive forms of cancer (Fig. 1B and C).

Cancer cells exhibit a wide range of properties, known as the
“hallmarks of cancer”, that allow them to thrive in inhospitable
environments (50). Here, we summarize studies that have uncovered
K17’s functions, domains, and “partners in crime” in these hallmarks
(Fig. 2A).We comprehensively discuss the signaling pathways that are
regulated by K17 and highlight future studies required to elucidate key
aspects of the biology of K17 in cancer.
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K17 Is a Dynamic Functional Protein in
Cancer

Keratins are a subtype of intermediate filament proteins, including
28 acidic type I proteins and 26 basic type II proteins. These cyto-
skeletal proteins have cellular and molecular functions involved in
structural support, modulating several signaling pathways and met-
abolic processes and in maintaining cellular integrity (51, 52). K17 is a
type I acidic intermediate filament composed of a highly structured
a-helical rod and an intrinsically disordered non-helical head and tail
(Fig. 2B; ref. 52). This intrinsically disordered state has thus far
prevented the study of its complete crystal structure (53).

K17 is normally expressed during embryogenesis, silenced in
mature somatic tissues except in certain stem cell populations (54, 55),
and reexpressed in some cancers (Fig. 2C; refs. 27, 56). Mechanisms
that drive K17 expression in cancer, however, have not yet been
determined. In normal embryonic development, K17 functions in the
onset of the development of placodes, the precursors that give rise to
hair, glands, and teeth, and the morphogenesis of skin epithelia, where
it regulates cell growth and motility (57, 58). In adult somatic tissues,
K17 expression is also induced in response to stress, including tissue
injury and in response to inflammation, as occurs in psoriasis (59) and
in epithelial transition zones including the ocular limbus, the pectinate
line of the anorectal mucosa, and the gastroesophageal junction (60).
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Figure 1.

Significantfindings onK17 suggest it is an ideal therapeutic target.A,Overall, K17 is a predictive, prognostic, and diagnostic biomarker in several different cancers. K17
was previously found to predict therapeutic response of tumors, such that low K17 expression in tumors is correlated with longer patient survival and high K17
expression in tumors is correlated with shorter survival in patients. K17 was shown to promote chemoresistance to first-line chemotherapeutic regimens that do not
target K17. B, K17 translocates into the nuclei of cancer cells to promote tumorigenic functions. Confocal imaging shows K17 (green) and nucleus staining with DAPI
(blue). C, An unbiased high-throughput drug screen revealed several potential molecules that can target K17-expressing PDAC cells, including podophyllotoxin, a
microtubule assembly inhibitor.
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Figure 2.

A, The implication of K17 in each of the 10 deadly hallmarks of cancer. K17 has a function in several hallmarks of cancer. Each piece of the pie chart resembles a hallmark
of cancer and represents the mechanism K17 is reported to have in this hallmark, as highlighted in blue. The regions that contain a question mark portray a lack of
evidence for K17 in this hallmark and signify that further studies are needed to see whether K17 worksmechanistically in cells in this feature. B, Structure of K17. K17 is
made up of an a-helical filament domain (residues 84–392) sectioned into four parts of repeated heptads (1A, 1B, 2A, and 2B), and nonhelical head (N terminal;
residues 1–83) and tail (C terminal; residues 393–432) domains. K17 has a NES found between residues 191 and 200 of the filament domain and a NLS found between
residues 381 and 410 of the protein. It has also been recently reported that there are two phosphorylation sites found on the N-terminal head domain of K17, serine 44
(Ser44) and threonine 9 (Thr9). C, IHC localization of K17 in PDAC. Note diverse patterns of stained tumor cells. Cohesive cluster of large tumor cells (left); smaller
tumor cells and apoptotic debris (middle); K17 highlighting small diffusely infiltrative tumor cells, embedded in a densely desmoplastic stroma (right). Original
magnification �600; scale bars, 20 mm.
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For example, a population of K17-positive basal cells with multipotent
properties at the anorectal junction was found to be critical in
maintaining squamous epithelium during normal homeostasis and
repairing glandular epithelium following tissue injury (61). K17’s
expression in transition zones and its role in progressing malignancy
in those areas warrants further investigation.

K17 has been found to harbor functional domains that enable it to
bind to other functional proteins (62), translocate to cellular compart-
ments (17), including the nucleus, and undergo post-translational
modifications (63). It is unknown, however, how keratin filament
dynamics are regulated and their function in cancer. Posttranslational
modifications of the domains and sites of K17, including phosphor-
ylation, acetylation, or ubiquitylation, have been linked to regulation of
cellular functions, but have not yet been fully characterized (Fig. 2B).
Yang and colleagues (64) used mass spectrometry and immunohis-
tochemistry to demonstrate that K17 can bind and colocalize with E3
ubiquitin-ligase and the tripartite motif-containing protein 21
(Trim21) inHaCaT cells (an immortalized keratinocyte cell linewidely
used as a model of psoriasis). Furthermore, Trim21 was determined to
drive the ubiquitination of K17 via lysine-63–linked polyubiquitin
chains. This stabilized the expression of K17, resulting in the activation
and nuclear translocation of signal transducers and activators of
transcription 3 (STAT3), ultimately promoting cell proliferation in
psoriatic cells. Thus, discovering post-translational modifications of
K17 and identifying prospective binding partners and domains may
also facilitate a better understanding of themechanisms throughwhich
K17 impacts cell proliferation in cancer.

Beyond serving as a cytoskeletal protein, K17 can solubilize from the
filamentous form and was the first keratin discovered to translocate
into the nucleus via a canonical bipartite nuclear localization signal
(NLS) and exit the nucleus by a nuclear export signal (NES), where it
impacts multiple cellular properties in cancer cells (Figs. 1B and 2B;
refs. 65, 66).Wepreviously reported that soluble nuclear K17 functions
in regulating the subcellular localization and degradation of p27KIP1

(p27) in cervical cancer (17). In addition, K17 regulates the expression
of various transcription factors that have been found to underlie the
pathogenesis of cutaneous basal cell carcinoma, including Aire and the
heterogeneous nuclear ribonucleoprotein K (hnRNPK; ref. 44). Sol-
uble nuclear K17 also impacts nuclear morphology and gene expres-
sion through its ability to impact chromatin organization (67),
although the detailed mechanisms through which K17 regulates gene
expression have not yet been fully dissected. Thus, across several
cancers, K17 has been found to interact with key proteins inside and
outside the nucleus, ultimately impacting cancer progression.

K17 Targets Tumor Suppressors
Tumor suppressors are vital cell-cycle regulators, and their dysre-

gulation contributes to tumorigenesis by promoting uncontrolled cell-
cycle progression. K17 modulates cell-cycle progression by regulating
the tumor suppressor p27 with its nuclear shuttling function by a
classic and conserved NLS and NES. These signals enable the soluble
nuclear K17 to serve as a nuclear shuttle of p27 (Fig. 2A, 1; ref. 17), and
potentially, other tumor suppressor proteins. In cervical cancer, the
nuclear export of p27 results in sustained cell-cycle progression and
inadequate DNA replication, promoting cancer pathogenesis (17, 68).
Moreover, K17 serves as a bridge between p27 and Exportin 1
(chromosomal maintenance 1, CRM1), a transport protein that has
been implicated in the export of several tumor suppressors, including
adenomatous polyposis coli (APC), p53, and breast cancer gene 1
(BRCA1; ref. 69). Further investigation is warranted to determine if

K17 and CRM1 work together to export other tumor suppressors
to regulate cancer progression. Importantly, a CRM1 inhibitor,
Selinexor, has been tested in a clinical trial (NCT02178436) in
combination with gemcitabine and paclitaxel as an effective therapy
to treat metastatic pancreatic cancer (70). It is not yet known how
CRM1 inhibition impacts K17’s ability to function as a nuclear
shuttle, and whether this will be a potential therapeutic target for
K17-positive cancers.

K17 has been implicated in connection to other critical tumor
suppressors, such as BRCA1 and p53. In breast cancer cell lines, an
inverse relationship was determined between BRCA1 and K17 tran-
scription, such that K17 expression was repressed by functional
BRCA1, and BRCA1 knockout resulted in an approximately a 6-fold
increase in K17 (71). This may thereby explain the observed over-
expression of key basal markers, including K17, in BRCA1-deficient
breast tumors. Similarly, Liao and colleagues (72) found a negative
correlation between K17 and p53 expression using a rat model of
radiation dermatitis and concluded that p53 is a direct repressor ofK17
transcription, which could provide a rationale for therapeutically
targeting p53 in dermatoses.

Silencing K17 has been shown to lead to G1–S phase cell-cycle arrest
in cervical cancer cell lines and tumor tissue from patients with gastric
cancer (17, 46). Specifically in gastric cancer, this was due to decreased
expression of cyclin E andD1 (46), supporting the conclusion that K17
regulates cell-cycle progression. Notably, silencing K17 caused an
increase in the expressionof tumor suppressors thatmediate apoptosis,
including Bcl-2-associated x protein (Bax) and cleaved caspase-3 (46).
Taken together, these studies suggest that K17 can directly and
indirectly target tumor suppressors.

K17-Mediated Signaling Enhances Cell
Proliferation and Tumor Growth

Cancer cells are immortal, enabling unlimited replicative capacity
typically driven by upregulation of telomerase to stabilize telomeric
DNA and the deregulation of specific signaling pathways (73–76).
Here, we discuss how K17 activates cell signaling in normal and
cancerous cells, resulting in increased proliferation and cell size
(Fig. 2A, 2).

Based on observations that K17-null keratinocytes were much
smaller than those that expressed K17, a study concluded that K17
increases the mass and size of keratinocytes during skin develop-
ment (47). The group further explored the effects of K17 on protein
synthesis in the protein kinase B (Akt)/mammalian target of rapa-
mycin (mTOR) pathway, which impacts cell proliferation, metabo-
lism, angiogenesis, epithelial–mesenchymal transition (EMT), and
invasion (77). They found that K17 acts downstream of phosphoinosi-
tide 3-kinase (PI3K) activation in the Akt/mTOR pathway, prompting
protein synthesis and cell growth (47). Similarly, K17 was found to
promote cellular proliferation and tumor growth in esophageal squa-
mous cell carcinoma (ESCC). Khanom and colleagues (78) found that
K17-mediated signaling stimulated the Akt/mTOR pathway, contrib-
uting to oral cancer cell line progression by promoting cell migration
and proliferation. In ESCC animal models, K17-overexpressing cells
implanted into mice resulted in larger tumors while K17-knockout
attenuated tumor growth (36). Mouse tail vein injections supported
the conclusion that K17 promotes cell migration and pulmonary
metastasis, which are accompanied by the activation of Akt signal-
ing (36). In bladder cancer cell lines, K17 was found to be upregulated,
and its knockdown resulted in the suppression of colony formation
and invasion (79). Specifically, K17 regulated the expression of EMT
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markers such that silencing K17 resulted in increased E-cadherin and
decreased N-cadherin and correlated with suppressed invasion and
metastasis. Silencing K17 decreased the expression of oncogenic
phosphorylated-ERK and phosphorylated–Akt signaling (79).

Furthermore, K17 contributes to the pathogenesis of both Ewing
sarcoma and basal cell carcinoma (BCC) through glioma-associated
oncogene (Gli) proteins, which are transcriptional effectors of the
sonic hedgehog (SHH) pathway. InEwing’s sarcoma, K17was found to
induce Akt signaling, tomediate cellular adhesion (37), and upregulate
GLI1, both to activate and repress cell–cell adhesion. In BCC, a cancer
in which K17 is found to be highly upregulated (26), SHH signaling,
which promotes cell proliferation, is upregulated through the activa-
tion of Gli protein expression (80). Callahan and colleagues (81)
evaluated the promoter activity of K17 in BCC to determine whether
the actin binding protein, Missing in Metastasis (MIM), is an effective
SHH responsive gene and can affect Gli transcriptional outputs. They
ultimately implicated K17 as a direct target gene of Gli such that Gli1
and Gli2 can induce K17 expression. It would be interesting to further
see if there is a direct mechanistic link between K17 and SHH signaling
as they both share a relationship with transcription factors of Gli.

K17 affects oncogenic signaling pathways, contributing to its effect
on cancer progression. Chung and colleagues (39) used a epidermoid
carcinoma cell line to illustrate that K17 binds to and facilitates the
expression, phosphorylation, and subcellular localization of Annexin
A2 (AnxA2) in response to EGFR activation. Furthermore, 14–3-3s, a
negative cell-cycle regulator, was identified as a K17-binding protein,
depending on the phosphorylation of serine 44 (S44) and threonine 9
(T9) of the nonhelical head of K17 (Fig. 2B; ref. 82). Binding of 14–3-3s
to S44 and T9 phosphorylation sites of K17 promoted nuclear export of
14–3-3s and cell growth in skin keratinocytes (47). In cell lines derived
from oral carcinoma in situ and SCC, immunohistochemistry revealed
that K17 and the tumor suppressor 14–3-3s are coexpressed (38). K17
knockdown resulted in significantly decreased cell number and slowed
cell migration. Although K17 binding to 14–3-3s lead to nuclear export
of 14–3-3s, the underlying mechanisms that mediate this process are
unknown. Specifically, it is not known if K17–14–3-3s export is
mediated by CRM1 or another transport protein. Enaka and collea-
gues (83) explored the role of K17 in promoting proliferation and
invasion in oral SCC by investigating the relationship between K17 and
p53mutations and reported that overexpressingmutant p53 (p53R248W)
resulted in the suppression of K17 expression, reducing activity in
proliferation, cell size, and invasion.

The observations that K17 mediates the nuclear export of 14–3-3s,
p27 and p53, suggests that there could be common underlying
mechanism through which K17 has a generalizable role as a nuclear
shuttle of tumor suppressor proteins to drive cell cycle progression and
tumor growth. Targeting these associated pathways could be a ther-
apeutic strategy to inhibit K17-expressing cancer cell growth.

K17 in Angiogenesis
Although K17 has not been shown to directly regulate angiogenesis,

its immunomodulatory role has been reported to be coincide with
angiogenesis. K17 knockout correlates with decreased vascularization
of cutaneous basal cell carcinomas, as a result of decreased expression
of platelet endothelial cell adhesion molecule-1 (PECAM-1 or CD31),
amodulator of angiogenesis and endothelial cell migration (Fig. 2A, 3;
ref. 40). Although Xu and colleagues (41) concluded that K17 does not
directly modulate angiogenesis, it was postulated that the induction of
angiogenic factors elevated K17 expression, resulting in endothelial
tube formation in vitro. Of note, other keratins, including keratin

19 (84) and keratin 14 (85) have been linked to the regulation of
angiogenesis in hepatocellular carcinoma and cervical squamous cell
carcinoma, respectively. Therefore, the role of K17 in the regulation of
this hallmark of cancer is relatively unexplored and should be further
interrogated.

K17 in DNA Damage Response
DNAdamage response involves numerous signaling events, includ-

ing the regulation of the cell cycle and DNA replication, and is
fundamentally important to genomic instability as it impacts tumor-
igenesis. Nair and colleagues (42) reported that nuclear K17 is induced
in response to DNA damage and that K17 is required in the early
double-strand break (DSB) repair pathway in tumor keratinocytes
(Fig. 2A, 4). Nuclear K17 immunoprecipitated with key proteins of the
DSB repair pathway, including gH2AX, 53BP1, and DNA-PKCs (42).
A DNA damage response involving K17 allowed keratinocytes to
survive after DNA damage, while cells with K17 knockout or lack of
nuclear-K17 showed decreased survival due to dysregulation of the
DSB pathway (42). Because the loss of K17 dysregulates DSB repair,
pharmacologic inhibition of K17 could promote genomic instability,
creating vulnerabilities that could be therapeutically manipulated.
Although the paradigm of synthetic lethality in vulnerable pathways
has been established (i.e., PARP inhibitors in patients with BRCA1/
BRCA2 mutations; ref. 86), it is unknown if targeting K17 could
destabilize DNA repair pathways as a synthetic lethality approach in a
similar fashion.

K17 Mediates Resistance to
Programmed Cell Death and
Chemoresponse

K17 regulates apoptotic cell death in the pathogenesis of multiple
types of cancer (Figs. 2A, 5 and 1D). Hu and colleagues (46) observed
that silencing K17 decreased the expression of Bcl2 and cleaved
caspase-3, and thereby induced apoptosis in human gastric carcinoma
tissues. Furthermore, Tong and colleagues (87) found that K17
modulates TNFa signaling by interacting with TNF receptor 1
(TNFR1)-associated death domain protein (TRADD). They further
concluded that TNFa signaling was enhanced in K17-null mouse skin
tissue, as measured by increased NF-kB activity (82).

Chemoresistance is an important barrier for thedevelopmentofnovel
and more effective approaches to treat cancer. Our group reported that
K17 expression drives a greater than two-fold increase, both in vitro and
in vivo, in resistance to gemcitabine and 5-fluorouracil, commonly used
as first line agents to treat pancreatic ductal adenocarcinoma (PDAC;
ref. 34). Similarly, we found that the sensitivity to cisplatin, a first-line
therapeutic agent for cervical cancer, was increased two-fold by K17
knockdown (17). The resistance to cisplatin induced by K17 was later
confirmed inbladder cancer cells (79). In addition, Li and colleagues (43)
reported that K17 drives chemoresistance to paclitaxel in cervical cancer
cells (43).

To explore opportunities to overcome chemoresistance in K17-
positive cancers, our team performed an unbiased high-throughput
screen in pancreatic cancer models (34) and found that podophyllo-
toxin, a microtubule assembly inhibitor, was at least two-fold more
potent in K17-positive compared to K17-negative PDAC cells
(Fig. 1C). Another microtubule disassembly inhibitor, paclitaxel, is
currently used in combination with gemcitabine as a first line chemo-
therapeutic regimen for PDAC, breast, lung, and ovarian cancer.
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Surprisingly, we found that when combined with gemcitabine, podo-
phyllotoxin but not paclitaxel, showed strong synergistic effects in
inhibiting the viability of K17-expressing PDAC cells. Thus, these
experiments suggest that targeting microtubule assembly rather than
microtubule disassembly is a therapeutic opportunity in K17-expressing
pancreatic cancers and that podophyllotoxin and its chemotherapeutic
derivatives, such as etoposide, could potentially be combined with
gemcitabine to enhance treatment efficacy for K17-positive PDACs.

Taken together, these observations demonstrate that K17 mediates
resistance to apoptosis and drives chemoresistance; thus, targetingK17
could be a strategy to enhance therapeutic efficacy. Further studies are
indicated to address the underlying mechanisms of resistance and to
leverage this information to design more effective therapies for K17-
expressing cancers.

K17 Regulates Migration and Invasion
K17 interacts with Akt, a mediator of EMT and cell migration in

cancer (Fig. 2A, 6). However, the role of K17 has been reported
inconsistently in multiple studies. In esophageal squamous cell car-
cinoma, transcription factors that drive EMT, including Slug, Snail,
and Twist increase in response to upregulation of K17 expression, but
decrease in K17-knockout cells (36). Chiang and colleagues (48)
reported that cells that express K17 promote EMT in oral squamous
cell carcinoma. Similarly, in non-small cell lung cancer, elevated levels
of K17 promote cell proliferation, colony formation, and invasion,
while down-regulation of K17 has opposite effects (14). Hu and
colleagues (46) also reported that downregulation of K17 suppressed
proliferation and migration in vitro and reduced tumorigenicity and
invasion in vivo in gastric cancer models. In PDAC, pancreatic stellate
cells secrete TGFb1, which negatively regulates L1 cell adhesion
molecule (L1CAM) expression, resulting in a more aggressive PDAC
phenotype (88). Importantly, in low L1CAM-expressing tumors, there
is increased expression of K17. This is in line with the concept that K17
advances tumor aggression through promoting stemness and decreas-
ing cell adhesion by a potential interaction with L1CAM.

In contrast, Zeng and colleagues (89) reported that knocking down
K17 expression resulted in a significant decrease of E-cadherin and
promoted the expression of vimentin in pancreatic cancer cell lines.
Through cell proliferation and colony formation assays in vitro, K17
significantly inhibited cell proliferation. K17 also suppressed migra-
tion and invasion as found through wound healing and transwell
invasion experiments. Overall, these results paradoxically indicate K17
as a tumor suppressor in their model systems. Consistent with their
findings, Quinn and colleagues (90) reported that K17 was found to be
negatively correlated with metastatic phenotype in lung cancer xeno-
grafts. Thus, data on the impact of K17 on invasion and migration are
inconclusive, potentially due to phenotypic differences between cancer
models. The relationship between K17 and EMT warrants further
investigation to clarify these inconsistencies.

K17 Is Involved in the Immune
Regulatory Network

In cutaneous BCC, the overexpression of K17 promotes tumori-
genesis and impacts the inflammatory microenvironment (Fig. 2A, 7;
ref. 91). K17 levels directly correlate with changes in the expression
of inflammatory T-helper cytokines in BCCs, including Th1, Th2,
and Th17 (40). Additionally, K17 impacts tumor promoter TPA
(12-O-tetradecanoylphorbol-13-acetate)-induced expression of cer-
tain chemokines, including Cxcl11, Cxcl5, Cxcl9 and Cxcl10 in TPA-

treated skin keratinocytes (27, 31). In a mouse papillomavirus model
with induced K17, the expression of Cxcl9 and Cxcl10 were inhibited,
resulting in decreased infiltration of CD8þ T cells (92). This suggests
that K17 could block T-cell infiltration, and thereby impact the
inflammatory microenvironment in cancer.

Hobbs and colleagues has reported that nuclear K17 regulates the
expression of an autoimmune regulator, Aire, by interacting with other
factors, including hnRNP K. In addition, p65 (NF-kB) has been
reported to be a potential molecular bridge between K17 and Aire,
resulting in increased proinflammatory gene expression and tumor
growth (44). Furthermore, Lo and colleagues used immunohistochem-
istry and illustrated that K17 colocalized with key cytokines, including
Cxcr3, Cxcl10, and Cxc11 in BCC (93).

The involvement of K17 in immune changes has also been
examined in human papillomavirus (HPV) type 16 mouse models
of cervical dysplasia (49). Lesions that were K17-positive had a two-
fold increase in the level of transcripts involved in signaling and
growth pathways including Notch and Wnt, and the transcript
levels for pro-inflammatory cytokines were significantly elevated,
including Ifng, Cxcl9, Cxc110, Cxc111, Ido1, Mmp13 Tnfa, I11b,
Mmp9, Tgfb, and Cxc15 (49). Although K17 expression has been
found to induce tumor-promoting inflammation in BCC (40, 44)
and cervical SCC (49), the potential interactions between K17 and
the inflammatory microenvironment have not yet been explored in
other cancer types. Thus, K17 impacts the immune microenviron-
ment at multiple levels, but further studies are indicated to uncover
the interactions between tumor cells relative to K17-status, and
tumor-associated cytotoxic T cells, pro-tumor (M2) versus anti-
tumor (M1) macrophages, and other mediators of the immune
response, to determine if targeting K17 expression could enable
more effective immunotherapeutic approaches for cancer.

K17 Alters Metabolism
Cancer cells have the ability to fundamentally reprogram pathways

for energy production to enable a switch from aerobic glycolysis to
anaerobic metabolism, otherwise known as the Warburg effect (50).
Anaerobic metabolism is associated with chemoresistance and can be
therapeutically targeted (94, 95). K17 impacts cancer cell metabolism in
osteosarcoma via the Akt/mTOR/hypoxia-inducible factor (HIF)-1a
pathway (96). Furthermore, mRNA and protein expression levels of
target genes of HIF1a, including GLUT1,MCL1, and VEGF, decreased
in response toK17 inhibition (96), andK17knockdown inosteosarcoma
induced G1 arrest and inhibited glycolysis in vitro (Fig.2A, 8). While
these observations are intriguing, further studies are needed to better
understand how K17 alters cancer metabolism and whether this hall-
mark of K17 expression contributes to chemoresistance.

Conclusions
This review summarizes and highlights studies that have addressed

the interactions of K17 with several hallmarks of cancer, establishing it
as a potential therapeutic target. K17 impacts many proteins and
pathways that drive biologic aggression, including the promotion of
sustained cell-cycle progression, invasion, and angiogenesis, repro-
graming the metabolome, and chemoresistance. The reexpression of
this embryonic keratin in cancer, its association to the most aggressive
molecular subtypes of carcinomas across anatomic sites, and its
mechanistic links in multiple hallmarks of cancer emphasize the
importance of this protein for tumorigenesis and tumor maintenance.
Thus, K17 may represent an opportunity to treat the most aggressive
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subtypes of cancer, based on biomarkers of gene expression rather than
mutation status.
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